搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲γ射线诱发N型金属氧化物场效应晶体管纵向寄生效应开启机制分析

李俊霖 李瑞宾 丁李利 陈伟 刘岩

引用本文:
Citation:

脉冲γ射线诱发N型金属氧化物场效应晶体管纵向寄生效应开启机制分析

李俊霖, 李瑞宾, 丁李利, 陈伟, 刘岩

TCAD simulation analysis of vertical parasitic effect induced by pulsed γ- ray in NMOS from 180 nm to 40 nm technology nodes

Li Jun-Lin, Li Rui-Bin, Ding Li-Li, Chen Wei, Liu Yan
PDF
HTML
导出引用
  • 金属氧化物场效应晶体管作为大规模数字电路的基本单元, 其内部的寄生效应一直以来被认为是影响集成电路在脉冲γ射线辐射环境中发生扰动、翻转以及闩锁的重要因素. 为研究脉冲γ射线诱发N型金属氧化物场效应晶体管内部纵向寄生效应的开启机制, 通过TCAD构建了40, 90以及180 nm 3种不同工艺节点的NMOS晶体管进行瞬时电离辐射效应仿真, 得到了纵向寄生三极管电流增益随工艺节点的变化趋势、纵向寄生三极管的开启条件及其对NMOS晶体管工作状态的影响. 结果表明: 1)脉冲γ射线在辐射瞬时诱发NMOS晶体管内部阱电势抬升是导致纵向寄生三极管开启的主要原因; 2)当纵向寄生三极管导通时, NMOS晶体管内部会产生强烈的二次光电流影响晶体管的工作状态; 3) NMOS晶体管内部纵向寄生三极管的电流增益随工艺节点的减小而减小. 研究结果可为电子器件的瞬时电离辐射效应机理研究提供理论依据.
    The parasitic effect inside metal oxide field effect transistor regarded as the basic structure of large scale digital circuits, has long been considered as an important factor affecting the disturbance, upset and latchup of integrated circuits in pulsed γ-ray radiation environment. To investigate the turn-on mechanism of vertical parasitic effect in NMOSFET induced by pulsed γ-ray radiation, the 40 nm, 90 nm and 180 nm NMOSFET device models are constructed by TCAD and the normal electrical characteristics are calibrated. The trend of vertical parasitic triode current gain, the turn-on conditions of vertical parasitic triode and their influence on working state of NMOSFET are obtained. The simulation results are shown below. 1) The disturbance of well potential inside NMOSFET induced by pulsed γ-ray radiation is the main reason for the turn-on of vertical parasitic triode. 2) When vertical parasitic triode is turn-on, the large secondary photocurrent will be generated inside NMOSFET which will affect the working state of the transistor. 3) The current gain of vertical parasitic triode in NMOSFET decreases with the technology node decreasing. The results provide a theoretical basis for studying the transient ionizing radiation effects of electronic devices.
      通信作者: 李俊霖, lijunlin@nint.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11835006)资助的课题
      Corresponding author: Li Jun-Lin, lijunlin@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11835006)
    [1]

    Wirth J L, Rogers S C 1964 IEEE Trans. Nucl. Sci. 11 24Google Scholar

    [2]

    Enlow E W, Alexander D R 1988 IEEE Trans. Nucl. Sci. 35 1467Google Scholar

    [3]

    Fjeldly T A, Deng Y Q, Shur M S, Hjalmarson H P, Muyshondt A, Ytterdal T 2001 IEEE Trans. Nucl. Sci. 48 1721Google Scholar

    [4]

    Alexander D R 2003 IEEE Trans. Nucl. Sci. 50 565Google Scholar

    [5]

    赖祖武 1998 抗辐射电子学(北京: 国防工业出版社) 第288—300页

    Lai Z W 1998 Radiation Electronics (Beijing: Defense Industry Press) pp288–300 (in Chinese)

    [6]

    Lewis C 1995 Transient Radiation Effects on Electronics (Alexandria: Defense Nuclear Agency) pp200–245

    [7]

