搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中子诱发232Th裂变初始碎片质量及动能分布Monte-Carlo研究

刘昌奇 霍东英 韩超 吴康 刘兴宇 杨旭 白晓厚 王俊润 张宇 姚泽恩 韦峥

引用本文:
Citation:

中子诱发232Th裂变初始碎片质量及动能分布Monte-Carlo研究

刘昌奇, 霍东英, 韩超, 吴康, 刘兴宇, 杨旭, 白晓厚, 王俊润, 张宇, 姚泽恩, 韦峥

Monte-Carlo study of pre-neutron emission mass and energy for neutron-induced 232Th fission

Liu Chang-Qi, Huo Dong-Ying, Han Chao, Wu Kang, Liu Xing-Yu, Yang Xu, Bai Xiao-Hou, Wang Jun-Run, Zhang Yu, Yao Ze-En, Wei Zheng
PDF
HTML
导出引用
  • 随着第四代反应堆以及先进核能利用系统的发展, 对中子核数据提出了高精度、多核素、宽能区的新要求. 目前, 中国核数据评价库(CENDL库)中相关核裂变的数据较缺失, 不足以满足当前核能发展的需求. 因此, 建立面向中子核数据需求的可靠计算方法和工具变得极为重要. 本文基于Monte-Carlo方法建立了裂变碎片质量动能计算模型, 研究了中低能中子诱发232Th(n,f)反应发射中子前裂变碎片的分布特性. 对于裂变碎片质量分布, 本模型计算结果与实验值最大偏差约1%, 与GEF, TALYS程序计算结果(与实验值最大偏差约2%)相比具有一定优势. 对于发射中子前裂变碎片动能分布, 本模型计算结果与实验数据一致. 结果表明, 所发展的计算模型能够较好地预测232Th(n,f)反应发射中子前裂变碎片数据, 为中子诱发锕系核裂变反应计算提供一种新思路.
    The development of fourth-generation reactors and advanced nuclear energy systems require high-precision, multi-nuclide, and wide-energy-area neutron nuclear data. However, the current nuclear energy-related nuclear fission data in the China Nuclear Data Evaluation Library (CENDL library) are incomplete and cannot meet the current need. It is extremely important to establish the reliable calculation methods and tools for the neutron nuclear data. Based on the Monte-Carlo method, a model for calculating the pre-neutron fission fragment is established in this work. The mass and kinetic energy distribution of 232Th(n,f) reaction at the medium- and low- incident neutron energy are studied. The calculations of the mass distribution with the different values of incident energy are compared with the experimental results. The maximum deviation of this work from the experimental data is ~1%, which is advantageous compared with the GEF and TALYS code (maximum deviation from the experimental value is ~2%). The calculation of the pre-neutron fission fragment kinetic energy also shows good agreement with experimental result. The results indicate that this model can well describe and predict the characteristics of pre-neutron fission fragment for 232Th(n,f) reaction at the medium- and low- incident neutron energy. It also provides a new idea for calculating the neutron-induced actinide fission reactions.
      通信作者: 韦峥, weizheng@lzu.edu.cn
    • 基金项目: 国家自然科学基金委员会-中国工程物理研究院联合基金(批准号: U1830102)、国家自然科学基金(批准号: 12075105, 11875155, 11705071)、国家自然科学基金委员会-中国核工业集团有限公司核技术创新联合基金(批准号: U1867213)、中央高校基本科研业务费专项资金(批准号: lzujbky-2021-kb09)和甘肃省引导科技创新发展专项资金(批准号: 2018ZX-07)资助的课题.
      Corresponding author: Wei Zheng, weizheng@lzu.edu.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1830102), the National Natural Science Foundation of China (Grant Nos. 12075105, 11875155, 11705071), the Joint Fund of the National Natural Science Foundation of China and the Nuclear Technology Innovation Fund of China National Nuclear Corporation (Grant No. U1867213), the Fundamental Research Fund for the Central Universities, China (Grant No. lzujbky-2021-kb09), and the DSTI Foundation of Gansu Province, China (Grant No. 2018ZX-07).
    [1]

