搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界二氧化碳类液-类气区边界线数值分析

孙辉 刘婧楠 章立新 杨其国 高明

引用本文:
Citation:

超临界二氧化碳类液-类气区边界线数值分析

孙辉, 刘婧楠, 章立新, 杨其国, 高明

Numerical analysis of boundary line between liquid-like zone and gas-like zone of supercritical CO2

Sun Hui, Liu Jing-Nan, Zhang Li-Xin, Yang Qi-Guo, Gao Ming
PDF
HTML
导出引用
  • 超临界二氧化碳(S-CO2)因在萃取、沉淀、热力循环及化学反应等方面有着十分广阔的应用前景, 逐渐成为学术界的重要研究课题. 由于在近临界区, 可以观察到随温度或压力变化出现大量的物性异变现象, 使得各国学者对流体临界点附近区域的研究产生了浓厚兴趣. 随着分子动力学模拟技术的快速发展, 该技术可辅助传统实验方法用于研究近临界流体的相关物性. 为确定S-CO2在近临界区Widom线范围及类液-类气区的分子结构特征, 本文通过分子动力学模拟技术结合聚类分析, 研究了温度和压力范围分别在300—350 K和5.5—18.5 MPa下, CO2密度时间序列变异系数及偏度同Widom线和类液-类气区间的关系. 结果表明: S-CO2在近临界区Widom线的确定可通过连接密度时间序列曲线变异系数极大值点来确定, Widom线沿着临界点开始延伸直到350 K时停止; S-CO2类液区和类气区的分子分布结构可以用数密度分布的偏度来区分, 偏度在类气态时为正值, 在类液态时为负值, 而在Widom线上达到最大值.
    Supercritical carbon dioxide has gradually been becoming an important research subject in the academic field due to the fact that it has a promising application prospect in the field of extraction, precipitation, thermodynamic cycle and chemical reaction. In recent years, the interest in studying the region near the critical point was aroused and a large variation of the physical properties could be detected due to the change of temperature and pressure. The rapid development of molecular simulation technology benefits the traditional experimental methods to study the variations of relevant physical properties in the near-critical region. In order to find out the Widom line range of supercritical carbon dioxide in the near-critical region and the molecular structure characteristics of the liquid-like gas region, both the molecular dynamics simulation technology and the cluster analysis are used to investigate the relation between variation coefficient and skewness of CO2 density time series with Widom line and liquid-gas-like interval, under the condition of the temperature and pressure range of 300–350 K and 5.5–18.5 MPa, respectively. The results show that the Widom line of supercritical carbon dioxide in the near-critical region can be determined by connecting the maximum coefficient of variation of the density time series curve. The Widom line begins to extend along with the critical point until it stops at 350 K. The molecular distribution structure of supercritical carbon dioxide liquid-like region and gas-like region can be differentiated by the skewness of the number density distributions. The skewness is positive in the gas-like region, but negative in the liquid-like region, and reaches the maximum at the Widom line.
      通信作者: 刘婧楠, xiaobaoljn@163.com
    • 基金项目: 国家自然科学基金(批准号: 51976127)和上海市地方高校能力建设项目(批准号: 20060502000)资助的课题
      Corresponding author: Liu Jing-Nan, xiaobaoljn@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51976127) and the Capacity Building Project of Some Local Colleges and Universities of Shanghai Science and Technology Commission, China (Grant No. 20060502000)
    [1]

    Bolmatov D, Brazhkin V V, Trachenko K 2013 Nat. Commun. 4 2331Google Scholar

    [2]

    Mecheri M, Moullec Y L 2016 Energy 103 758Google Scholar

    [3]

    Stanley H E, Ahlers G 1973 Phys. Today 26 71

    [4]

    Lee J, Cho S K, Cha J E, Lee J I 2016 ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition

    [5]

    Clarke D D, Vasquez V R, Whiting W B, Greiner M 2001 Appl. Therm. Eng. 21 993Google Scholar

    [6]

    Xu L, Kumar P, Buldyrev S V, Chen S H, Poole P H, Sciortino F, Stanley H E 2005 Proc. Natl. Acad. Sci. U. S. A. 102 46

    [7]

    Nishikawa K, Tanaka I, Amemiya Y 1996 J. Phys. Chem. 100 418Google Scholar

    [8]

    Nishikawa K, Morita T 1997 J. Chem. Phys. 101 1413Google Scholar

    [9]

    Nishikawa K, Kusano K, Arai A A, Morita T 2003 J. Chem. Phys. 118 1341Google Scholar

