-
无机长余辉材料是一种储能释光材料, 其储能特性源于材料内部的电子或空穴陷阱在外界激发光作用下的填充. 通过上转换激发的方式对长余辉材料充能是学者们在近几年提出的一种新颖的激发充能机制. 这种两步离化的激发设计使长余辉材料的充能摆脱了高能离化光的限制, 将充能激发波长扩展至可见光甚至红外光区, 为长余辉技术在生物成像等领域的应用提供了原位激发的选择. 目前, 学者们对上转换充能的研究主要集中在材料的开发和激发路径的设计等方面, 而对充能本身的物理过程知之甚少. 本文通过构建分析上转换充能的速率方程, 预测了激发辐照光对陷阱的光排空影响. 在此基础上, 选择 450 nm 激光激发的 LaMgGa11O19:Mn2+ 长余辉材料体系为模板, 分析了激发光剂量与材料热释光强度的函数关系, 揭示了光辐照陷阱填充与光排空之间的动力学竞争. 此外, 相似的充能动力学规律也适用于其他具有上转换充能性质的长余辉材料.
-
关键词:
- 长余辉材料 /
- 上转换充能 /
- 陷阱填充动力学 /
- LaMgGa11O19:Mn2+
Persistent phosphor as a kind of light-emitting material can store excitation energy in the so-called traps, and then persistently release the energy in the form of light emission after the end of excitation. This emission is called persistent luminescence. Much attention has been paid to optimizing the emission performance of persistent phosphors, including emission wavelength and persistent time. However, research on the excitation for charging persistent phosphors is relatively lacking. To acquire the persistent luminescence effectively, the traps need to be filled typically by ionizing irradiation. That is, high-energy light (such as ultraviolet light) is a general requirement for charging the persistent phosphors. Taking into account the fact that low-energy illumination (e.g. visible or infrared light) is much more suitable and less harmful than ultraviolet light for some practical applications, taking advantage of the low-energy light excitation is therefore an urgent issue to be solved in the persistent luminescence area. Several low-energy excitation approaches have been reported, in which up-conversion charging (UCC) is a promising candidate for charging phosphors using low-energy excitation light sources. The definition of UCC is as follows: UCC is a non-linear excitation for storage phosphors, in which the traps are typically filled via a two-step ionization mechanism. Prior research on the UCC has focused primarily on the demonstration of two-step ionization and the associated trapping properties. Recently, researchers have realized that the excitation light may release some trapped electrons while filling the traps (i.e. excitation-light stimulated detrapping). Competition between the trapping and detrapping during the UCC has been roughly described on the assumption that the illumination dose is in a certain range and the effect of ambient-temperature stimulated detrapping is negligible. Despite the initial progress, the exact effect of detrapping on the UCC process needs to be further explored. Here we demonstrate the effect of detrapping on UCC dynamics by a rate equation approach. Accordingly, taking LaMgGa11O19:Mn2+ phosphor illuminated by a 450 nm laser for example, we measure its thermoluminescence. Our measurements reveal that the competition between the trapping and detrapping depends both on illumination power and on illumination duration. The experimental results are consistent well with the theoretical predictions, thereby offering a new insight into the understanding of UCC. In addition, the experimental demonstration on the LaMgGa11O19:Mn2+ phosphor allows us to explore the generality of the present UCC model. Accordingly, we expect some existing phosphors can now be revisited.-
Keywords:
- persistent phosphor /
- up-conversion charging (UCC) /
- trap filling dynamics /
- LaMgGa11O19:Mn2+
[1] Bunzli J C, Pecharsky V K 2015 Handbook on the Physics and Chemistry of Rare Earths (Vol. 48) (Amsterdam: North-Holland)
[2] Li Y, Gecevicius M, Qiu J R 2016 Chem. Soc. Rev. 45 2090Google Scholar