    Talou P, Becker B, Kawano T, Chadwick M B, Danon Y 2011 Phys. Rev. C 83 1509

    [2]

    张竞上 2003 现代物理知识 01 24

    Zhang J S 2003 Mod. Phys. 01 24

    [3]

    Forrest R A 2011 Energy Procedia 7 540Google Scholar

    [4]

    Möller P, Sierk A J 2003 Nature 422 485

    [5]

    Al-Adili A, Hambsch F J, Pomp S, Oberstedt S, Vidali M 2016 Phys. Rev. C 93 34603Google Scholar

    [6]

    Salvador-Castineira P, Brys T, Eykens R, Hambsch F-J, Göök A, Moens A, Oberstedt S, Sibbens G, Vanleeuw D, Vidali M 2015 Phys. Rev. C 92 014620Google Scholar

    [7]

    Meierbachtol K, Tovesson F, Duke D L, Geppert-Kleinrath V, Manning B, Meharchand R, Mosby S, Shields D 2016 Phys. Rev. C 94 034611Google Scholar

    [8]

    蔡翔舟, 戴志敏, 徐洪杰 2016 物理 45 578Google Scholar

    Cai X Z, Dai Z M, Xu H J 2016 Physics 45 578Google Scholar

    [9]

    Crasta R, Naik H, Suryanarayana S V, Shivashankar B S, Mulik V K, Prajapati P M, Sanjeev G, Sharma S C, Bhagwat P V, Mohanty A K, Ganesan S, Goswami A 2012 Ann. Nucl. Energy 47 160Google Scholar

    [10]

    李光超 2017 博士学位论文 (上海: 中国科学院上海应用物理研究所)

    Li G C 2017 Ph. D. Dissertation (Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences) (in Chinese)

    [11]

    Trochon J, Yehia H A, Brisard F, Pranal Y 1979 Nucl. Phys. A 318 63Google Scholar

    [12]

    Naik H, Mukherji S, Suryanarayana S V, Jagadeesan K C, Thakare S V, Sharma S C 2016 Nucl. Phys. A 952 100Google Scholar

    [13]

    King J, Yanez R, Loveland W, Barrett J S, Oscar B, Fotiades N, Tovesson F, Lee H Y 2017 Eur. Phys. J. A 53 238Google Scholar

    [14]

    Sergachev A I, Vorob'Eva V G, Kuz'Minov B D, Mikhailov V B, Tarasko M Z 1968 Yadern. Fiz. 7 778

    [15]

    Ryzhov I V, Yavshits S G, Tutin G A, Kovalev N V, Saulski A V, Kudryashev N A 2011 Phys. Rev. C 83 054603Google Scholar

    [16]

    葛智刚, 陈永静 2015 科学通报 60 3087Google Scholar

    Ge Z G, Chen Y J 2015 Chin. Sci. bull. 60 3087Google Scholar

    [17]

    Schmidt K H, Jurado B, Amouroux C 2016 Nucl. Data Sheets 131 107Google Scholar

    [18]

    Koning A J, Hilaire S, Duijvestijn M C 2007 Proceedings of the International Conference on Nuclear Data for Science and Technology Nice, France, April 22–27, 2007 pp1–214

    [19]

    郝艺伟, 董国香, 王小保 2019 中国科学: 物理学 力学 天文学 49 122001

    Hao Y W, Dong G X, Wang X B 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 122001

    [20]

    Brosa U 1985 Phys. Rev. C 32 1438Google Scholar

    [21]

    Brosa U, Grossmann S, Muller A, Becker E 1989 Nucl. Phys. A 502 423cGoogle Scholar

    [22]