    马强, 林东生, 范如玉, 陈伟, 杨善潮, 龚建成, 王桂珍, 齐超 2010 原子能科学技术 44 545Google Scholar

    Ma Q, Lin D S, Fan R Y, Chen W, Yang S C, Gong J C, Wang G Z, Qi C 2010 Atomic Energy Science and Technology 44 545Google Scholar

    [8]

    Oh S C, Lee N H, Lee H H 2012 12th International Conference on Control, Automation and Systems Jeju Island, Korea, October 17–21, 2012 p1233

    [9]

    王桂珍, 林东生, 齐超, 白小燕, 杨善潮, 李瑞宾, 马强, 金晓明, 刘岩 2014 原子能科学技术 48 2165Google Scholar

    Wang G Z, Lin D S, Qi C, Bai X Y, Yang S C, Li R B, Ma Q, Jin X M, Liu Y 2014 Atomic Energy Science and Technology 48 2165Google Scholar

    [10]

    Massengill L W, Diehl-Nagle S E 1985 IEEE Trans. Nucl. Sci. 32 4026Google Scholar

    [11]

    Massengill L W, Diehl-Nagle S E 1986 IEEE Trans. Nucl. Sci. 33 1541Google Scholar

    [12]

    Li J L, Chen W, Li R B, Wang G Z, Yang S C 2019 3rd Internaltional Conference on Radiation Effects of Electronic Devices Chongqing, China, May 29–31, 2019 pp1–4

    [13]

    Boselli G, Reddy V, Duvvury C 2005 43rd Annual International Reliability Physics Symposium San Jose, USA, April 17–21, 2005 p137

    [14]

    Li R B, Chen W, Lin D S, Yang S C, Bai X Y, Wang G Z, Liu Y, Qi C, Ma Q 2012 Sci. Chin. Tech. Sci. 55 3242Google Scholar

    [15]

    Keshavarz A A, Fischer T A, Dawes W R, Hawkins C F 1988 IEEE Trans. Nucl. Sci. 35 1422Google Scholar

    [16]

    Olson B D, Amusan O A, Dasgupta S, Massengill L W, Witulski A F, Bhuva B L, Alles M L, Warrenm K M, Ball D R 2007 IEEE Trans. Nucl. Sci. 54 894Google Scholar

    [17]

    Ahlbin J R, Atkinson N M, Gadlage M J, Gaspard N J, Bhuva B L, Loveless T D, Zhang E X, Chen L, Massengill L W 2011 IEEE Trans. Nucl. Sci. 58 2585Google Scholar

    [18]

    金晓明, 范如玉, 陈伟, 王桂珍, 林东生, 杨善潮, 白小燕 2010 原子能科学技术 44 1487Google Scholar

    Jin X M, Fan R Y, Chen W, Wang G Z, Lin D S, Yang S C, Bai X Y 2010 Atomic Energy Science and Technology 44 1487Google Scholar

    [19]

    Calienes W, Reis R, Anghel C, Vladimirescu A 2014 IEEE 57th International Midwest Symposium on Circuits and Systems Texas, USA, August 3–6, 2014 p655

    [20]

    Wunsch T F, Hash G L, Hewlett F W, Treece R K 1991 IEEE Trans. Nucl. Sci. 38 1392Google Scholar

    [21]

    Dasgupta S 2007 M. S. Thesis (Nashville: Vanderbilt University)

    [22]

    Atkinson N M 2010 M. S. Thesis (Nashville: Vanderbilt University)

    [23]

    Li R B, Wang C H, He C H, Chen W, Li J L, Qi C, Liu Y 2020 Nucl. Instrum. Meth. B 470 32Google Scholar

    [24]

    Neamen D A 2007 Semiconductor Physics and Devices Basic Principles (Beijing: Publishing House of Electronics Industry) pp284–285

  • 图 1  NMOS管寄生效应示意图

    Fig. 1.  Parasitic effect schematic of NMOS.

    图 2  NMOS管二维剖面

    Fig. 2.  Two-dimensional profile of NMOS.

    图 3  NMOS管沟道处掺杂

    Fig. 3.  Channel doping of NMOS.