[3] Xu J, Tanabe S 2019 J. Lumin. 205 581Google Scholar
[4] Yu N Y, Liu F, Li X F, Pan Z W 2009 Appl. Phys. Lett. 95 231110Google Scholar
[5] Kamimura S, Xu C N, Yamada H, Terasaki N, Masayoshi F 2014 Jpn. J. Appl. Phys. 53 092403Google Scholar
[6] Liu F, Liang Y J, Chen Y F, Pan Z W 2016 Adv. Opt. Mater. 4 562Google Scholar
[7] 王鹏久, 徐旭辉, 邱建备, 周大成, 刘雪娥, 程帅 2014 物理学报 63 077804Google Scholar
Wang P J, Xu X H, Qiu J B, Zhou D C, Liu X E, Cheng S 2014 Acta Phys. Sin. 63 077804Google Scholar
[8] 刘盛意, 张金苏, 孙佳石, 陈宝玖, 李香萍, 徐赛, 程丽红 2019 物理学报 68 053301Google Scholar
Liu S Y, Zhang J S, Sun J S, Chen B J, Li X P, Xu S, Cheng L H 2019 Acta Phys. Sin. 68 053301Google Scholar
[9] Sun H X, Gao Q Q, Wang A Y, Liu Y C, Wang X J, Liu F 2020 Opt. Mater. Express 10 1296Google Scholar
[10] Rodrigues L C V, Holsa J, Lastusaari M, Felinto M C F C, Brito H F 2014 J. Mater. Chem. C 2 1612Google Scholar
[11] Bos A J J, Van Duijvenvoorde RM, Van der Kolk E, Drozdowski W, Dorenbos P 2011 J. Lumin. 131 1465Google Scholar
[12] Pan Z W, Lu Y Y, Liu F 2012 Nat. Mater. 11 58Google Scholar
[13] Malkamaki M, Bos A J J, Dorenbos P, Lastusaari M, Rodrigues L C V, Swart H C, Holsa J 2020 Physica B 593 411947Google Scholar
[14] De Chermont Q L M, Chaneac C, Seguin J, Pelle F, Maitrejean S, Jolivet J P, Gourier D, Bessodes M, Scherman D 2007 Proc. Natl. Acad. Sci. U. S. A. 104 9266Google Scholar
[15] Liu F, Yan W Z, Chuang Y J, Zhen Z P, Xie J, Pan Z W 2013 Sci. Rep. 3 1554Google Scholar
[16] Liu F, Chen Y F, Liang Y J, Pan Z W 2016 Opt. Lett. 41 954Google Scholar
[17] Liu F, Liang Y J, Pan Z W 2014 Phys. Rev. Lett. 113 177401Google Scholar
[18] Chen Y F, Liu F, Liang Y J, Wang X L, Wang X J, Pan Z W 2018 J. Mater. Chem. C 6 8003Google Scholar
[19] Gao Q Q, Li C L, Liu Y C, Zhang J H, Wang X J, Liu F 2020 J. Mater. Chem. C 8 6988Google Scholar
[20] Yan S Y, Gao Q Q, Zhao X Y, Wang A Y, Liu Y C, Zhang J H, Wang X J, Liu F 2020 J. Lumin. 226 117427Google Scholar
[21] Yan S Y, Liu F, Zhang J H, Wang X J, Liu Y C 2020 Phys. Rev. Appl. 13 044051Google Scholar
[22] Pollnau M, Gamelin D R, Lüthi S R, Güdel H U 2000 Phys. Rev. B 61 3337Google Scholar
[23] Verstegen J M P J 1973 J. Solid State. Chem. 7 468Google Scholar
[24] Wang X J, Jia D, Yen W M 2003 J. Lumin. 102−103 34
[25] Liu F, Meltzer R S, Li X, Budai J D, Chen Y S, Pan Z W 2014 Sci. Rep. 4 7101
[26] Yang X B, Xu J, Li H J, Bi Q Y, Cheng Y, Su L B, Tang Q 2010 Chin. Phys. B 19 047803Google Scholar
[27] Bos A J J 2017 Materials 10 1357Google Scholar
-
图 3 (a) 通过固定辐照时长 (10 s) 的上转换充能后, LaMgGa11O19:Mn2+ 材料的热释光谱 (450 nm激光的辐照功率密度分别为0.05, 0.1, 0.15, 0.3, 0.5, 0.75, 1.5, 3, 6 W·cm–2); (b) 热释光积分强度 I 随辐照功率密度 P 的变化及 I-P 函数拟合
Fig. 3. (a) Thermoluminescence curves of LaMgGa11O19:Mn2+ recorded after 450 nm laser illumination with different power densities but a fixed exposure duration (10 s); (b) thermoluminescence intensity (I) is plotted against the excitation power density (P). The straight line is a quadratic fit of the data.
图 4 (a) 通过固定辐照剂量 (3 W s cm–2) 的上转换充能后, LaMgGa11O19:Mn2+ 材料的热释光谱 (450 nm激光的辐照功率密度分别为: 0.05, 0.1, 0.15, 0.3, 0.5, 0.75, 1.5, 3, 6 W cm–2); (b) 热释光积分强度 I 随辐照功率密度 P 的变化及 I–P 函数拟合
Fig. 4. (a) Thermoluminescence curves of LaMgGa11O19:Mn2+ recorded after 450 nm laser illumination with different power densities but a fixed illumination dose (3 W s cm–2). (b) The thermoluminescence intensity (I) is plotted versus the excitation power density (P). The straight line is a fit of the data.
