搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多路可视图的健康与心梗患者心电图信号复杂网络识别

马志怡 杨小冬 何爱军 马璐 王俊

引用本文:
Citation:

基于多路可视图的健康与心梗患者心电图信号复杂网络识别

马志怡, 杨小冬, 何爱军, 马璐, 王俊

Complex network recognition of electrocardiograph signals in health and myocardial infarction patients based on multiplex visibility graph

Ma Zhi-Yi, Yang Xiao-Dong, He Ai-Jun, Ma Lu, Wang Jun
PDF
HTML
导出引用
  • 可视图(visibility graph, VG)算法已被证明是将时间序列转换为复杂网络的简单且高效的方法, 其构成的复杂网络在拓扑结构中继承了原始时间序列的动力学特性. 目前, 单维时间序列的可视图分析已趋于成熟, 但应用于复杂系统时, 单变量往往无法描述系统的全局特征. 本文提出一种新的多元时间序列分析方法, 将心梗和健康人的12导联心电图(electrocardiograph, ECG)信号转换为多路可视图, 以每个导联为一个节点, 两个导联构成可视图的层间互信息为连边权重, 将其映射到复杂网络. 由于不同人群的全连通网络表现为完全相同的拓扑结构, 无法唯一表征不同个体的动力学特征, 根据层间互信息大小重构网络, 提取权重度和加权聚类系数, 实现对不同人群12导联ECG信号的识别. 为判断序列长度对识别效果的影响, 引入多尺度权重度分布熵. 由于健康受试者拥有更高的平均权重度和平均加权聚类系数, 其映射网络表现为更加规则的结构、更高的复杂性和连接性, 可以与心梗患者进行区分, 两个参数的识别准确率均达到93.3%.
    The visibility graph algorithm proves to be a simple and efficient method to transform time series into complex network and has been widely used in time series analysis because it can inherit the dynamic characteristics of original time series in topological structure. Now, visibility graph analysis of univariate time series has become mature gradually. However, most of complex systems in real world are multi-dimensional, so the univariate analysis is difficult to describe the global characteristics when applied to multi-dimensional series. In this paper, a novel method of analyzing the multivariate time series is proposed. For patients with myocardial infarction and healthy subjects, the 12-lead electrocardiogram signals of each individual are considered as a multivariate time series, which is transformed into a multiplex visibility graph through visibility graph algorithm and then mapped to fully connected complex network. Each node of the network corresponds to a lead, and the inter-layer mutual information between visibility graphs of two leads represents the weight of edges. Owing to the fully connected network of different groups showing an identical topological structure, the dynamic characteristics of different individuals cannot be uniquely represented. Therefore, we reconstruct the fully connected network according to inter-layer mutual information, and when the value of inter-layer mutual information is less than the threshold we set, the edge corresponding to the inter-layer mutual information is deleted. We extract average weighted degree and average weighted clustering coefficient of reconstructed networks for recognizing the 12-lead ECG signals of healthy subjects and myocardial infarction patients. Moreover, multiscale weighted distribution entropy is also introduced to analyze the relation between the length of original time series and final recognition result. Owing to higher average weighted degree and average weighted clustering coefficient of healthy subjects, their reconstructed networks show a more regular structure, higher complexity and connectivity, and the healthy subjects can be distinguished from patients with myocardial infarction, whose reconstructed networks are sparser. Experimental results show that the identification accuracy of both parameters, average weighted degree and average weighted clustering coefficient, reaches 93.3%, which can distinguish between the 12-lead electrocardiograph signals of healthy people and patients with myocardial infarction, and realize the automatic detection of myocardial infarction.
      通信作者: 杨小冬, yxdnju@163.com
    • 基金项目: 徐州市重点研发计划(社会发展)(批准号: KC21304)和国家自然科学基金(批准号: 61772532, 61876186)资助的课题.
      Corresponding author: Yang Xiao-Dong, yxdnju@163.com
    • Funds: Project supported by the Key Research & Development Plan (social development) of Xuzhou, China (Grant No. KC21304) and the National Natural Science Foundation of China (Grant Nos. 61772532, 61876186).
    [1]