    图 4  40 nm NMOS管常态特性校准曲线 (a) 转移特性曲线; (b) 输出特性曲线

    Fig. 4.  Normal characteristic calibration curve of 40 nm NMOS: (a) Transfer characteristic curve; (b) output characteristic curve.

    图 6  180 nm NMOS管常态特性校准曲线 (a) 转移特性曲线; (b) 输出特性曲线

    Fig. 6.  Normal characteristic calibration curve of 180 nm NMOS: (a) Transfer characteristic curve; (b) output characteristic curve.

    图 5  90 nm NMOS管常态特性校准曲线 (a)转移特性曲线; (b) 输出特性曲线

    Fig. 5.  Normal characteristic calibration curve of 90 nm NMOS: (a) Transfer characteristic curve; (b) output characteristic curve.

    图 7  NMOS管截止时内部瞬时光电流 (a) 源极、漏极瞬时光电流; (b) P阱、衬底瞬时光电流

    Fig. 7.  Photocurrent of NMOS when channel is cut-off: (a) Photocurrent of source and drain; (b) photocurrent of P-well and substrate.

    图 8  NMOS管导通时内部光电流 (a) 源极、漏极瞬时光电流; (b) P阱、衬底瞬时光电流

    Fig. 8.  Photocurrent of NMOS when channel is turn-on: (a) Photocurrent of source and drain; (b) photocurrent of P-well and substrate.

    图 9  脉冲γ射线剂量率为2×107Gy(Si)/s时NMOS管电势分布随时间变化 (a) 20 ns; (b) 70 ns; (c) 120 ns; (d) 200 ns

    Fig. 9.  Variation of NMOS potential distribution over time when dose rate of transient γ-ray is 2×107Gy(Si)/s: (a) 20 ns; (b) 70 ns; (c) 120 ns; (d) 200 ns.

    图 10  脉冲γ射线剂量率为1×1010Gy(Si)/s时NMOS管电势分布随时间变化 (a) 20 ns; (b) 70 ns; (c) 120 ns; (d) 200 ns

    Fig. 10.  Variation of NMOS potential distribution over time when dose rate of transient γ-ray is 1×1010Gy(Si)/s: (a) 20 ns; (b) 70 ns; (c) 120 ns; (d) 200 ns.

    图 11  NMOS管截止时内部瞬时光电流

    Fig. 11.  Photocurrent of NMOS when channel is cut-off.

    图 12  NMOS管导通时内部瞬时光电流

    Fig. 12.  Photocurrent of NMOS when channel is turn-on.

    图 13  纵向寄生三极管电流增益

    Fig. 13.  Gain of the vertial NPN triode vs voltage of pwell.

    图 14  共发射极电流增益随集电极电流变化趋势

    Fig. 14.  Tendency of current gain of the common emitter to the current of collector.

    表 1  不同尺寸NMOS管结构参数与工艺参数

    Table 1.  Structure and process parameters of NMOS with different feature size.

    工艺节点
    λ/nm
    沟道长度
    L/nm
    沟道宽度
    W/nm
    源漏掺杂
    /cm3
    晕掺杂
    /cm3
    多晶硅掺杂
    /cm3
    阈值掺杂
    /cm3
    漏电掺杂
    /cm3
    40401202 × 10201.5 × 10192 × 10207.5 × 10187.5 × 1018
    90802002 × 10201 × 10182 × 10208.2 × 10188 × 1018
    1801805401 × 10208 × 10171 × 10208 × 10187 × 1018
    下载: 导出CSV
  • [1]

    Wirth J L, Rogers S C 1964 IEEE Trans. Nucl. Sci. 11 24Google Scholar

    [2]

    Enlow E W, Alexander D R 1988 IEEE Trans. Nucl. Sci. 35 1467Google Scholar

    [3]

    Fjeldly T A, Deng Y Q, Shur M S, Hjalmarson H P, Muyshondt A, Ytterdal T 2001 IEEE Trans. Nucl. Sci. 48 1721Google Scholar

    [4]

    Alexander D R 2003 IEEE Trans. Nucl. Sci. 50 565Google Scholar

    [5]