    [10]

    Simeoni G, Bryk T, Gorelli F, Krisch M, Ruocco G, Santoro M, Scopigno T 2010 Nat. Phys. 6 503Google Scholar

    [11]

    Brazhkin V V, Fomin Y D, Lyapin A G, Ryzhov V N, Tsiok E N 2011 J. Phys. Chem. B 115 14112Google Scholar

    [12]

    Sedunov B 2012 Am. J. Anal. Chem. 3 899Google Scholar

    [13]

    Bolmatov D, Zhernenkov M, Zav’yalov D, Tkachev S N, Cunsolo A, Cai Y Q 2015 Sci. Rep. 5 15850Google Scholar

    [14]

    Mareev E, Aleshkevich V, Potemkin F, Bagratashvili V, Minaev N, Gordienko V 2018 Opt. Express 26 13229Google Scholar

    [15]

    Mareev E I, Aleshkevich V A, Potemkin F V, Minaev N V, Gordienko V M 2019 Sverhkriticheskie Flyuidy: Teoriya i Praktika 14 89Google Scholar

    [16]

    孙辉, 章立新, 杨其国, 高明, 刘婧楠 2020 热力发电 49 59

    Sun H, Zhang L X, Yang Q G, Gao M, Liu J N 2020 Thermal Power Generation 49 59

    [17]

    孙辉, 章立新, 杨其国, 刘婧楠, 高明 2021 动力工程学报 41 426

    Sun H, Zhang L X, Yang Q G, Liu J N, Gao M 2021 J. Power Eng. 41 426

    [18]

    Imre A R, Deiters U K, Kraska T, Tiselj I 2012 Nucl. Eng. Des. 252 179Google Scholar

    [19]

    Imre A R, Ramboz C, Deiters U K, Kraska T 2015 Environ. Earth Sci. 73 4373Google Scholar

    [20]

    Shinoda W, Shiga M, Mikami M 2004 Physi. Rev. B 69 134103Google Scholar

    [21]

    Kamberaj H, Low R J, Neal M P 2005 J. Chem. Phys. 122 1055

    [22]

    Aimoli C G, Maginn E J, Abreu C R A 2014 Fluid Phase Equilibria 368 80Google Scholar

    [23]

    Xu J, Liu C, Sun E, Xie J, Liu J 2019 Energy 186 115831Google Scholar

    [24]

    Stubbs J M 2016 J. Supercrit. Fluids 108 104Google Scholar

    [25]

    Chen L, Wang S Y, Tao W Q 2019 Energy 179 1094Google Scholar

    [26]

    Kuznetsova T, Kvamme B 2002 Energy Convers. Manage. 43 2601Google Scholar

    [27]

    Harris J G, Yung K H 1995 J. Phys. Chem. 99 12021Google Scholar

    [28]

    Linstrom P J, Mallard W G 2001 Nat. Inst. Stand. Technol.

    [29]

    叶仁道, 刘干, 薛洁 2016 统计学 (西安: 西安电子科技大学出版社) 第83页

    Ye R D, Liu G, Xue J 2016 Statistica (Xi’an: Xidian University Press) p83 (in Chinese)

  • 图 1  物理模型

    Fig. 1.  Physical model.

    图 2  模拟参数范围

    Fig. 2.  Range of simulation parameters.

    图 3  不同温度下CO2的定压比热

    Fig. 3.  Specific heat of CO2 under constant pressure at different temperatures.

    图 4  密度时间序列曲线

    Fig. 4.  Density time series curve.

    图 5  密度时间序列曲线变异系数

    Fig. 5.  Coefficient of variation of density time series curve.

    图 6  Widom线的确定

    Fig. 6.  Determination of Widom Line.

    图 7  NIST计算结果同变异系数比较

    Fig. 7.  NIST results were compared with coefficient of variation.

    图 8  不同压力下偏度

    Fig. 8.  Different pressure of skewness.

    图 9  分子聚类在P-T图中的表示

    Fig. 9.  Representation of molecular clustering in a P-T plot.

    表 1  EPM2力场[27]模型参数

    Table 1.  Force field model parameter.

    参数化学键
    εij/(kJ·mol–1)C—C0.2335
    εij/(kJ·mol–1)O—O0.6690
    σijC—C2.7570
    σijO—O3.0330
    $ {r}_{0} $/ÅC—O1.149
    q/eC+0.6512
    q/eO–0.3256
    θ0/(°)180.0
    下载: 导出CSV

    表 2  密度时间序列标准差

    Table 2.  Density time series standard deviation.