    Hambsch F J, Vivès F, Siegler P, Oberstedt S 2000 Nucl. Phys. A 679 3Google Scholar

    [23]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Methods A 506 250Google Scholar

    [24]

    Mosby S, Tovesson F, Couture A, Duke D L, et al. 2014 Nucl. Instrum. Methods A 757 75Google Scholar

    [25]

    Vivès F, Hambsch F J, Bax H, Oberstedt S 2000 Nucl. Phys. A 662 63Google Scholar

    [26]

    Zeynalova O V, Zeynalov S, Hambsch F J, Oberstedt S, Fabry I 2010 Bull. Russ. Acad. Sci. Phys. 74 800Google Scholar

    [27]

    Chadwick M B, Herman M, Obložinský P, et al. 2011 Nucl. Data Sheets 112 2887Google Scholar

    [28]

    Liu C Q, Hu Z M, Hu Z J, et al. 2021 J. Instrum. 16 P07038Google Scholar

    [29]

    Wang D, Zhang C, Zhang J H 2015 Radiat. Meas. 73 46Google Scholar

    [30]

    Liu C Q, Wei Z, Han C, et al. 2019 Chin. Phys. C 43 064001Google Scholar

    [31]

    Wei Z, Yao Z E, Lan C L, et al. 2015 J Radioanal. Nucl. Chem. 305 455Google Scholar

    [32]

    Lan C L, Peng M, Zhang Y, Wei Z, Yao Z E, Xie B L 2017 Nucl. Sci. Technol. 28 8Google Scholar

    [33]

    Duke D L, Tovesson F, Laptev A B, Mosby S 2016 Phys. Rev. C 94 054604Google Scholar

    [34]

    Al-Adili A, Hambsch F J, Oberstedt S, Pomp S, Zeynalov S H 2010 Nucl. Instrum. Methods A 624 684Google Scholar

    [35]

    Higgins D, Greife U, Tovesson F, Manning B, Mayorov D, Mosby S, Schmitt K 2020 Phys. Rev. C 101 014601Google Scholar

    [36]

    Goverdovsky A A, Kuzminov B D, Mitrofanov V F, Sergachev A I 1997 Phys. At. Nucl. 60 1787

    [37]

    Trochon J, Yehia H A, Brisard F, Pranal Y 1979 Nuclear Physics A 318 63

    [38]

    Stanley L, Whetstone J 1958 Phys. Rev. 114 581

    [39]

    Albertsson M, Carlsson B G, Døssing T, Möller P, Randrup J, Åberg S 2021 Phys. Rev. C 103 014609Google Scholar

    [40]

    Chen Y J, Liu T J 2011 Chin. Phys. C 35 344Google Scholar

    [41]

    Göök A, Hambscha F J, Oberstedta S, Vidalia M 2015 Physics Procedia 64 190Google Scholar

    [42]

    Schmidt K H, Jurado B 2010 Phys. Rev. Lett. 104 242501

    [43]

    Dyachenko N P, Kuzminov B D, Mitrofanov V F, Sergachev A I 1977 Yadern. Fiz. 26 691

    [44]

    Lam S T, Yu L L, Fielding H W, Dawson W K, Neilson G C 1983 Phys. Rev. C 28 1212Google Scholar

  • 图 1  Geant4几何模型示意图. 灰色区域代表锕系核素样品(Sample), 黄色区域代表衬底(Backing). 面向入射中子一侧为样品侧(Sample side), 远离入射中子一侧为衬底侧(Backing side). FF1和FF2分别代表一对互补裂变碎片, 并且它们穿出靶的角度分别为θ1θ2

    Fig. 1.  Schematic illustration of the Geant4 geometric model. The gray layer is the fissile sample of the actinide target, while the yellow one is the backing support for the sample. The sample side faced the impinging neutrons. FF1 and FF2 respectively denote the fragments emitted from the different sides. θ1 and θ2 are the angles of the fragment axis relative to the axial direction of the incoming neutron.

