搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无机非铅钙钛矿Cs3Bi2I9的电子和光学性质

宋谢飞 晒旭霞 李洁 马新茹 伏云昌 曾春华

引用本文:
Citation:

无机非铅钙钛矿Cs3Bi2I9的电子和光学性质

宋谢飞, 晒旭霞, 李洁, 马新茹, 伏云昌, 曾春华

Electronic and optical properties of inorganic lead-free perovskite Cs3Bi2I9

Song Xie-Fei, Shai Xu-Xia, Li Jie, Ma Xin-Ru, Fu Yun-Chang, Zeng Chun-Hua
PDF
HTML
导出引用
  • 有机-无机卤化钙钛矿材料因具有优异的光电性质而被广泛应用于太阳电池中, 然而材料及器件的稳定性及含铅问题却严重制约其生产发展. 与杂化钙钛矿相比, 无机非铅钙钛矿Cs3Bi2I9因具有更强的稳定性和环境友好性受到人们的广泛关注. Cs3Bi2I9具有单斜、三角和六方3种晶型, 目前, 对Cs3Bi2I9的理论和实验研究主要集中在六方相. 本文基于密度泛函理论的第一性原理对Cs3Bi2I9单斜、三角和六方相的电子性质、载流子有效质量($m^* $)、稳定性和光学性质进行了理论研究. 结果表明, 3种晶相具有相近的稳定性, 三角相因具有较小的直接带隙(1.21 eV)性质成为最具研究潜力的对象. 3种晶相的$m^* $均具有沿a, b方向相同和沿c方向不同的特点, 三角相的电子有效质量最小、且沿a方向的电子有效质量小于c方向. 相比单斜和六方相, 三角相Cs3Bi2I9的光学性质均发生红移现象、具有更优异的光吸收性能. 此外, 3种晶相的光学性质也表现出沿a, b方向相同和沿c方向不同的性质, 且沿a方向的光吸收性能优于c方向. 因此, 对于Cs3Bi2I9钙钛矿, 期待三角晶相沿a方向在光电子器件方面有较好的贡献.
    Organic-inorganic halide perovskite materials are widely used in solar cells because of their excellent photoelectric properties. However, the stability and lead toxicity problems associated with materials and devices have restrict their production and development. Compared with the hybrid perovskite, the inorganic lead-free perovskite Cs3Bi2I9 has attracted wide attention because of its stronger stability and environmental friendliness. The Cs3Bi2I9 has three crystal types: monoclinic type, trigonal type, and hexagonal type. At present, the researches of Cs3Bi2I9 focus mainly on the hexagonal phase. In this paper, based on the first principles of density functional theory, the electronic properties, carrier effective mass values, stabilities, and optical properties of Cs3Bi2I9 monoclinic, trigonal, and hexagonal phases are studied theoretically. It is suggested that the stabilities of the three crystal phases are similar, and the direct band gap (1.21 eV) of the trigonal phase would be noticeable. For the three phases, their effective mass values show that their properties are the same along both the a direction and the b direction, but different along the c direction. The effective mass of electron of the trigonal phase is significantly smaller along the a-direction than along the c-direction. Corresponding to the red shift phenomenon of optical properties, the trigonal phase shows the better optical absorption performance than other phases. In addition, the optical properties also show that the properties are the same along the a direction and the b direction, but different along the c direction, and the optical absorption performance is better along the a-direction than along the c-direction.
      通信作者: 晒旭霞, xuxiashai@kust.edu.cn ; 曾春华, chzeng83@kust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61904072)和云南省基础研究项目(批准号: 202001AU070025, 202101BE070001-049, 2019FI002, 140520210008, 202101AS070018, 202101AV070015)资助的课题
      Corresponding author: Shai Xu-Xia, xuxiashai@kust.edu.cn ; Zeng Chun-Hua, chzeng83@kust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61904072) and the Fundamental Research Projects of Yunnan Province, China (Grant Nos. 202001AU070025, 202101BE070001-049, 2019FI002, 140520210008, 202101AS070018, 202101AV070015).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [3]

    崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹 2020 物理学报 69 207401Google Scholar

    Cui X H, Xu Q J, Shi B, Hou F H, Zhao Y, Zhang X D 2020 Acta Phys. Sin. 69 207401Google Scholar

    [4]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [5]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Hua J 2015 Science 347 967Google Scholar

    [6]

    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar

    [7]

    https://www.nrel.gov/pv/cell-efficiency.html [2020-11-9]

    [8]

    Bella F, Griffini G, Correa-Baena J P, Saracco G, Grätzel M, Hagfeldt A, Turri S, Gerbaldi C 2016 Science 354 203Google Scholar

    [9]

    Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G 2015 Adv. Energy Mater. 5 1501310Google Scholar

    [10]

    Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grätzel M 2016 Energy Environ. Sci. 9 1989Google Scholar

    [11]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [12]

    Gratia P, Grancini G, Audinot J N, Jeanbourquin X, Mosconi E, Zimmermann I, Dowsett D, Lee Y, Grätzel M, De Angelis F, Sivula K, Wirtz T, Nazeeruddin M K 2016 J. Am. Chem. Soc. 138 15821Google Scholar

    [13]

    Philippe B, Saliba M, Correa-Baena J P, Cappel U B, Turren-Cruz S H, Grätzel M, Hagfeldt A, Rensmo H 2017 Chem. Mater. 29 3589Google Scholar

    [14]

    Akkerman Q A, Manna L 2020 ACS Energy Lett. 5 604Google Scholar

    [15]

    Luo J, Wang X, Li S, et al. 2018 Nature 563 541Google Scholar

    [16]

    Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312Google Scholar

    [17]

    Saidaminov M I, Almutlaq J, Sarmah S, Dursun I, Zhumekenov A A, Begum R, Pan J, Cho N, Mohammed O F, Bakr O M 2016 ACS Energy Lett. 1 840Google Scholar

    [18]

    Yao D, Hoang M T, Wang H 2021 Small Methods 5 2001147Google Scholar

    [19]

    Li Y, Shi Z, Liang W, Ma J, Chen X, Wu D, Tian Y, Li X, Shan C, Fang X 2021 Mater. Horiz. 8 1367Google Scholar

    [20]

    Zhang Y X, Liu Y C, Xu Z, Ye H C, Yang Z, You J X, Liu M, He Y H, Kanatzidis M G, Liu S Z (Frank) 2020 Nat. Commun. 11 2304Google Scholar

    [21]

    Xu Q, Yang D, Lv J, Sun Y Y, Zhang L 2018 Small Methods 2 1700316Google Scholar

    [22]

    Li Y, Yang K 2019 Energy Environ. Sci. 12 2233Google Scholar

    [23]

    Gao Y, Pan Y, Zhou F, Niu G, Yan C 2021 J. Mater. Chem. A 9 11931Google Scholar

    [24]

    Miller N C, Bernechea M 2018 APL Mater. 6 084503Google Scholar

    [25]

    Attique S, Ali N, Ali S, Khatoon R, Li N, Khesro A, Rauf S, Yang S, Wu H 2020 Adv. Sci. 7 1903143Google Scholar

    [26]

    Park B W, Philippe B, Zhang X, Rensmo H, Boschloo G, Johansson E M J 2015 Adv. Mater. 27 6806Google Scholar

    [27]

    Ghosh B, Chakraborty S, Wei H, Guet C, Li S, Mhaisalkar S, Mathews N 2017 J. Phys. Chem. C 121 17062Google Scholar

    [28]

    Hong K H, Kim J, Debbichi L, Kim H, Im S H 2017 J. Phys. Chem. C 121 969Google Scholar

    [29]

    Zhang H J, Xu Y D, Sun Q H, Dong J P, Lu Y F, Zhang B B, Jie W Q 2018 CrystEngComm 20 4935Google Scholar

    [30]

    Yu B B, Liao M, Yang J, Chen W, Zhu Y, Zhang X, Duan T, Yao W, Wei S H, He Z 2019 J. Mater. Chem. A 7 8818Google Scholar