    赖祖武 1998 抗辐射电子学(北京: 国防工业出版社) 第288—300页

    Lai Z W 1998 Radiation Electronics (Beijing: Defense Industry Press) pp288–300 (in Chinese)

    [6]

    Lewis C 1995 Transient Radiation Effects on Electronics (Alexandria: Defense Nuclear Agency) pp200–245

    [7]

    马强, 林东生, 范如玉, 陈伟, 杨善潮, 龚建成, 王桂珍, 齐超 2010 原子能科学技术 44 545Google Scholar

    Ma Q, Lin D S, Fan R Y, Chen W, Yang S C, Gong J C, Wang G Z, Qi C 2010 Atomic Energy Science and Technology 44 545Google Scholar

    [8]

    Oh S C, Lee N H, Lee H H 2012 12th International Conference on Control, Automation and Systems Jeju Island, Korea, October 17–21, 2012 p1233

    [9]

    王桂珍, 林东生, 齐超, 白小燕, 杨善潮, 李瑞宾, 马强, 金晓明, 刘岩 2014 原子能科学技术 48 2165Google Scholar

    Wang G Z, Lin D S, Qi C, Bai X Y, Yang S C, Li R B, Ma Q, Jin X M, Liu Y 2014 Atomic Energy Science and Technology 48 2165Google Scholar

    [10]

    Massengill L W, Diehl-Nagle S E 1985 IEEE Trans. Nucl. Sci. 32 4026Google Scholar

    [11]

    Massengill L W, Diehl-Nagle S E 1986 IEEE Trans. Nucl. Sci. 33 1541Google Scholar

    [12]

    Li J L, Chen W, Li R B, Wang G Z, Yang S C 2019 3rd Internaltional Conference on Radiation Effects of Electronic Devices Chongqing, China, May 29–31, 2019 pp1–4

    [13]

    Boselli G, Reddy V, Duvvury C 2005 43rd Annual International Reliability Physics Symposium San Jose, USA, April 17–21, 2005 p137

    [14]

    Li R B, Chen W, Lin D S, Yang S C, Bai X Y, Wang G Z, Liu Y, Qi C, Ma Q 2012 Sci. Chin. Tech. Sci. 55 3242Google Scholar

    [15]

    Keshavarz A A, Fischer T A, Dawes W R, Hawkins C F 1988 IEEE Trans. Nucl. Sci. 35 1422Google Scholar

    [16]

    Olson B D, Amusan O A, Dasgupta S, Massengill L W, Witulski A F, Bhuva B L, Alles M L, Warrenm K M, Ball D R 2007 IEEE Trans. Nucl. Sci. 54 894Google Scholar

    [17]

    Ahlbin J R, Atkinson N M, Gadlage M J, Gaspard N J, Bhuva B L, Loveless T D, Zhang E X, Chen L, Massengill L W 2011 IEEE Trans. Nucl. Sci. 58 2585Google Scholar

    [18]

    金晓明, 范如玉, 陈伟, 王桂珍, 林东生, 杨善潮, 白小燕 2010 原子能科学技术 44 1487Google Scholar

    Jin X M, Fan R Y, Chen W, Wang G Z, Lin D S, Yang S C, Bai X Y 2010 Atomic Energy Science and Technology 44 1487Google Scholar

    [19]

    Calienes W, Reis R, Anghel C, Vladimirescu A 2014 IEEE 57th International Midwest Symposium on Circuits and Systems Texas, USA, August 3–6, 2014 p655

    [20]

    Wunsch T F, Hash G L, Hewlett F W, Treece R K 1991 IEEE Trans. Nucl. Sci. 38 1392Google Scholar

    [21]

    Dasgupta S 2007 M. S. Thesis (Nashville: Vanderbilt University)

    [22]

    Atkinson N M 2010 M. S. Thesis (Nashville: Vanderbilt University)

    [23]

    Li R B, Wang C H, He C H, Chen W, Li J L, Qi C, Liu Y 2020 Nucl. Instrum. Meth. B 470 32Google Scholar

    [24]

    Neamen D A 2007 Semiconductor Physics and Devices Basic Principles (Beijing: Publishing House of Electronics Industry) pp284–285

