搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非对称微波光子晶体的电磁二极管

陈永强 许光远 王军 方宇 吴幸智 丁亚琼 孙勇

引用本文:
Citation:

基于非对称微波光子晶体的电磁二极管

陈永强, 许光远, 王军, 方宇, 吴幸智, 丁亚琼, 孙勇

Electromagnetic diode based on asymmetric microwave photonic crystal

Chen Yong-Qiang, Xu Guang-Yuan, Wang Jun, Fang Yu, Wu Xing-Zhi, Ding Ya-Qiong, Sun Yong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 通过引入具有类电磁诱导透明效应的超材料, 非对称光子晶体谐振腔的透射特性得到了极大的优化, 包括透射峰的品质因子和谐振腔模所对应的电磁场强度. 品质因子的提高与非对称场强局域的增强有利于高性能电磁二极管的实现. 我们在引入非线性材料的微带波导系统中验证了该方案. 实验结果显示, 此二极管在1.329 GHz的工作频率下可产生高达19.7 dB的透射对比度, 同时输入功率强度仅为7 dBm. 此外, 我们提出的方案并没有大幅增加器件体积和剧烈降低信号透过率. 这些特性的亚波长尺度实现将有益于集成光学回路的小型化.
    A subwavelength electromagnetic diode scheme in a microwave waveguide system is proposed by using an asymmetric photonic crystal (PC) cavity side-coupled with electromagnetically induced transparency like (EIT-like) metamaterials. It is found that the composite PC-EIT configuration can generate tenfold Q-factor enlargement, accompanied with enhanced nonreciprocal electromagnetic localization simultaneously. Further study of the measured one-way response exhibits excellent electromagnetic diode performance including 19.7 dB transmission contrast and 7 dBm operating power at a working frequency of 1.329 GHz. We emphasize that such high-contrast transmission and low-threshold diode actions are not at costs of greatly increasing volume and drastically reducing transmission. Our findings may benefit the design of compact nonreciprocal devices in the integrated optical nanocircuits.
      通信作者: 陈永强, yqchen@usts.edu.cn ; 孙勇, yongsun@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 91850206, 51607119, 11974261, 11804244)、江苏省高校自然科学研究项目(批准号: 18KJA470004)和江苏省十三五重点学科(批准号: 20168765)资助的课题
      Corresponding author: Chen Yong-Qiang, yqchen@usts.edu.cn ; Sun Yong, yongsun@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91850206, 51607119, 11974261, 11804244), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJA470004), and the Jiangsu Province Key Discipline of China’s 13th Five-Year Plan, China (Grant No. 20168765)
    [1]

    Scalora M, Dowling J P, Bowden C M, Bloemer M J 1994 J. Appl. Phys. 76 2023Google Scholar

    [2]

    Tocci M D, Bloemer M J, Scalora M, Dowling J P, Bowden C M 1995 Appl. Phys. Lett. 66 2324Google Scholar

    [3]

    Yu Z, Fan S 2009 Nat. Photonics 3 91Google Scholar

    [4]

    Feise M W, Shadrivov I V, Kivshar Y S 2005 Phys. Rev. E 71 037602Google Scholar

    [5]

    Hu X, Xin C, Li Z, Gong Q 2010 New J. Phys. 12 023029Google Scholar

    [6]

    Hu X, Li Z, Zhang J, Yang H, Gong Q, Zhang X 2011 Adv. Funct. Mater. 21 1803Google Scholar

    [7]

    Feng L, Ayache M, Huang J, Xu Y, Lu M, Chen Y, Fainman Y, Scherer A 2011 Science 333 729Google Scholar

    [8]

    Wang C, Zhou C, Li Z 2011 Opt. Exp. 19 26948Google Scholar

    [9]

    Bi L, Hu J J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A 2011 Nat. Photonics 5 758Google Scholar

    [10]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [11]