    Zhang J, Small M 2006 Phys. Rev. Lett. 96 238701Google Scholar

    [2]

    Zou Y, Donner R V, Marwan N, Donges J F, Kurths J 2019 Phys. Rep. 787 1Google Scholar

    [3]

    Lacasa L, Luque B, Ballesteros F, Luque J, Nuno J C 2008 Proc. Natl. Acad. Sci. 105 4972Google Scholar

    [4]

    Luque B, Lacasa L, Ballesteros F, Luque J 2009 Phys. Rev. E 80 046103Google Scholar

    [5]

    Donner R V, Zou Y, Donges J F, Marwan N, Kurths J 2010 New J. Phys. 12 033025Google Scholar

    [6]

    Marwan N, Donges J F, Zou Y, Donner R V, Kurths J 2009 Phys. Lett. A 373 4246Google Scholar

    [7]

    Xu X, Zhang J, Small M 2008 Proc. Natl. Acad. Sci. 105 19601Google Scholar

    [8]

    Donges J F, Donner R V, Trauth M H, Marwan N, Schellnhuber H J 2011 Proc. Natl. Acad. Sci. 108 20422Google Scholar

    [9]

    周婷婷, 金宁德, 高忠科, 罗跃斌 2012 物理学报 61 030506Google Scholar

    Zhou T T, Jin N D, Gao Z K, Luo Y B 2012 Acta Phys. Sin. 61 030506Google Scholar

    [10]

    Sun X R, Small M, Zhao Y, Xue X P 2013 Chaos 24 1054Google Scholar

    [11]

    Zhang J Y, Zhou J, Tang M, Guo H, Small M, Zou Y 2017 Sci. Rep. 7 7795Google Scholar

    [12]

    Kulp C W, Chobot J M, Freitas H R, Sprechini G D 2016 Chaos 26 073114Google Scholar

    [13]

    Zou Y, Small M, Liu Z, Kurths J 2014 New J. Phys. 16 013051Google Scholar

    [14]

    Donner R V, Donges J F 2012 Acta Geophys. 60 589Google Scholar

    [15]

    Bajestani G S, Behrooz M, Khani A G, Nouri-Baygi M, Mollaei A 2019 Comput. Methods Programs Biomed. 177 277Google Scholar

    [16]

    Tang X Y, Xia L, Liao Y Z, Liu W F, Peng Y H, Gao T X, Zeng Y J 2013 Clin. EEG Neurosci. 44 150Google Scholar

    [17]

    Supriya S, Siuly S, Wang H, Cao J L, Zhang Y C 2016 IEEE Access 4 6554Google Scholar

    [18]

    Bhaduri S, Ghosh D 2015 Clin. EEG Neurosci. 46 218Google Scholar

    [19]

    Wang L, Long X, Arends J B, Aarts R M 2017 J. Neurosci. Method 290 85Google Scholar

    [20]

    Kong T J, Shao J, Hu J Y, Yang X, Yang S Y, Malekian R 2021 Sensors 21 1870Google Scholar

    [21]

    易娜 2014 硕士学位论文 (广州: 暨南大学)

    Yi N 2014 M. S. Thesis (Guangzhou: Jinan University) (in Chinese)

    [22]

    Shi W B, Shang P J, Wang J, Lin A J 2014 Physica A 403 35

    [23]

    Jiang W, Wei B Y, Zhan J, Xie C H, Zhou D Y 2016 Comput. Ind. Eng. 101 260Google Scholar

    [24]

    Azami H, Escudero J 2017 Physica A 465 261Google Scholar

    [25]

    Han Y F, Jin N D, Zhai L S, Ren Y Y, He Y S 2019 Physica A 518 131Google Scholar

    [26]

    Gao Z K, Liu M X, Dang W D, Ma C, Hou L H, Hong X L 2021 Chem. Eng. J. 407 127229Google Scholar

    [27]

    Tanizawa T, Nakamura T, Taya F, Small M 2018 Physica A 512 437Google Scholar

    [28]