  • [1] 唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋. 表面活性剂液滴过渡沸腾的Marangoni效应与二次液滴形成. 物理学报, 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [2] 张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉. 热透镜效应对半整块腔型中二次谐波过程的影响. 物理学报, 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [3] 李俊霖, 李瑞宾, 丁李利, 陈伟, 刘岩. 脉冲γ射线诱发N型金属氧化物场效应晶体管纵向寄生效应开启机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211691
    [4] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [5] 李明亮, 邓明晰, 高广健. 复合圆管界面特性对周向超声导波二次谐波发生效应的影响分析. 物理学报, 2016, 65(19): 194301. doi: 10.7498/aps.65.194301
    [6] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究. 物理学报, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [7] 李多芳, 曹天光, 耿金鹏, 展永. 电离辐射致植物诱变效应的损伤-修复模型. 物理学报, 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [8] 吴传禄, 马颖, 蒋丽梅, 周益春, 李建成. 电离辐射环境下金属-铁电-绝缘体-基底结构铁电场效应晶体管电学性能的模拟. 物理学报, 2014, 63(21): 216102. doi: 10.7498/aps.63.216102
    [9] 马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅. 双极电压比较器电离辐射损伤及剂量率效应分析. 物理学报, 2014, 63(2): 026101. doi: 10.7498/aps.63.026101
    [10] 刘必慰, 陈建军, 陈书明, 池雅庆. 带有n+深阱的三阱CMOS工艺中寄生NPN双极效应及其对电荷共享的影响. 物理学报, 2012, 61(9): 096102. doi: 10.7498/aps.61.096102
    [11] 林丽艳, 杜磊, 包军林, 何亮. 光电耦合器电离辐射损伤电流传输比1/f噪声表征. 物理学报, 2011, 60(4): 047202. doi: 10.7498/aps.60.047202
    [12] 王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博. 双极线性稳压器电离辐射剂量率效应及其损伤分析. 物理学报, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [13] 姜文龙, 孟昭晖, 丛林, 汪津, 王立忠, 韩强, 孟凡超, 高永慧. 双量子阱结构OLED效率和电流的磁效应. 物理学报, 2010, 59(9): 6642-6646. doi: 10.7498/aps.59.6642
    [14] 陈伟华, 杜磊, 庄奕琪, 包军林, 何亮, 张天福, 张雪. MOS结构电离辐射效应模型研究. 物理学报, 2009, 58(6): 4090-4095. doi: 10.7498/aps.58.4090
    [15] 谭开洲, 胡刚毅, 杨谟华, 徐世六, 张正璠, 刘玉奎, 何开全, 钟 怡. 一种N沟VDMOS电离辐射界面陷阱电流传导性研究. 物理学报, 2008, 57(3): 1872-1877. doi: 10.7498/aps.57.1872
    [16] 徐志君, 李鹏华. 玻色凝聚原子云的二次干涉及其放大效应. 物理学报, 2007, 56(10): 5607-5612. doi: 10.7498/aps.56.5607
    [17] 袁先漳, 陆 卫, 李 宁, 陈效双, 沈学础, 资 剑. 超长波GaAs/AlGaAs量子阱红外探测器光电流谱特性研究. 物理学报, 2003, 52(2): 503-507. doi: 10.7498/aps.52.503
    [18] 魏光普. 非晶硅太阳电池的X射线辐照效应及其低能域光电流光谱观测. 物理学报, 1992, 41(3): 485-490. doi: 10.7498/aps.41.485
    [19] 张连芳, 赵文正, 尚仁成, 潘力, 王世亮, 文克玲, 陈瓞延. 用脉冲电场光电流光谱研究Ne原子的自电离态. 物理学报, 1990, 39(12): 1870-1876. doi: 10.7498/aps.39.1870
    [20] 朱昂如, 吴西林. 用能化电子效应考察二次离子的发射机理. 物理学报, 1984, 33(10): 1475-1479. doi: 10.7498/aps.33.1475
计量
  • 文章访问数:  3608
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 修回日期:  2021-10-12
  • 上网日期:  2022-02-14
  • 刊出日期:  2022-02-20

/

返回文章
返回