    Shen Z, Zhang Y, Chen Y, Zou C, Xiao Y, Zou X, Sun F, Guo G, Dong C 2016 Nat. Photon. 10 657Google Scholar

    [12]

    程立锋, 任承, 王萍, 冯帅 2014 物理学报 63 154213Google Scholar

    Cheng L F, Ren C, Wang P, Feng S 2014 Acta Phys. Sin. 63 154213Google Scholar

    [13]

    刘云凤, 刘彬, 何兴道, 李淑静 2016 物理学报 65 064207Google Scholar

    Liu Y F, Liu B, He X D, Li S J 2016 Acta Phys. Sin. 65 064207Google Scholar

    [14]

    Fan Y, Han J, Wei Z Y, Wu C, Cao Y, Yu X, Li H Q 2011 Appl. Phys. Lett. 98 151903Google Scholar

    [15]

    Xue C H, Jiang H T, Chen H 2010 Opt. Exp. 18 7479Google Scholar

    [16]

    Du G Q, Jiang H T, Wang Z S, Chen H 2009 Opt. Lett. 34 578Google Scholar

    [17]

    Zhou H, Zhou K, Hu W, Guo Q, Lan S, Lin X, Gopal A V 2006 J. Appl. Phys. 99 123111Google Scholar

    [18]

    Zhukovsky S V, Smirnov A G 2011 Phys. Rev. A 83 023818Google Scholar

    [19]

    Cai X, Wang X, Li S 2012 Opt. Commun. 285 1959Google Scholar

    [20]

    Ghaleh K J, Moslemi F 2017 Appl. Opt. 56 4146Google Scholar

    [21]

    Zhang J, Wang P, Ding Y, Wang Y 2019 Opt. Commun. 450 322Google Scholar

    [22]

    Yang P, Xia X, He H, Li S, Han X, Zhang P, Li G, Zhang P, Xu J, Yang Y, Zhang T 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [23]

    Harris S E 1997 Phys. Today 50 36

    [24]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar

    [25]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [26]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783Google Scholar

    [27]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [28]

    Papasimakis N, Fedotov V A, Zheludev N I, Prosvirnin S L 2008 Phys. Rev. Lett. 101 253903Google Scholar

    [29]

    Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 102 053901Google Scholar

    [30]

    张连水, 李晓莉, 王健, 杨丽君, 冯晓敏, 李晓苇, 傅广生 2008 物理学报 57 4921Google Scholar

    Zhang L S, Li X L, Wang J, Yang L J, Feng X M, Li X W, Fu G S 2008 Acta Phys. Sin. 57 4921Google Scholar

    [31]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [32]

    Singh R, Rockstuhl C, Lederer F, Zhang W L 2009 Phys. Rev. B 79 085111Google Scholar

    [33]

    Dong Z G, Liu H, Cao J X, Li T, Wang S M, Zhu S N, Zhang X 2010 Appl. Phys. Lett. 97 114101Google Scholar

    [34]

    Sun Y, Jiang H T, Yang Y P, Zhang Y W, Chen H, Zhu S Y 2011 Phys. Rev. B 83 195140Google Scholar

    [35]

    Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753Google Scholar

    [36]

    Shao J, Li J Q, Li J, Wang Y K, Dong Z G, Chen P, Wu R X, Zhai Y 2013 Appl. Phys. Lett. 102 034106Google Scholar

    [37]

    Chen Y Q, Dong L J, Fang Y, Wu X Z, Wu Q Y, Jiang J, Shi Y L 2019 Appl. Phys. A 125 1Google Scholar

    [38]

    Sun Y, Tong Y W, Xue C H, Ding Y Q, Li Y H, Jiang H T, Chen H 2013 Appl. Phys. Lett. 103 091904Google Scholar

    [39]

    Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151Google Scholar

    [40]

    Fan Y C, Qiao T, Zhang F L, Fu Q H, Dong J J, Kong B T, Li H Q 2017 Sci. Rep. 7 40441Google Scholar

  • 图 1  内嵌类EIT超材料的一维非对称光子晶体谐振腔样品照片

    Fig. 1.  Photograph of the composite (AB)2D(BA)2(BBAA)-EIT structure.