    [31]

    Arakcheeva A V, Chapuis G, Meyer M 2001 Zeitschrift für Kristallographie - Crystalline Materials 216 199Google Scholar

    [32]

    Ivanov Y N, Sukhovskii A A, Lisin V V, Aleksandrova I P 2001 Inorg. Mater. 37 623Google Scholar

    [33]

    Yu B B, Liao M, Yang J X, Chen W, Zhu Y D, Zhang X S, Duan T, Yao W T, Wei S H, He Z B 2019 Journal of Materials Chemistry A 7 8818

    [34]

    Johansson M B, Zhu H, Johansson E M J 2016 J. Phys. Chem. Lett. 7 3467Google Scholar

    [35]

    Zhang L, Liu C, Wang L, Liu C, Wang K, Zou B 2018 Angew. Chem. Int. Ed. 57 11213Google Scholar

    [36]

    Tewari N, Shivarudraiah S B, Halpert, J E 2021 Nano Lett. 21 5578Google Scholar

    [37]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [38]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [39]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [40]

    汪志刚, 曾祥明, 张杨, 黄娆, 文玉华 2015 物理化学学报 31 1677Google Scholar

    Wang Z G, Zeng X M, Zhang Y, Huang R, Wen Y H 2015 Acta Phys. -Chim. Sin. 31 1677Google Scholar

    [41]

    Sun Y J, Wang D, Shuai Z G 2016 J. Phys. Chem. C 120 21866Google Scholar

    [42]

    Even J, Pedesseau L, Jancu J M, Katan C 2013 J. Phys. Chem. Lett. 4 2999Google Scholar

    [43]

    Rai D P, Sandeep, Shankar A, Sakhya A P, Sinha T P, Merabet B, H-E M M S, Khenata R, Boochani A, Solaymani S, Thapa R K 2017 Mater. Chem. Phys. 186 620Google Scholar

  • 图 1  Cs3Bi2I9的晶体结构 (a) 单斜; (b) 三角; (c) 六方. 其中蓝色、黑色和棕色小球分别为Cs原子、Bi原子和I原子

    Fig. 1.  Crystal structures of Cs3Bi2I9: (a) Mono; (b) Trig; (b) Hexa. The blue, black and brown balls are Cs, Bi and I atoms respectively.

    图 2  Cs3Bi2I9的能带结构(考虑和未考虑SOC)和态密度(考虑SOC) (a) 单斜; (b) 三角; (c) 六方

    Fig. 2.  Band structures (with and without SOC) and density of states (with SOC) of Cs3Bi2I9: (a) Mono; (b) Trig; (c) Hexa.

    图 3  Cs3Bi2I9的介电函数 (a) 实部; (b) 虚部

    Fig. 3.  Dielectric function of Cs3Bi2I9: (a) Real part; (b) imaginary part.

    图 4  Cs3Bi2I9的光吸收系数 (a) 和能量损失函数 (b) (插图为可见光范围的局部放大)

    Fig. 4.  (a) Absorption coefficient α(ω) and (b) energy-loss function L(ω) of Cs3Bi2I9. (The illustration shows a partial enlargement of the visible light range)

    表 1  Cs3Bi2I9的晶格常数和晶面角

    Table 1.  The lattice constant and face angle of Cs3Bi2I9.

    abcα/(°)β/(°)γ/(°)
    Mono8.3114.4322.4690.00107.6990.00
    Expt.[31]8.3514.4721.10
    Trig8.458.4510.4390.0090.00120.00
    Calc.[28]8.458.4510.44
    Hexa8.348.3421.2690.0090.00120.00
    Expt.[20]8.398.3921.2090.0090.00120.00
    Calc.[28]8.348.3421.33
    下载: 导出CSV

    表 2  Cs3Bi2I9沿不同方向的载流子有效质量(mo是电子质量)

    Table 2.  Carrier effective mass of Cs3Bi2I9 along different directions. (The mo is the electronic mass.)

