搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rydberg原子nS1/2→(n + 1)S1/2双光子激发EIT-AT光谱

薛咏梅 郝丽萍 樊佳蓓 焦月春 赵建明

引用本文:
Citation:

Rydberg原子nS1/2→(n + 1)S1/2双光子激发EIT-AT光谱

薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明

nS1/2→(n+1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom

Xue Yong-Mei, Hao Li-Ping, Fan Jia-Bei, Jiao Yue-Chun, Zhao Jian-Ming
PDF
HTML
导出引用
  • 主要研究了热原子蒸气池中铯Rydberg原子nS1/2→(n + 1)S1/2微波耦合的双光子光谱. 铯原子基态(6S1/2)、第一激发态(6P3/2)、Rydberg态(69S1/2)形成阶梯型三能级系统, 弱探测光作用于基态到激发态6S1/2→6P3/2的跃迁, 强耦合光则作用于6P3/2→69S1/2的Rydberg跃迁形成电磁感应透明(EIT)效应, 实现对Rydberg原子的光学探测. 频率fMW = 11.735 GHz的微波场耦合69S1/2→70S1/2的Rydberg跃迁, 形成微波双光子光谱. 利用EIT-AT分裂光谱研究微波电场强度对双光子光谱的影响. 研究表明: 在强微波场作用时, EIT-AT分裂与微波场功率成正比, 而弱微波场时的EIT-AT分裂与微波场功率成非线性依赖关系, 理论计算与实验测量结果相一致. 本文的研究对微波电场的精密测量具有一定的指导意义.
    In this work, we present an nS1/2→(n + 1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom in the vapor cell. A ground state (6S1/2), a first excited state (6P3/2) and Rydberg state (69S1/2) of cesium atoms constitute a three-level system. A weak probe laser locking to the transition of 6S1/2 (F = 4)→6P3/2 (F′ = 5) couples the ground-state transition, and the strong coupling laser drives the Rydberg transition of 6P3/2→69S1/2 to yield electromagnetically induced transparency (EIT) effect, which realizes the optical detection of Rydberg atoms. Two Rydberg 69S1/2 and 70S1/2 levels are coupled with the microwave field at a frequency of fMW = 11.735 GHz, forming a microwave two-photon spectrum. To observe the influence of microwave electric field power on two-photon spectrum, we investigate the microwave coupled Rydberg EIT-AT spectra at different microwave fields. The measurements show that the EIT-AT splitting interval is proportional to the square of the microwave electric field at strong microwave field, and indicvates a nonlinear dependence at weak microwave electric field. The theoretical calculation accords with the experimental measurement. The work here is of significance in precisely measuring the microwave electric field.
      通信作者: 赵建明, zhaojm@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0304203)、国家自然科学基金(批准号: 62175136, 11804202, 61835007,12120101004)、长江学者和创新团队发展计划(批准号: RTIRT_17R70)和山西省“1331工程”重点学科建设计划资助的课题.
      Corresponding author: Zhao Jian-Ming, zhaojm@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Nature Science Foundation of China (Grant Nos. 62175136, 11804202, 61835007, 12120101004), the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. RTIRT_17R70) and 1331 project of Shanxi province, China.
    [1]

    Gallagher T F 1994 Rydberg Atoms (New York: Cambridge University Press) p38

    [2]

    Comparat D, Pillet P 2010 J. Opt. Soc. Am. B 27 A208Google Scholar

    [3]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [4]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703Google Scholar

    [5]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169Google Scholar

    [6]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [7]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [8]

    樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂 2018 物理学报 67 093201Google Scholar

    Fan J B, Jiao Y C, Hao L P, Xue Y M, Zhao J M, Jia S T 2018 Acta Phys. Sin. 67 093201Google Scholar

    [9]

    Hao L P, Xue Y M, Fan J B, Bai J X, Jiao Y C, Zhao J M, Jia S T 2020 Chin. Phys. B 29 033201Google Scholar

    [10]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [11]

    FanH Q, Kumar S, Daschner R, Kübler H, Shaffer J P 2014 Opt. Lett. 39 3030Google Scholar

    [12]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar

    [13]

    Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys. Rev. Lett. 121 110502Google Scholar

    [14]

    Jiao Y C, Han X X, Fan J B, Raithel G, Zhao J M, Jia S T 2019 Appl. Phys. Exp. 12 126002Google Scholar