    Gao Z K, Fang P C, Ding M S, Jin N D 2015 Exp. Therm Fluid Sci. 60 157Google Scholar

    [29]

    Bianconi G 2013 Phys. Rev. E 87 062806Google Scholar

    [30]

    Nicosia V, Bianconi G, Latora V, Barthelemy M 2013 Phys. Rev. Lett. 111 058701Google Scholar

    [31]

    Battiston F, Nicosia V, Latora V 2014 Phys. Rev. E 89 032804Google Scholar

    [32]

    Quesada D, Valverde G, Larrañaga P, Bielza C 2021 Eng. Appl. Artif. Intell. 103 104301Google Scholar

    [33]

    Lacasa L, Nicosia V, Latora V 2015 Sci. Rep. 5 15508Google Scholar

    [34]

    Carmona-Cabezas R, Gómez-Gómez J, Ariza-Villaverde A B, de Ravé E G, Jiménez-Hornero F J 2020 Atmos. Pollut. Res. 11 205Google Scholar

    [35]

    Gao Z K, Guo W, Cai Q, Ma C, Zhang Y B, Kurths J 2019 Chaos 29 073119Google Scholar

    [36]

    Cai Q, An J, Gao Z 2021 Brain Sci. Adv. 6 355Google Scholar

    [37]

    Samanta K, Chatterjee S, Bose R 2020 IEEE Sensors Lett. 4 1Google Scholar

    [38]

    Thygesen K, Alpert J S, White H D 2007 J. Am. Coll. Cardiol. 50 2173Google Scholar

    [39]

    Dohare A K, Kumar V, Kumar R 2018 Appl. Soft Comput. 64 138Google Scholar

    [40]

    Sharma M, San Tan R, Acharya U R 2018 Comput. Biol. Med. 102 341Google Scholar

    [41]

    Tripathy R K, Bhattacharyya A, Pachori R B 2019 IEEE Sensors J. 19 11437Google Scholar

    [42]

    Acharya U R, Fujita H, Oh S L, Hagiwara Y, Tan J H, Adam M 2017 Inf. Sci. 415 190Google Scholar

    [43]

    熊鹏, 薛彦平, 刘明, 杜海曼, 王洪瑞, 刘秀玲 2020 生物医学工程学杂志 37 142Google Scholar

    Xiong P, Xue Y P, Liu M, Du H M, Wang H R, Liu X L 2020 J. Biomed. Eng. 37 142Google Scholar

    [44]

    Liu W H, Huang Q J, Chang S, Wang H, He J 2018 Biomed. Signal Process. Control 45 22Google Scholar

    [45]

    张汉勇, 孟庆芳, 杜蕾, 刘明敏 2019 中国生物医学工程学报 38 273Google Scholar

    Zhang H Y, Meng Q F, Du L, Liu M M 2019 Chin. J. Biomed. Eng. 38 273Google Scholar

    [46]

    Goldberger A L, Amaral L, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Mietus J E, Moody G B, Peng C K, Stanley H E 2000 Circulation 101 e215Google Scholar

    [47]

    Costa M, Goldberger A L, Peng C K 2002 Phys. Rev. Lett. 89 068102Google Scholar

    [48]

    Chang P C, Lin J J, Hsieh J C, Weng J 2012 Appl. Soft Comput. 12 3165Google Scholar

    [49]

    Sun L, Lu Y P, Yang K T, Li S Z 2012 IEEE Trans. Biomed. Eng. 59 3348Google Scholar

    [50]

    王丹俐 2020 硕士学位论文 (杭州: 杭州电子科技大学)

    Wang D L 2020 M. S. Thesis (Hangzhou: Hangzhou Danzi University) (in Chinese)

  • 图 1  VG算法构造多路可视图示意图 (a)一个多维时间序列; (b) VG算法示意图, 从上至下依次为原始时间序列、红色圆圈包含片段的VG算法过程及其构造后的网络; (c)图(a)虚线框所含序列通过VG算法构造的多路可视图, 其中层1, 2, 3分别对应时间序列x1, x2, x3

    Fig. 1.  Schematic diagram of constructing multiplex visibility graph using VG algorithm: (a) a multivariate time series; (b) schematic diagram of VG algorithm. From top to bottom are original time series, VG algorithm procedure for fragment contained in the red circle and the constructed network; (c) multiplex visibility graph of series in dotted box in figure (a) constructed by VG algorithm, where layers 1, 2 and 3 correspond to time series x1, x2 and x3, respectively.