    图 2  发射中子后裂变碎片初始动能$ {E^{{\text{post}}}} $与碎片出射方向相对中子入射方向夹角的余弦值$ \cos \theta $的关系 (a) 碎片从样品侧穿出时计算结果; (b) 碎片从衬底侧穿出时计算结果

    Fig. 2.  $ \cos \theta $ versus post-neutron emission kinetic energy $ {E^{{\text{post}}}} $distribution: (a) The case of the fission fragments from sample side; (b) in the case of the fission fragments from backing side.

    图 3  232Th(n, f)反应发射中子后TKE分布 (a)中子能量为3 MeV; (b)中子能量为6 MeV; (c)中子能量为10 MeV. 黑线为实验数据[13]; 红线为本文计算数据

    Fig. 3.  Post-neutron emission TKE distribution for 232Th(n, f) reaction: (a) En = 3 MeV; (b) En = 6 MeV; (c) En = 10 MeV. The black line denotes experimental data [13]. The red line denotes the calculated result from this work.

    图 4  232Th(n, f)反应发射中子后平均总动能$ {\overline {{\text{TKE}}} _{{\text{post}}}} $随入射中子能量的变化情况. 红点为本文计算数据, 其他颜色点为实验数据[13,35-37]

    Fig. 4.  Relationship between the incident neutron energy and $ {\overline {{\text{TKE}}} _{{\text{post}}}} $ for 232Th(n, f) reaction. The red dots denote the calculated results from this work. The dots with other colors denote the experimental data 13,35-37].

    图 5  不同入射中子能量下, 232Th(n, f)反应中子多重性$ \overline \nu (m) $的计算结果

    Fig. 5.  Calculation of neutron multiplicity distribution $ \overline \nu (m) $ for 232Th(n, f) reaction with the different incident neutron energies.

    图 6  发射中子前裂变碎片质量、总动能分布计算流程图

    Fig. 6.  Program flow chart for the calculation of the pre-neutron fission fragment mass and TKE distribution.

    图 7  232Th(n, f)反应发射中子前裂变碎片质量分布 (a)中子能量为1.6 MeV; (b)中子能量为3 MeV; (c)中子能量为6 MeV; (d)中子能量为10 MeV. 黑色实心点代表实验结果[14,15], 红线为本工作结果, 蓝线为GEF结果, 绿线为TALYS结果

    Fig. 7.  Calculation of the pre-neutron mass distribution for 232Th(n, f) reaction: (a) En = 1.6 MeV; (b) En = 3 MeV; (c) En = 6 MeV; (d) En = 10 MeV. The black dots line is experimental data [14,15]. The red line is the calculated data from this work, while the blue one is from the GEF code and the green one is from the TALYS code.

    图 8  232Th(n, f)反应质量分布计算与实验结果偏差分析 (a)中子能量为1.6 MeV; (b)中子能量为3 MeV; (c)中子能量为6 MeV; (d)中子能量为10 MeV. 红线为本工作结果, 蓝线为GEF结果, 绿线为TALYS结果

    Fig. 8.  Difference of the mass distribution between calculation and experimental data for 232Th(n, f) reaction: (a) En = 1.6 MeV; (b) En = 3 MeV; (c) En = 6 MeV; (d) En = 10 MeV. The red line is the calculated data from this work, while the blue one is from the GEF code and the green one is from the TALYS code.

    图 9  发射中子前裂变碎片质量-TKE的二维分布 (a)中子能量为1.6 MeV; (b)中子能量为3 MeV; (c)中子能量为6 MeV; (d)中子能量为10 MeV. 黑点表示碎片质量与平均总动能$ {\overline {{\text{TKE}}} _{{\text{pre}}}}({m^{{\text{pre}}}}) $关系. 图例中颜色标度反映了事件数目

    Fig. 9.  Two-dimension distribution of pre-neutron mass versus TKE: (a) En = 1.6 MeV; (b) En = 3 MeV; (c) En = 6 MeV; (d) En = 10 MeV. The black dots denote $ {\overline {{\text{TKE}}} _{{\text{pre}}}}({m^{{\text{pre}}}}) $, the relationship between pre-neutron mass and average TKE. The color scale refers to the number of events.