    [15]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Exp. 27 8848Google Scholar

    [16]

    Boyd R W 2008 Nonlinear Optics (Beijing: Academic Press) p55

    [17]

    Jaksch D, Cirac J I, Zoller P, Rolston S L, Côte R, Lukin M D 2000 Phys. Rev. Lett. 85 2208Google Scholar

    [18]

    Lukin M D, Flischhauer M, Cote R, Duan L M, JakschD, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [19]

    Galindo A, Martín-Delgado M A 2002 Rev. Mod. Phys. 74 347Google Scholar

    [20]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503Google Scholar

    [21]

    Dudin Y O, Kuzmich A 2012 Science 336 887Google Scholar

    [22]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57Google Scholar

    [23]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001Google Scholar

    [24]

    Lukin M D 2003 Rev. Mod. Phys. 75 457Google Scholar

    [25]

    李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201Google Scholar

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201Google Scholar

    [26]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B:At. Mol. Opt. Phys. 35 5141Google Scholar

    [27]

    Gentile T R, Hughey B J, Kleppner D, Ducas T W 1989 Phys. Rev. A 40 5103Google Scholar

    [28]

    Hao L P, Jiao Y C, Xue Y M, Han X X, Bai S Y, Zhao J M, Raithel G 2018 New J. Phys. 20 073024Google Scholar

    [29]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar

  • 图 1  (a) 实验装置示意图, 其中DM为二向色镜, GP为垃圾池, Lens 1为852 nm透镜, Lens 2为510 nm透镜, PBS为偏振分光棱镜, PD为光电探测器; (b)铯原子阶梯型四能级示意图

    Fig. 1.  (a) Sketch of the experimental setup, where DM is dichroic mirror, Lens 1(2) is lens of 852 nm (510 nm) laser, GP is garbage pool for green laser, PBS is polarizing beam splitter, PD is photodiode detector; (b) energy-level diagram for the four-level cascade configuration.

    图 2  (a) 无微波场时耦合光在6P3/2 (F' = 5)→69S1/2的Rydberg跃迁附近扫描时的EIT光谱(黑色实线); (b) (c)微波场功率分别为PMW = 0.1 mW (红色虚线)和1.0 mW(蓝色点线)时的Rydberg EIT-AT双光子激发光谱

    Fig. 2.  (a) Rydberg EIT spectroscopy without microwave field (black solid line); (b)(Red dashed line) and (c) (blue dotted line) Rydberg-EIT-AT two-photon excitation spectrum with the microwave field power PMW = 0.1 mW and 1.0 mW, respectively.

    图 3  不同微波信号源的输出功率时的Rydberg EIT-AT分裂光谱的三维图(蓝色), 红色虚线和黑色点线是理论计算微波耦合69S1/2→70S1/2时EIT-AT光谱, 蓝色方块表示中间态形成的EIT谱的频移

    Fig. 3.  Three-dimensional color map (blue) of the Rydberg EIT-AT spectra with different output power, the red dashed and black dotted lines are the theoretical calculations of the frequency shift and EIT-AT splitting of 69S1/2→70S1/2. The blue squares are thecalculated shift of EIT spectra due to the intermediate state.

    图 4  微波耦合Rydberg原子69S1/2→70S1/2双光子EIT-AT分裂间隔与微波场功率PMW的依赖关系

    Fig. 4.  Dependence of the EIT-AT splitting of the Rydberg atom 69S1/2→70S1/2 transition on the microwave power PMW.

  • [1]

    Gallagher T F 1994 Rydberg Atoms (New York: Cambridge University Press) p38

    [2]

    Comparat D, Pillet P 2010 J. Opt. Soc. Am. B 27 A208Google Scholar

    [3]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [4]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703Google Scholar

    [5]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169Google Scholar

    [6]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [7]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [8]

    樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂 2018 物理学报 67 093201Google Scholar

    Fan J B, Jiao Y C, Hao L P, Xue Y M, Zhao J M, Jia S T 2018 Acta Phys. Sin. 67 093201Google Scholar

    [9]

    Hao L P, Xue Y M, Fan J B, Bai J X, Jiao Y C, Zhao J M, Jia S T 2020 Chin. Phys. B 29 033201Google Scholar

    [10]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [11]

    FanH Q, Kumar S, Daschner R, Kübler H, Shaffer J P 2014 Opt. Lett. 39 3030Google Scholar

    [12]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar

    [13]

    Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys. Rev. Lett. 121 110502Google Scholar

    [14]

    Jiao Y C, Han X X, Fan J B, Raithel G, Zhao J M, Jia S T 2019 Appl. Phys. Exp. 12 126002Google Scholar

    [15]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Exp. 27 8848Google Scholar

    [16]

    Boyd R W 2008 Nonlinear Optics (Beijing: Academic Press) p55

    [17]

    Jaksch D, Cirac J I, Zoller P, Rolston S L, Côte R, Lukin M D 2000 Phys. Rev. Lett. 85 2208Google Scholar

    [18]

    Lukin M D, Flischhauer M, Cote R, Duan L M, JakschD, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [19]

    Galindo A, Martín-Delgado M A 2002 Rev. Mod. Phys. 74 347Google Scholar

    [20]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503Google Scholar

    [21]

    Dudin Y O, Kuzmich A 2012 Science 336 887Google Scholar

    [22]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57Google Scholar

    [23]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001Google Scholar

    [24]

    Lukin M D 2003 Rev. Mod. Phys. 75 457Google Scholar

    [25]

    李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201Google Scholar

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201Google Scholar

    [26]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B:At. Mol. Opt. Phys. 35 5141Google Scholar

    [27]

    Gentile T R, Hughey B J, Kleppner D, Ducas T W 1989 Phys. Rev. A 40 5103Google Scholar

    [28]

    Hao L P, Jiao Y C, Xue Y M, Han X X, Bai S Y, Zhao J M, Raithel G 2018 New J. Phys. 20 073024Google Scholar

    [29]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar

  • [1] 韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生. 射频电场缀饰下铯Rydberg原子的电磁感应透明光谱. 物理学报, 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [2] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [3] 陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮. 基于Rydberg原子天线的太赫兹测量. 物理学报, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [4] 刘强, 何军, 王军民. 室温铯原子气室窄线宽相干布居振荡光谱. 物理学报, 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [5] 樊佳蓓, 郝丽萍, 白景旭, 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的高灵敏微波探测与通信. 物理学报, 2021, 70(6): 063201. doi: 10.7498/aps.70.20201401
    [6] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n+1)S1/2双光子激发EIT-AT光谱. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211458
    [7] 樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂. Rydberg原子的微波电磁感应透明-Autler-Townes光谱. 物理学报, 2018, 67(9): 093201. doi: 10.7498/aps.67.20172645
    [8] 薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂. 超冷铯Rydberg原子的Autler-Townes分裂. 物理学报, 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [9] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [10] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [11] 杨丽君, 马腾, 孙克家, 冯晓敏. 微波场作用下三能级原子系统的无反转光放大. 物理学报, 2015, 64(6): 064205. doi: 10.7498/aps.64.064205
    [12] 王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂. 铯Rydberg原子Stark态的避免交叉. 物理学报, 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [13] 王勇, 张好, 陈杰, 王丽梅, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷nS Rydberg原子的态转移. 物理学报, 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [14] 车俊岭, 张好, 冯志刚, 张临杰, 赵建明, 贾锁堂. 70S超冷Cs Rydberg原子的动力学演化. 物理学报, 2012, 61(4): 043205. doi: 10.7498/aps.61.043205
    [15] 李晓莉, 张连水, 孙江, 冯晓敏. 微波驱动精细结构能级跃迁引起的电磁诱导负折射效应. 物理学报, 2012, 61(4): 044202. doi: 10.7498/aps.61.044202
    [16] 周运清, 孔令民, 王瑞, 张存喜. 微波作用下有直接隧穿量子点系统中的泵流特性. 物理学报, 2011, 60(7): 077202. doi: 10.7498/aps.60.077202
    [17] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [18] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究. 物理学报, 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [19] 孟慧艳, 康 帅, 史庭云, 詹明生. 平行电磁场中的Rydberg锂原子吸收谱的模型势计算. 物理学报, 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
    [20] 李院院, 白晋涛, 张贵忠, 周 瑜, 张彦鹏, 甘琛利. 薄原子蒸汽膜的双光子光谱及Dicke窄化. 物理学报, 2006, 55(12): 6293-6297. doi: 10.7498/aps.55.6293
计量
  • 文章访问数:  4982
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-08
  • 修回日期:  2021-09-27
  • 上网日期:  2022-02-13
  • 刊出日期:  2022-02-20

/

返回文章
返回