    图 2  多路可视图映射后的网络. 节点1, 2, 3对应多路可视图的第1层、第2层和第3层. I1,2, I1,3, I2,3分别为层1和层2、层1和层3、层2和层3之间的互信息, 同时为对应两点连边的权重

    Fig. 2.  Network mapped by multiplex visibility graph. Nodes 1, 2 and 3 correspond to the 1st, 2nd and 3rd layers of multiplex visibility graph. I1,2, I1,3, I2,3 are the mutual information between layer 1 and layer 2, layer 1 and layer 3, layer 2 and layer 3 respectively, meanwhile, they are the weight of edges of corresponding two points.

    图 3  不同年龄的健康人和MI患者在不同尺度因子s下平均权重度分布熵 (a) 60—69岁; (b) 50—59岁; (c) 40—49岁; (d) 30—39岁. 绿色实线为两类人群平均权重度分布熵按比例缩放后的差值, 星号表示差值最大处

    Fig. 3.  Average weighted distribution entropy of healthy people and patients with MI under different scale factor s: (a) 60–69 years old; (b) 50–59 years old; (c) 40–49 years old; (d) 30–39 years old. The solid green line is the difference of average weighted distribution entropy of two groups after scaling, and asterisk represents the maximum difference.

    图 4  不同年龄组健康受试者与MI患者在常数c不同取值时的平均权重度 (a) 60—69岁; (b) 50—59岁; (c) 40—49岁; (d) 30—39岁. 绿色实线为两类人群平均权重度的差值, 星号表示差值最大处, 其值见表2

    Fig. 4.  Average weighted degree of healthy subjects and myocardial infarction patients at different values of constant c: (a) 60–69 years old; (b) 50–59 years old; (c) 40–49 years old; (d) 30–39 years old. The solid green line is the difference of the average weighted degree of two groups, and the asterisk represents the maximum difference, see Table 2 for specific values.

    图 5  常数c = 0.43时重构网络的拓扑图 (a)健康受试者; (b) MI患者. 各节点对应的导联已在图中标明. 节点大小和颜色对应该节点的权重度. 图右侧颜色柱表示节点权重度

    Fig. 5.  Topology of the reconstructed network of (a) healthy subjects and (b) patients with MI at c = 0.43. The corresponding leads of each node have been indicated in the figure. Size and color are relative to the weighted degree of the node. The color bar on the right of the figure indicates the value of weighted degree.

    图 6  健康人和MI患者在最佳阈值下的(a)平均权重度和(b)平均加权聚类系数. 第1组—第4组受试者的年龄范围分别为60—69岁、50—59岁、40—49岁以及30—39岁

    Fig. 6.  (a) Average weighted degree and (b) average weighted clustering coefficients of healthy and myocardial infarction patients under optimal thresholds. Subjects in groups 1–4 correspond to ages of 60–69 years old, 50–59 years old, 40–49 years old and 30 to 39 years old respectively.

    表 1  12导联名称及其对应的心脏位置

    Table 1.  Name of the 12-lead and their corresponding cardiac location

    导联名称心脏部位
    I, avl心脏左室前侧壁
    Ⅱ, Ⅲ, avf心脏后壁、下面
    avr心室内腔
    v1, v2右室
    v3, v4室间隔
    v5, v6左室
    下载: 导出CSV

    表 2  4组健康人-MI患者对应重构网络的平均权重度差值最大时的常数c

    Table 2.  Constant c of four groups when difference of average weighted degree of reconstructed network being maximum.