    图 2  (a)数值仿真得到的(AB)2(BA)2, (AB)2D(BA)2, (AB)2D(BA)2(BBAA)的透射谱线; (b)不同入射方向激发下(AB)2D(BA)2(BBAA)的反射谱线

    Fig. 2.  (a) Simulated transmission spectra of (AB)2(BA)2, (AB)2D(BA)2, and (AB)2D(BA)2(BBAA); (b) simulated reflection spectra of (AB)2D(BA)2(BBAA) for the left and right incidence.

    图 3  数值仿真得到的(AB)2D(BA)2(BBAA)、类EIT超材料、(AB)2D(BA)2(BBAA)-EIT复合结构以及(AB)5D(BA)5(BBAA)的透射谱线

    Fig. 3.  Simulated transmission spectra of (AB)2D(BA)2(BBAA), EIT-like metamaterial, composite (AB)2D(BA)2(BBAA)-EIT structure, and (AB)5D(BA)5(BBAA).

    图 4  数值仿真得到的在1.374 GHz频率下, 正、反向入射(AB)2D(BA)2(BBAA), 类EIT超材料, (AB)2D(BA)2(BBAA)-EIT复合结构, 以及(AB)2D(BA)2(BBAA)3的电场强度分布

    Fig. 4.  Simulated electric field distributions at 1.374 GHz of (AB)2D(BA)2(BBAA), EIT-like metamaterial, (AB)2D(BA)2(BBAA)-EIT, and (AB)2D(BA)2(BBAA)3 for the left and right incidence.

    图 5  实验测试得到的, (AB)2D(BA)2(BBAA)-EIT复合结构在不同入射功率下的透射谱线 (a)正向入射; (b)反向入射

    Fig. 5.  Measured nonreciprocal transmission spectra as a function of input power for the (a) left and (b) right incidence.

    图 6  实验测试得到的在输入功率为7 dBm下, 正、反向入射复合结构时的透射谱线

    Fig. 6.  Measured transmission spectra at 7 dBm of the input power for the left and right incidence.

    图 7  实验测试得到的最大正、反透射对比度与频率的关系

    Fig. 7.  Measured maximum transmission contrast in the frequency range from 1.31 to 1.35 GHz.

  • [1]

    Scalora M, Dowling J P, Bowden C M, Bloemer M J 1994 J. Appl. Phys. 76 2023Google Scholar

    [2]

    Tocci M D, Bloemer M J, Scalora M, Dowling J P, Bowden C M 1995 Appl. Phys. Lett. 66 2324Google Scholar

    [3]

    Yu Z, Fan S 2009 Nat. Photonics 3 91Google Scholar

    [4]

    Feise M W, Shadrivov I V, Kivshar Y S 2005 Phys. Rev. E 71 037602Google Scholar

    [5]

    Hu X, Xin C, Li Z, Gong Q 2010 New J. Phys. 12 023029Google Scholar

    [6]

    Hu X, Li Z, Zhang J, Yang H, Gong Q, Zhang X 2011 Adv. Funct. Mater. 21 1803Google Scholar

    [7]

    Feng L, Ayache M, Huang J, Xu Y, Lu M, Chen Y, Fainman Y, Scherer A 2011 Science 333 729Google Scholar

    [8]

    Wang C, Zhou C, Li Z 2011 Opt. Exp. 19 26948Google Scholar

    [9]

    Bi L, Hu J J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A 2011 Nat. Photonics 5 758Google Scholar

    [10]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [11]

    Shen Z, Zhang Y, Chen Y, Zou C, Xiao Y, Zou X, Sun F, Guo G, Dong C 2016 Nat. Photon. 10 657Google Scholar

    [12]