    MonoTrigHexa
    ${m_{\rm{e} }^*}({\rm{a} })/m_{\rm{o}}$0.860.260.28
    ${m_{\rm{e}}^*}({\rm{c} })/m_{\rm{o}}$1.480.481.45
    ${m_{\rm{h}}^*} ({\rm{a} })/m_{\rm{o}}$0.801.021.15
    ${m_{\rm{h} }^*}({\rm{c} })/m_{\rm{o} }$1.160.850.77
    下载: 导出CSV

    表 3  介电函数实部ε1(0)和实部最大值ε1Max(ω)

    Table 3.  The real part of the dielectric function ε1(0) and the maximum value of the real part ε1Max(ω).

    MonoTrigHexa
    ε1(0)6.127.106.14
    ε1Max(ω)8.919.438.93
    下载: 导出CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [3]

    崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹 2020 物理学报 69 207401Google Scholar

    Cui X H, Xu Q J, Shi B, Hou F H, Zhao Y, Zhang X D 2020 Acta Phys. Sin. 69 207401Google Scholar

    [4]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [5]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Hua J 2015 Science 347 967Google Scholar

    [6]

    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar

    [7]

    https://www.nrel.gov/pv/cell-efficiency.html [2020-11-9]

    [8]

    Bella F, Griffini G, Correa-Baena J P, Saracco G, Grätzel M, Hagfeldt A, Turri S, Gerbaldi C 2016 Science 354 203Google Scholar

    [9]

    Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G 2015 Adv. Energy Mater. 5 1501310Google Scholar

    [10]

    Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grätzel M 2016 Energy Environ. Sci. 9 1989Google Scholar

    [11]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [12]

    Gratia P, Grancini G, Audinot J N, Jeanbourquin X, Mosconi E, Zimmermann I, Dowsett D, Lee Y, Grätzel M, De Angelis F, Sivula K, Wirtz T, Nazeeruddin M K 2016 J. Am. Chem. Soc. 138 15821Google Scholar

    [13]

    Philippe B, Saliba M, Correa-Baena J P, Cappel U B, Turren-Cruz S H, Grätzel M, Hagfeldt A, Rensmo H 2017 Chem. Mater. 29 3589Google Scholar

    [14]

    Akkerman Q A, Manna L 2020 ACS Energy Lett. 5 604Google Scholar

    [15]

    Luo J, Wang X, Li S, et al. 2018 Nature 563 541Google Scholar

    [16]

    Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312Google Scholar

    [17]

    Saidaminov M I, Almutlaq J, Sarmah S, Dursun I, Zhumekenov A A, Begum R, Pan J, Cho N, Mohammed O F, Bakr O M 2016 ACS Energy Lett. 1 840Google Scholar

    [18]

    Yao D, Hoang M T, Wang H 2021 Small Methods 5 2001147Google Scholar

    [19]

    Li Y, Shi Z, Liang W, Ma J, Chen X, Wu D, Tian Y, Li X, Shan C, Fang X 2021 Mater. Horiz. 8 1367Google Scholar

    [20]

    Zhang Y X, Liu Y C, Xu Z, Ye H C, Yang Z, You J X, Liu M, He Y H, Kanatzidis M G, Liu S Z (Frank) 2020 Nat. Commun. 11 2304Google Scholar

    [21]

    Xu Q, Yang D, Lv J, Sun Y Y, Zhang L 2018 Small Methods 2 1700316Google Scholar

    [22]

    Li Y, Yang K 2019 Energy Environ. Sci. 12 2233Google Scholar

    [23]

    Gao Y, Pan Y, Zhou F, Niu G, Yan C 2021 J. Mater. Chem. A 9 11931Google Scholar

    [24]

    Miller N C, Bernechea M 2018 APL Mater. 6 084503Google Scholar

    [25]

    Attique S, Ali N, Ali S, Khatoon R, Li N, Khesro A, Rauf S, Yang S, Wu H 2020 Adv. Sci. 7 1903143Google Scholar

    [26]

    Park B W, Philippe B, Zhang X, Rensmo H, Boschloo G, Johansson E M J 2015 Adv. Mater. 27 6806Google Scholar

    [27]