-
[1] Bunzli J C, Pecharsky V K 2015 Handbook on the Physics and Chemistry of Rare Earths (Vol. 48) (Amsterdam: North-Holland)
[2] Li Y, Gecevicius M, Qiu J R 2016 Chem. Soc. Rev. 45 2090Google Scholar
[3] Xu J, Tanabe S 2019 J. Lumin. 205 581Google Scholar
[4] Yu N Y, Liu F, Li X F, Pan Z W 2009 Appl. Phys. Lett. 95 231110Google Scholar
[5] Kamimura S, Xu C N, Yamada H, Terasaki N, Masayoshi F 2014 Jpn. J. Appl. Phys. 53 092403Google Scholar
[6] Liu F, Liang Y J, Chen Y F, Pan Z W 2016 Adv. Opt. Mater. 4 562Google Scholar
[7] 王鹏久, 徐旭辉, 邱建备, 周大成, 刘雪娥, 程帅 2014 物理学报 63 077804Google Scholar
Wang P J, Xu X H, Qiu J B, Zhou D C, Liu X E, Cheng S 2014 Acta Phys. Sin. 63 077804Google Scholar
[8] 刘盛意, 张金苏, 孙佳石, 陈宝玖, 李香萍, 徐赛, 程丽红 2019 物理学报 68 053301Google Scholar
Liu S Y, Zhang J S, Sun J S, Chen B J, Li X P, Xu S, Cheng L H 2019 Acta Phys. Sin. 68 053301Google Scholar
[9] Sun H X, Gao Q Q, Wang A Y, Liu Y C, Wang X J, Liu F 2020 Opt. Mater. Express 10 1296Google Scholar
[10] Rodrigues L C V, Holsa J, Lastusaari M, Felinto M C F C, Brito H F 2014 J. Mater. Chem. C 2 1612Google Scholar
[11] Bos A J J, Van Duijvenvoorde RM, Van der Kolk E, Drozdowski W, Dorenbos P 2011 J. Lumin. 131 1465Google Scholar
[12] Pan Z W, Lu Y Y, Liu F 2012 Nat. Mater. 11 58Google Scholar
[13] Malkamaki M, Bos A J J, Dorenbos P, Lastusaari M, Rodrigues L C V, Swart H C, Holsa J 2020 Physica B 593 411947Google Scholar
[14] De Chermont Q L M, Chaneac C, Seguin J, Pelle F, Maitrejean S, Jolivet J P, Gourier D, Bessodes M, Scherman D 2007 Proc. Natl. Acad. Sci. U. S. A. 104 9266Google Scholar
[15] Liu F, Yan W Z, Chuang Y J, Zhen Z P, Xie J, Pan Z W 2013 Sci. Rep. 3 1554Google Scholar
[16] Liu F, Chen Y F, Liang Y J, Pan Z W 2016 Opt. Lett. 41 954Google Scholar
[17] Liu F, Liang Y J, Pan Z W 2014 Phys. Rev. Lett. 113 177401Google Scholar
[18] Chen Y F, Liu F, Liang Y J, Wang X L, Wang X J, Pan Z W 2018 J. Mater. Chem. C 6 8003Google Scholar
[19] Gao Q Q, Li C L, Liu Y C, Zhang J H, Wang X J, Liu F 2020 J. Mater. Chem. C 8 6988Google Scholar
[20] Yan S Y, Gao Q Q, Zhao X Y, Wang A Y, Liu Y C, Zhang J H, Wang X J, Liu F 2020 J. Lumin. 226 117427Google Scholar
[21] Yan S Y, Liu F, Zhang J H, Wang X J, Liu Y C 2020 Phys. Rev. Appl. 13 044051Google Scholar
[22] Pollnau M, Gamelin D R, Lüthi S R, Güdel H U 2000 Phys. Rev. B 61 3337Google Scholar
[23] Verstegen J M P J 1973 J. Solid State. Chem. 7 468Google Scholar
[24] Wang X J, Jia D, Yen W M 2003 J. Lumin. 102−103 34
[25] Liu F, Meltzer R S, Li X, Budai J D, Chen Y S, Pan Z W 2014 Sci. Rep. 4 7101
[26] Yang X B, Xu J, Li H J, Bi Q Y, Cheng Y, Su L B, Tang Q 2010 Chin. Phys. B 19 047803Google Scholar
[27] Bos A J J 2017 Materials 10 1357Google Scholar
计量
- 文章访问数: 4684
- PDF下载量: 115
- 被引次数: 0