    程立锋, 任承, 王萍, 冯帅 2014 物理学报 63 154213Google Scholar

    Cheng L F, Ren C, Wang P, Feng S 2014 Acta Phys. Sin. 63 154213Google Scholar

    [13]

    刘云凤, 刘彬, 何兴道, 李淑静 2016 物理学报 65 064207Google Scholar

    Liu Y F, Liu B, He X D, Li S J 2016 Acta Phys. Sin. 65 064207Google Scholar

    [14]

    Fan Y, Han J, Wei Z Y, Wu C, Cao Y, Yu X, Li H Q 2011 Appl. Phys. Lett. 98 151903Google Scholar

    [15]

    Xue C H, Jiang H T, Chen H 2010 Opt. Exp. 18 7479Google Scholar

    [16]

    Du G Q, Jiang H T, Wang Z S, Chen H 2009 Opt. Lett. 34 578Google Scholar

    [17]

    Zhou H, Zhou K, Hu W, Guo Q, Lan S, Lin X, Gopal A V 2006 J. Appl. Phys. 99 123111Google Scholar

    [18]

    Zhukovsky S V, Smirnov A G 2011 Phys. Rev. A 83 023818Google Scholar

    [19]

    Cai X, Wang X, Li S 2012 Opt. Commun. 285 1959Google Scholar

    [20]

    Ghaleh K J, Moslemi F 2017 Appl. Opt. 56 4146Google Scholar

    [21]

    Zhang J, Wang P, Ding Y, Wang Y 2019 Opt. Commun. 450 322Google Scholar

    [22]

    Yang P, Xia X, He H, Li S, Han X, Zhang P, Li G, Zhang P, Xu J, Yang Y, Zhang T 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [23]

    Harris S E 1997 Phys. Today 50 36

    [24]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar

    [25]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [26]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783Google Scholar

    [27]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [28]

    Papasimakis N, Fedotov V A, Zheludev N I, Prosvirnin S L 2008 Phys. Rev. Lett. 101 253903Google Scholar

    [29]

    Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 102 053901Google Scholar

    [30]

    张连水, 李晓莉, 王健, 杨丽君, 冯晓敏, 李晓苇, 傅广生 2008 物理学报 57 4921Google Scholar

    Zhang L S, Li X L, Wang J, Yang L J, Feng X M, Li X W, Fu G S 2008 Acta Phys. Sin. 57 4921Google Scholar

    [31]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [32]

    Singh R, Rockstuhl C, Lederer F, Zhang W L 2009 Phys. Rev. B 79 085111Google Scholar

    [33]

    Dong Z G, Liu H, Cao J X, Li T, Wang S M, Zhu S N, Zhang X 2010 Appl. Phys. Lett. 97 114101Google Scholar

    [34]

    Sun Y, Jiang H T, Yang Y P, Zhang Y W, Chen H, Zhu S Y 2011 Phys. Rev. B 83 195140Google Scholar

    [35]

    Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753Google Scholar

    [36]

    Shao J, Li J Q, Li J, Wang Y K, Dong Z G, Chen P, Wu R X, Zhai Y 2013 Appl. Phys. Lett. 102 034106Google Scholar

    [37]

    Chen Y Q, Dong L J, Fang Y, Wu X Z, Wu Q Y, Jiang J, Shi Y L 2019 Appl. Phys. A 125 1Google Scholar

    [38]

    Sun Y, Tong Y W, Xue C H, Ding Y Q, Li Y H, Jiang H T, Chen H 2013 Appl. Phys. Lett. 103 091904Google Scholar

    [39]

    Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151Google Scholar

    [40]

    Fan Y C, Qiao T, Zhang F L, Fu Q H, Dong J J, Kong B T, Li H Q 2017 Sci. Rep. 7 40441Google Scholar

计量
  • 文章访问数:  5043
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-11
  • 修回日期:  2021-09-17
  • 上网日期:  2022-01-18
  • 刊出日期:  2022-02-05

/

返回文章
返回