    标准差
    压力/MPa300 K305 K310 K315 K320 K330 K340 K350 K
    5.50.0131090.0119010.011030.0101020.0096660.008618
    6.50.0211260.0182540.0160680.013890.0135730.011374
    7.50.044269*0.0353150.0247420.0212130.0183830.0150380.02127
    8.50.0349660.052095*0.069753*0.0347340.0269970.0194590.0263510.026077
    9.50.0294180.0382740.0604150.089464*0.0450760.028140.0346130.031747
    10.50.0289610.0323620.0418410.0610740.076358*0.0393980.0404080.035494
    11.50.0267820.0300410.0352460.0456520.0638770.0524850.0455460.041854
    12.50.0254950.0286650.0323020.0366940.0462830.055389*0.0456150.041477
    13.50.0241540.0257420.029830.0330770.0398020.0511530.046138*0.042967*
    14.50.0235950.0255230.02790.0307570.0353070.0445920.0420040.038225
    15.50.0229760.0240290.0258720.0276990.0308450.0372940.0374110.037828
    *上标表示标准差最大值.
    下载: 导出CSV

    表 3  密度时间序列曲线偏度

    Table 3.  Skewness of density time series curve.

    偏度
    压力/MPa300 K305 K310 K315 K320 K330 K340 K350 K
    5.50.2106660.196670.2226130.1990380.1771940.122592
    6.50.3176770.3870510.3319340.1710150.2031370.149934
    7.5–0.585270.9789920.5392190.2717250.1965130.2471960.331706
    8.5–0.35354–0.750441.6781760.558350.4456960.3026570.3404620.269658
    9.5–0.25597–0.34136–0.611730.5718480.766170.3227090.424150.291239
    10.5–0.21121–0.17076–0.31933–0.391960.317580.4719690.3326770.223912
    11.5–0.18831–0.06063–0.36301–0.41968–0.271320.3860040.1994940.269035
    12.5–0.07006–0.15883–0.14411–0.15565–0.274150.227356–0.039690.180661
    13.5–0.09053–0.1045–0.1583–0.15022–0.20128–0.065130.0007580.104961
    14.5–0.11188–0.24015–0.18414–0.20055–0.16249–0.153–0.035190.102933
    15.5–0.16482–0.09686–0.16086–0.07727–0.0917–0.19393–0.001030.02764
    下载: 导出CSV
  • [1]

    Bolmatov D, Brazhkin V V, Trachenko K 2013 Nat. Commun. 4 2331Google Scholar

    [2]

    Mecheri M, Moullec Y L 2016 Energy 103 758Google Scholar

    [3]

    Stanley H E, Ahlers G 1973 Phys. Today 26 71

    [4]

    Lee J, Cho S K, Cha J E, Lee J I 2016 ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition

    [5]

    Clarke D D, Vasquez V R, Whiting W B, Greiner M 2001 Appl. Therm. Eng. 21 993Google Scholar

    [6]

    Xu L, Kumar P, Buldyrev S V, Chen S H, Poole P H, Sciortino F, Stanley H E 2005 Proc. Natl. Acad. Sci. U. S. A. 102 46

    [7]

    Nishikawa K, Tanaka I, Amemiya Y 1996 J. Phys. Chem. 100 418Google Scholar

    [8]

    Nishikawa K, Morita T 1997 J. Chem. Phys. 101 1413Google Scholar

    [9]

    Nishikawa K, Kusano K, Arai A A, Morita T 2003 J. Chem. Phys. 118 1341Google Scholar

    [10]

    Simeoni G, Bryk T, Gorelli F, Krisch M, Ruocco G, Santoro M, Scopigno T 2010 Nat. Phys. 6 503Google Scholar

    [11]

    Brazhkin V V, Fomin Y D, Lyapin A G, Ryzhov V N, Tsiok E N 2011 J. Phys. Chem. B 115 14112Google Scholar

    [12]

    Sedunov B 2012 Am. J. Anal. Chem. 3 899Google Scholar

    [13]

    Bolmatov D, Zhernenkov M, Zav’yalov D, Tkachev S N, Cunsolo A, Cai Y Q 2015 Sci. Rep. 5 15850Google Scholar

    [14]

    Mareev E, Aleshkevich V, Potemkin F, Bagratashvili V, Minaev N, Gordienko V 2018 Opt. Express 26 13229Google Scholar

    [15]