    图 10  232Th(n, f)反应发射中子前平均总动能$ {\overline {{\text{TKE}}} _{{\text{pre}}}} $随入射中子能量变化情况. 红点为本文计算数据, 其他颜色点为实验数据[13,35,43,44]

    Fig. 10.  Relationship between the incident neutron energy and $ {\overline {{\text{TKE}}} _{{\text{pre}}}} $ for 232Th(n, f) reaction. The red dots denote the calculated results from this work. The dots with other colors denote the experimental data 13,35,43,44].

  • [1]

    Talou P, Becker B, Kawano T, Chadwick M B, Danon Y 2011 Phys. Rev. C 83 1509

    [2]

    张竞上 2003 现代物理知识 01 24

    Zhang J S 2003 Mod. Phys. 01 24

    [3]

    Forrest R A 2011 Energy Procedia 7 540Google Scholar

    [4]

    Möller P, Sierk A J 2003 Nature 422 485

    [5]

    Al-Adili A, Hambsch F J, Pomp S, Oberstedt S, Vidali M 2016 Phys. Rev. C 93 34603Google Scholar

    [6]

    Salvador-Castineira P, Brys T, Eykens R, Hambsch F-J, Göök A, Moens A, Oberstedt S, Sibbens G, Vanleeuw D, Vidali M 2015 Phys. Rev. C 92 014620Google Scholar

    [7]

    Meierbachtol K, Tovesson F, Duke D L, Geppert-Kleinrath V, Manning B, Meharchand R, Mosby S, Shields D 2016 Phys. Rev. C 94 034611Google Scholar

    [8]

    蔡翔舟, 戴志敏, 徐洪杰 2016 物理 45 578Google Scholar

    Cai X Z, Dai Z M, Xu H J 2016 Physics 45 578Google Scholar

    [9]

    Crasta R, Naik H, Suryanarayana S V, Shivashankar B S, Mulik V K, Prajapati P M, Sanjeev G, Sharma S C, Bhagwat P V, Mohanty A K, Ganesan S, Goswami A 2012 Ann. Nucl. Energy 47 160Google Scholar

    [10]

    李光超 2017 博士学位论文 (上海: 中国科学院上海应用物理研究所)

    Li G C 2017 Ph. D. Dissertation (Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences) (in Chinese)

    [11]

    Trochon J, Yehia H A, Brisard F, Pranal Y 1979 Nucl. Phys. A 318 63Google Scholar

    [12]

    Naik H, Mukherji S, Suryanarayana S V, Jagadeesan K C, Thakare S V, Sharma S C 2016 Nucl. Phys. A 952 100Google Scholar

    [13]

    King J, Yanez R, Loveland W, Barrett J S, Oscar B, Fotiades N, Tovesson F, Lee H Y 2017 Eur. Phys. J. A 53 238Google Scholar

    [14]

    Sergachev A I, Vorob'Eva V G, Kuz'Minov B D, Mikhailov V B, Tarasko M Z 1968 Yadern. Fiz. 7 778

    [15]

    Ryzhov I V, Yavshits S G, Tutin G A, Kovalev N V, Saulski A V, Kudryashev N A 2011 Phys. Rev. C 83 054603Google Scholar

    [16]

    葛智刚, 陈永静 2015 科学通报 60 3087Google Scholar

    Ge Z G, Chen Y J 2015 Chin. Sci. bull. 60 3087Google Scholar

    [17]

    Schmidt K H, Jurado B, Amouroux C 2016 Nucl. Data Sheets 131 107Google Scholar

    [18]