    变量60—69岁50—59岁40—49岁30—39岁
    倍数c0.670.670.590.43
    差值2.28951.83892.35921.9015
    下载: 导出CSV

    表 3  本方法与其他现有方法的比较

    Table 3.  The comparison between proposed method and other existing methods

    分类方法特征
    个数
    结果
    敏感性/%特异性/%准确率/%
    HMM+GMM[48]485.7179.8282.50
    KNN+集成学习[49]292.388.1NA
    随机森林[50]10NANA87
    AdaBoostM1[50]10NANA90
    平均权重度(本文算法)194.488.2493.3
    平均加权聚类系数
    (本文算法)
    195.8382.3593.3
    下载: 导出CSV
  • [1]

    Zhang J, Small M 2006 Phys. Rev. Lett. 96 238701Google Scholar

    [2]

    Zou Y, Donner R V, Marwan N, Donges J F, Kurths J 2019 Phys. Rep. 787 1Google Scholar

    [3]

    Lacasa L, Luque B, Ballesteros F, Luque J, Nuno J C 2008 Proc. Natl. Acad. Sci. 105 4972Google Scholar

    [4]

    Luque B, Lacasa L, Ballesteros F, Luque J 2009 Phys. Rev. E 80 046103Google Scholar

    [5]

    Donner R V, Zou Y, Donges J F, Marwan N, Kurths J 2010 New J. Phys. 12 033025Google Scholar

    [6]

    Marwan N, Donges J F, Zou Y, Donner R V, Kurths J 2009 Phys. Lett. A 373 4246Google Scholar

    [7]

    Xu X, Zhang J, Small M 2008 Proc. Natl. Acad. Sci. 105 19601Google Scholar

    [8]

    Donges J F, Donner R V, Trauth M H, Marwan N, Schellnhuber H J 2011 Proc. Natl. Acad. Sci. 108 20422Google Scholar

    [9]

    周婷婷, 金宁德, 高忠科, 罗跃斌 2012 物理学报 61 030506Google Scholar

    Zhou T T, Jin N D, Gao Z K, Luo Y B 2012 Acta Phys. Sin. 61 030506Google Scholar

    [10]

    Sun X R, Small M, Zhao Y, Xue X P 2013 Chaos 24 1054Google Scholar

    [11]

    Zhang J Y, Zhou J, Tang M, Guo H, Small M, Zou Y 2017 Sci. Rep. 7 7795Google Scholar

    [12]

    Kulp C W, Chobot J M, Freitas H R, Sprechini G D 2016 Chaos 26 073114Google Scholar

    [13]

    Zou Y, Small M, Liu Z, Kurths J 2014 New J. Phys. 16 013051Google Scholar

    [14]

    Donner R V, Donges J F 2012 Acta Geophys. 60 589Google Scholar

    [15]

    Bajestani G S, Behrooz M, Khani A G, Nouri-Baygi M, Mollaei A 2019 Comput. Methods Programs Biomed. 177 277Google Scholar

    [16]

    Tang X Y, Xia L, Liao Y Z, Liu W F, Peng Y H, Gao T X, Zeng Y J 2013 Clin. EEG Neurosci. 44 150Google Scholar

    [17]

    Supriya S, Siuly S, Wang H, Cao J L, Zhang Y C 2016 IEEE Access 4 6554Google Scholar

    [18]

    Bhaduri S, Ghosh D 2015 Clin. EEG Neurosci. 46 218Google Scholar

    [19]

    Wang L, Long X, Arends J B, Aarts R M 2017 J. Neurosci. Method 290 85Google Scholar

    [20]

    Kong T J, Shao J, Hu J Y, Yang X, Yang S Y, Malekian R 2021 Sensors 21 1870Google Scholar

    [21]

    易娜 2014 硕士学位论文 (广州: 暨南大学)

    Yi N 2014 M. S. Thesis (Guangzhou: Jinan University) (in Chinese)

    [22]

    Shi W B, Shang P J, Wang J, Lin A J 2014 Physica A 403 35

    [23]

    Jiang W, Wei B Y, Zhan J, Xie C H, Zhou D Y 2016 Comput. Ind. Eng. 101 260Google Scholar

    [24]