    Mareev E I, Aleshkevich V A, Potemkin F V, Minaev N V, Gordienko V M 2019 Sverhkriticheskie Flyuidy: Teoriya i Praktika 14 89Google Scholar

    [16]

    孙辉, 章立新, 杨其国, 高明, 刘婧楠 2020 热力发电 49 59

    Sun H, Zhang L X, Yang Q G, Gao M, Liu J N 2020 Thermal Power Generation 49 59

    [17]

    孙辉, 章立新, 杨其国, 刘婧楠, 高明 2021 动力工程学报 41 426

    Sun H, Zhang L X, Yang Q G, Liu J N, Gao M 2021 J. Power Eng. 41 426

    [18]

    Imre A R, Deiters U K, Kraska T, Tiselj I 2012 Nucl. Eng. Des. 252 179Google Scholar

    [19]

    Imre A R, Ramboz C, Deiters U K, Kraska T 2015 Environ. Earth Sci. 73 4373Google Scholar

    [20]

    Shinoda W, Shiga M, Mikami M 2004 Physi. Rev. B 69 134103Google Scholar

    [21]

    Kamberaj H, Low R J, Neal M P 2005 J. Chem. Phys. 122 1055

    [22]

    Aimoli C G, Maginn E J, Abreu C R A 2014 Fluid Phase Equilibria 368 80Google Scholar

    [23]

    Xu J, Liu C, Sun E, Xie J, Liu J 2019 Energy 186 115831Google Scholar

    [24]

    Stubbs J M 2016 J. Supercrit. Fluids 108 104Google Scholar

    [25]

    Chen L, Wang S Y, Tao W Q 2019 Energy 179 1094Google Scholar

    [26]

    Kuznetsova T, Kvamme B 2002 Energy Convers. Manage. 43 2601Google Scholar

    [27]

    Harris J G, Yung K H 1995 J. Phys. Chem. 99 12021Google Scholar

    [28]

    Linstrom P J, Mallard W G 2001 Nat. Inst. Stand. Technol.

    [29]

    叶仁道, 刘干, 薛洁 2016 统计学 (西安: 西安电子科技大学出版社) 第83页

    Ye R D, Liu G, Xue J 2016 Statistica (Xi’an: Xidian University Press) p83 (in Chinese)

  • [1] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理. 物理学报, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [2] 冯山青, 龚路远, 权生林, 郭亚丽, 沈胜强. 纳米液滴撞击高温平板壁的分子动力学模拟. 物理学报, 2024, 73(10): 103106. doi: 10.7498/aps.73.20240034
    [3] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [4] 程亮元, 徐进良. 流动方向对超临界二氧化碳流动传热特性的影响. 物理学报, 2024, 73(2): 024401. doi: 10.7498/aps.73.20231142
    [5] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [6] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界CO2类液-类气区边界线数值分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211464
    [7] 张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢. 浮升力和流动加速对超临界CO2管内流动传热影响. 物理学报, 2020, 69(6): 064401. doi: 10.7498/aps.69.20191521
    [8] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, 69(7): 070201. doi: 10.7498/aps.69.20191591
    [9] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [10] 李任重, 武振伟, 徐莉梅. 液体-液体相变与反常特性. 物理学报, 2017, 66(17): 176410. doi: 10.7498/aps.66.176410
    [11] 尹灵康, 徐顺, Seongmin Jeong, Yongseok Jho, 王健君, 周昕. 广义等温等压系综-分子动力学模拟全原子水的气液共存形貌. 物理学报, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [12] 徐肖肖, 吴杨杨, 刘朝, 王开正, 叶建. 水平螺旋管内超临界CO2冷却换热的数值模拟. 物理学报, 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [13] 王志萍, 陈健, 吴寿煜, 吴亚敏. 碳分子线C5在激光场中的含时密度泛函理论研究. 物理学报, 2013, 62(12): 123302. doi: 10.7498/aps.62.123302
    [14] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟. 物理学报, 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [15] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [16] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟. 物理学报, 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [17] 厉思杰, 白博峰. 可膨胀过热水系统多气核演化过程与临界过热度分析. 物理学报, 2009, 58(11): 7596-7602. doi: 10.7498/aps.58.7596
    [18] 付东, 王学敏, 刘建岷. 超临界二氧化碳和模型共聚物的相平衡和成核性质研究. 物理学报, 2009, 58(5): 3022-3027. doi: 10.7498/aps.58.3022
    [19] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性. 物理学报, 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [20] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速. 物理学报, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
计量
  • 文章访问数:  7575
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 修回日期:  2021-10-27
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-02-20

/

返回文章
返回