    Koning A J, Hilaire S, Duijvestijn M C 2007 Proceedings of the International Conference on Nuclear Data for Science and Technology Nice, France, April 22–27, 2007 pp1–214

    [19]

    郝艺伟, 董国香, 王小保 2019 中国科学: 物理学 力学 天文学 49 122001

    Hao Y W, Dong G X, Wang X B 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 122001

    [20]

    Brosa U 1985 Phys. Rev. C 32 1438Google Scholar

    [21]

    Brosa U, Grossmann S, Muller A, Becker E 1989 Nucl. Phys. A 502 423cGoogle Scholar

    [22]

    Hambsch F J, Vivès F, Siegler P, Oberstedt S 2000 Nucl. Phys. A 679 3Google Scholar

    [23]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Methods A 506 250Google Scholar

    [24]

    Mosby S, Tovesson F, Couture A, Duke D L, et al. 2014 Nucl. Instrum. Methods A 757 75Google Scholar

    [25]

    Vivès F, Hambsch F J, Bax H, Oberstedt S 2000 Nucl. Phys. A 662 63Google Scholar

    [26]

    Zeynalova O V, Zeynalov S, Hambsch F J, Oberstedt S, Fabry I 2010 Bull. Russ. Acad. Sci. Phys. 74 800Google Scholar

    [27]

    Chadwick M B, Herman M, Obložinský P, et al. 2011 Nucl. Data Sheets 112 2887Google Scholar

    [28]

    Liu C Q, Hu Z M, Hu Z J, et al. 2021 J. Instrum. 16 P07038Google Scholar

    [29]

    Wang D, Zhang C, Zhang J H 2015 Radiat. Meas. 73 46Google Scholar

    [30]

    Liu C Q, Wei Z, Han C, et al. 2019 Chin. Phys. C 43 064001Google Scholar

    [31]

    Wei Z, Yao Z E, Lan C L, et al. 2015 J Radioanal. Nucl. Chem. 305 455Google Scholar

    [32]

    Lan C L, Peng M, Zhang Y, Wei Z, Yao Z E, Xie B L 2017 Nucl. Sci. Technol. 28 8Google Scholar

    [33]

    Duke D L, Tovesson F, Laptev A B, Mosby S 2016 Phys. Rev. C 94 054604Google Scholar

    [34]

    Al-Adili A, Hambsch F J, Oberstedt S, Pomp S, Zeynalov S H 2010 Nucl. Instrum. Methods A 624 684Google Scholar

    [35]

    Higgins D, Greife U, Tovesson F, Manning B, Mayorov D, Mosby S, Schmitt K 2020 Phys. Rev. C 101 014601Google Scholar

    [36]

    Goverdovsky A A, Kuzminov B D, Mitrofanov V F, Sergachev A I 1997 Phys. At. Nucl. 60 1787

    [37]

    Trochon J, Yehia H A, Brisard F, Pranal Y 1979 Nuclear Physics A 318 63

    [38]

    Stanley L, Whetstone J 1958 Phys. Rev. 114 581

    [39]

    Albertsson M, Carlsson B G, Døssing T, Möller P, Randrup J, Åberg S 2021 Phys. Rev. C 103 014609Google Scholar

    [40]

    Chen Y J, Liu T J 2011 Chin. Phys. C 35 344Google Scholar

    [41]

    Göök A, Hambscha F J, Oberstedta S, Vidalia M 2015 Physics Procedia 64 190Google Scholar

    [42]

    Schmidt K H, Jurado B 2010 Phys. Rev. Lett. 104 242501

    [43]

    Dyachenko N P, Kuzminov B D, Mitrofanov V F, Sergachev A I 1977 Yadern. Fiz. 26 691

    [44]

    Lam S T, Yu L L, Fielding H W, Dawson W K, Neilson G C 1983 Phys. Rev. C 28 1212Google Scholar