    Azami H, Escudero J 2017 Physica A 465 261Google Scholar

    [25]

    Han Y F, Jin N D, Zhai L S, Ren Y Y, He Y S 2019 Physica A 518 131Google Scholar

    [26]

    Gao Z K, Liu M X, Dang W D, Ma C, Hou L H, Hong X L 2021 Chem. Eng. J. 407 127229Google Scholar

    [27]

    Tanizawa T, Nakamura T, Taya F, Small M 2018 Physica A 512 437Google Scholar

    [28]

    Gao Z K, Fang P C, Ding M S, Jin N D 2015 Exp. Therm Fluid Sci. 60 157Google Scholar

    [29]

    Bianconi G 2013 Phys. Rev. E 87 062806Google Scholar

    [30]

    Nicosia V, Bianconi G, Latora V, Barthelemy M 2013 Phys. Rev. Lett. 111 058701Google Scholar

    [31]

    Battiston F, Nicosia V, Latora V 2014 Phys. Rev. E 89 032804Google Scholar

    [32]

    Quesada D, Valverde G, Larrañaga P, Bielza C 2021 Eng. Appl. Artif. Intell. 103 104301Google Scholar

    [33]

    Lacasa L, Nicosia V, Latora V 2015 Sci. Rep. 5 15508Google Scholar

    [34]

    Carmona-Cabezas R, Gómez-Gómez J, Ariza-Villaverde A B, de Ravé E G, Jiménez-Hornero F J 2020 Atmos. Pollut. Res. 11 205Google Scholar

    [35]

    Gao Z K, Guo W, Cai Q, Ma C, Zhang Y B, Kurths J 2019 Chaos 29 073119Google Scholar

    [36]

    Cai Q, An J, Gao Z 2021 Brain Sci. Adv. 6 355Google Scholar

    [37]

    Samanta K, Chatterjee S, Bose R 2020 IEEE Sensors Lett. 4 1Google Scholar

    [38]

    Thygesen K, Alpert J S, White H D 2007 J. Am. Coll. Cardiol. 50 2173Google Scholar

    [39]

    Dohare A K, Kumar V, Kumar R 2018 Appl. Soft Comput. 64 138Google Scholar

    [40]

    Sharma M, San Tan R, Acharya U R 2018 Comput. Biol. Med. 102 341Google Scholar

    [41]

    Tripathy R K, Bhattacharyya A, Pachori R B 2019 IEEE Sensors J. 19 11437Google Scholar

    [42]

    Acharya U R, Fujita H, Oh S L, Hagiwara Y, Tan J H, Adam M 2017 Inf. Sci. 415 190Google Scholar

    [43]

    熊鹏, 薛彦平, 刘明, 杜海曼, 王洪瑞, 刘秀玲 2020 生物医学工程学杂志 37 142Google Scholar

    Xiong P, Xue Y P, Liu M, Du H M, Wang H R, Liu X L 2020 J. Biomed. Eng. 37 142Google Scholar

    [44]

    Liu W H, Huang Q J, Chang S, Wang H, He J 2018 Biomed. Signal Process. Control 45 22Google Scholar

    [45]

    张汉勇, 孟庆芳, 杜蕾, 刘明敏 2019 中国生物医学工程学报 38 273Google Scholar

    Zhang H Y, Meng Q F, Du L, Liu M M 2019 Chin. J. Biomed. Eng. 38 273Google Scholar

    [46]

    Goldberger A L, Amaral L, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Mietus J E, Moody G B, Peng C K, Stanley H E 2000 Circulation 101 e215Google Scholar

    [47]

    Costa M, Goldberger A L, Peng C K 2002 Phys. Rev. Lett. 89 068102Google Scholar

    [48]

    Chang P C, Lin J J, Hsieh J C, Weng J 2012 Appl. Soft Comput. 12 3165Google Scholar

    [49]

    Sun L, Lu Y P, Yang K T, Li S Z 2012 IEEE Trans. Biomed. Eng. 59 3348Google Scholar

    [50]

    王丹俐 2020 硕士学位论文 (杭州: 杭州电子科技大学)