    Ghosh B, Chakraborty S, Wei H, Guet C, Li S, Mhaisalkar S, Mathews N 2017 J. Phys. Chem. C 121 17062Google Scholar

    [28]

    Hong K H, Kim J, Debbichi L, Kim H, Im S H 2017 J. Phys. Chem. C 121 969Google Scholar

    [29]

    Zhang H J, Xu Y D, Sun Q H, Dong J P, Lu Y F, Zhang B B, Jie W Q 2018 CrystEngComm 20 4935Google Scholar

    [30]

    Yu B B, Liao M, Yang J, Chen W, Zhu Y, Zhang X, Duan T, Yao W, Wei S H, He Z 2019 J. Mater. Chem. A 7 8818Google Scholar

    [31]

    Arakcheeva A V, Chapuis G, Meyer M 2001 Zeitschrift für Kristallographie - Crystalline Materials 216 199Google Scholar

    [32]

    Ivanov Y N, Sukhovskii A A, Lisin V V, Aleksandrova I P 2001 Inorg. Mater. 37 623Google Scholar

    [33]

    Yu B B, Liao M, Yang J X, Chen W, Zhu Y D, Zhang X S, Duan T, Yao W T, Wei S H, He Z B 2019 Journal of Materials Chemistry A 7 8818

    [34]

    Johansson M B, Zhu H, Johansson E M J 2016 J. Phys. Chem. Lett. 7 3467Google Scholar

    [35]

    Zhang L, Liu C, Wang L, Liu C, Wang K, Zou B 2018 Angew. Chem. Int. Ed. 57 11213Google Scholar

    [36]

    Tewari N, Shivarudraiah S B, Halpert, J E 2021 Nano Lett. 21 5578Google Scholar

    [37]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [38]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [39]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [40]

    汪志刚, 曾祥明, 张杨, 黄娆, 文玉华 2015 物理化学学报 31 1677Google Scholar

    Wang Z G, Zeng X M, Zhang Y, Huang R, Wen Y H 2015 Acta Phys. -Chim. Sin. 31 1677Google Scholar

    [41]

    Sun Y J, Wang D, Shuai Z G 2016 J. Phys. Chem. C 120 21866Google Scholar

    [42]

    Even J, Pedesseau L, Jancu J M, Katan C 2013 J. Phys. Chem. Lett. 4 2999Google Scholar

    [43]

    Rai D P, Sandeep, Shankar A, Sakhya A P, Sinha T P, Merabet B, H-E M M S, Khenata R, Boochani A, Solaymani S, Thapa R K 2017 Mater. Chem. Phys. 186 620Google Scholar

  • [1] 郑鹏飞, 柳志旭, 王超, 刘卫芳. 基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究. 物理学报, 2024, 73(12): 126202. doi: 10.7498/aps.73.20240385
    [2] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [3] 张俊廷, 纪克, 谢禹, 李超. 基于钙钛矿的二维铁磁体Sr2RuO4单层. 物理学报, 2024, 73(22): 226101. doi: 10.7498/aps.73.20241042
    [4] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [5] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [6] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [7] 李斌, 苗向阳. 单个CsPbBr3钙钛矿量子点的荧光闪烁特性. 物理学报, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [8] 宋谢飞, 晒旭霞, 李洁, 马新茹, 伏云昌, 曾春华. 无机非铅钙钛矿Cs3Bi2I9的电子和光学性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211599
    [9] 宋蕊, 冯凯, 林上金, 何曼丽, 仝亮. 钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控. 物理学报, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [10] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [11] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [12] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [13] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [14] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [15] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [16] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [17] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [19] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] 向 军, 李莉萍, 苏文辉. 钙钛矿型氧离子导体KNb1-xMgxO3-δ的制备和表征. 物理学报, 2003, 52(6): 1474-1478. doi: 10.7498/aps.52.1474
计量
  • 文章访问数:  8420
  • PDF下载量:  287
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 修回日期:  2021-08-31
  • 上网日期:  2021-12-30
  • 刊出日期:  2022-01-05

/

返回文章
返回