  • [1] 张显, 刘仕倡, 魏军侠, 李树, 王鑫, 上官丹骅. 结合源偏倚和权窗的蒙特卡罗全局减方差方法. 物理学报, 2024, 73(4): 042801. doi: 10.7498/aps.73.20231493
    [2] 上官丹骅, 闫威华, 魏军侠, 高志明, 陈艺冰, 姬志成. 多物理耦合计算中动态输运问题高效蒙特卡罗模拟方法. 物理学报, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [3] 邓力, 李瑞, 王鑫, 付元光. 特征γ射线谱分析的蒙特卡罗模拟技术. 物理学报, 2020, 69(11): 112801. doi: 10.7498/aps.69.20200279
    [4] 上官丹骅, 姬志成, 邓力, 李瑞, 李刚, 付元光. 蒙特卡罗临界计算全局计数问题新策略研究. 物理学报, 2019, 68(12): 122801. doi: 10.7498/aps.68.20182276
    [5] 陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅. 基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟. 物理学报, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [6] 李树. 光子与相对论麦克斯韦分布电子散射的能谱角度谱研究. 物理学报, 2019, 68(1): 015201. doi: 10.7498/aps.68.20181796
    [7] 李树. 光子与相对论麦克斯韦分布电子散射截面的蒙特卡罗计算方法. 物理学报, 2018, 67(21): 215201. doi: 10.7498/aps.67.20180932
    [8] 上官丹骅, 邓力, 李刚, 张宝印, 马彦, 付元光, 李瑞, 胡小利. 蒙特卡罗临界计算全局计数效率新算法研究. 物理学报, 2016, 65(6): 062801. doi: 10.7498/aps.65.062801
    [9] 上官丹骅, 李刚, 邓力, 张宝印, 李瑞, 付元光. 反应堆蒙特卡罗临界模拟中均匀裂变源算法的改进. 物理学报, 2015, 64(5): 052801. doi: 10.7498/aps.64.052801
    [10] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究. 物理学报, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [11] 杨亮, 魏承炀, 雷力明, 李臻熙, 李赛毅. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟. 物理学报, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [12] 李鹏, 许州, 黎明, 杨兴繁. 金刚石薄膜中二次电子输运的蒙特卡罗模拟. 物理学报, 2012, 61(7): 078503. doi: 10.7498/aps.61.078503
    [13] 文德智, 卓仁鸿, 丁大杰, 郑慧, 成晶, 李正宏. 蒙特卡罗模拟中相关变量随机数序列的产生方法. 物理学报, 2012, 61(22): 220204. doi: 10.7498/aps.61.220204
    [14] 赵学峰, 李三伟, 蒋刚, 王传珂, 李志超, 胡峰, 李朝光. 超热电子与金黑腔靶作用产生硬X射线的蒙特卡罗模拟. 物理学报, 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [15] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真. 物理学报, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [16] 代秋声, 漆玉金. 针孔单光子发射计算机断层成像的空间分辨率研究. 物理学报, 2010, 59(2): 1357-1365. doi: 10.7498/aps.59.1357
    [17] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [18] 赵宗清, 丁永坤, 谷渝秋, 王向贤, 洪 伟, 王 剑, 郝轶聃, 袁永腾, 蒲以康. 超短超强激光与铜靶相互作用产生Kα源的蒙特卡罗模拟. 物理学报, 2007, 56(12): 7127-7131. doi: 10.7498/aps.56.7127
    [19] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真. 物理学报, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [20] 郝樊华, 胡广春, 刘素萍, 龚 建, 向永春, 黄瑞良, 师学明, 伍 钧. 钚体源样品γ能谱计算的蒙特卡罗方法. 物理学报, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
计量
  • 文章访问数:  6258
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-08-30
  • 上网日期:  2021-12-28
  • 刊出日期:  2022-01-05

/

返回文章
返回