    Wang D L 2020 M. S. Thesis (Hangzhou: Hangzhou Danzi University) (in Chinese)

  • [1] 马金龙, 张俊峰, 张冬雯, 张红斌. 基于通信序列熵的复杂网络传输容量. 物理学报, 2021, 70(7): 078902. doi: 10.7498/aps.70.20201300
    [2] 马志怡, 杨小冬, 何爱军, 马璐, 王俊. 基于多路可视图的健康与心梗患者ECG信号复杂网络识别. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211656
    [3] 汪丽娜, 成媛媛, 臧臣瑞. 基于seasonal-trend-loess方法的符号化时间序列网络. 物理学报, 2019, 68(23): 238901. doi: 10.7498/aps.68.20190794
    [4] 陈单, 石丹丹, 潘贵军. 复杂网络电输运性能与通信序列熵之间的关联. 物理学报, 2019, 68(11): 118901. doi: 10.7498/aps.68.20190230
    [5] 邢雪, 于德新, 田秀娟, 王世广. 结合可视图的多状态交通流时间序列特性分析. 物理学报, 2017, 66(23): 230501. doi: 10.7498/aps.66.230501
    [6] 武喜萍, 杨红雨, 韩松臣. 基于复杂网络理论的多元混合空管技术保障系统网络特征分析. 物理学报, 2016, 65(14): 140203. doi: 10.7498/aps.65.140203
    [7] 李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠. 复杂网络时空混沌同步的Backstepping设计. 物理学报, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [8] 高忠科, 胡沥丹, 周婷婷, 金宁德. 两相流有限穿越可视图演化动力学研究. 物理学报, 2013, 62(11): 110507. doi: 10.7498/aps.62.110507
    [9] 邢长明, 刘方爱, 徐如志. 无标度立体Koch网络上随机游走的平均吸收时间. 物理学报, 2012, 61(20): 200503. doi: 10.7498/aps.61.200503
    [10] 高湘昀, 安海忠, 方伟. 基于复杂网络的时间序列双变量相关性波动研究. 物理学报, 2012, 61(9): 098902. doi: 10.7498/aps.61.098902
    [11] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析. 物理学报, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [12] 周婷婷, 金宁德, 高忠科, 罗跃斌. 基于有限穿越可视图的时间序列网络模型. 物理学报, 2012, 61(3): 030506. doi: 10.7498/aps.61.030506
    [13] 崔爱香, 傅彦, 尚明生, 陈端兵, 周涛. 复杂网络局部结构的涌现:共同邻居驱动网络演化. 物理学报, 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [14] 陈华良, 刘忠信, 陈增强, 袁著祉. 复杂网络的一种加权路由策略研究. 物理学报, 2009, 58(9): 6068-6073. doi: 10.7498/aps.58.6068
    [15] 李涛, 裴文江, 王少平. 无标度复杂网络负载传输优化策略. 物理学报, 2009, 58(9): 5903-5910. doi: 10.7498/aps.58.5903
    [16] 王丹, 于灏, 井元伟, 姜囡, 张嗣瀛. 基于感知流量算法的复杂网络拥塞问题研究. 物理学报, 2009, 58(10): 6802-6808. doi: 10.7498/aps.58.6802
    [17] 吕翎, 张超. 一类节点结构互异的复杂网络的混沌同步. 物理学报, 2009, 58(3): 1462-1466. doi: 10.7498/aps.58.1462
    [18] 宋青松, 冯祖仁, 李人厚. 用于混沌时间序列预测的多簇回响状态网络. 物理学报, 2009, 58(7): 5057-5064. doi: 10.7498/aps.58.5057
    [19] 许 丹, 李 翔, 汪小帆. 复杂网络病毒传播的局域控制研究. 物理学报, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
    [20] 李 季, 汪秉宏, 蒋品群, 周 涛, 王文旭. 节点数加速增长的复杂网络生长模型. 物理学报, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
计量
  • 文章访问数:  5400
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2021-10-30
  • 上网日期:  2022-02-26
  • 刊出日期:  2022-03-05

/

返回文章
返回