搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZrCuSiAs型锰基化合物ThMnSbN中的化学压力效应

肖宇森 段清晨 李佰卓 柳绍华 祝钦清 谭树刚 景强 任之 梅玉雪 王操 曹光旱

引用本文:
Citation:

ZrCuSiAs型锰基化合物ThMnSbN中的化学压力效应

肖宇森, 段清晨, 李佰卓, 柳绍华, 祝钦清, 谭树刚, 景强, 任之, 梅玉雪, 王操, 曹光旱

Chemical pressure effects in ZrCuSiAs-type manganese-based compound ThMnSbN

Xiao Yu-Sen, Duan Qing-Chen, Li Bai-Zhuo, Liu Shao-Hua, Zhu Qin-Qing, Tan Shu-Gang, Jing Qiang, Ren Zhi, Mei Yu-Xue, Wang Cao, Cao Guang-Han
PDF
HTML
导出引用
  • 采用固相反应法合成了一种ZrCuSiAs型准二维层状锰基化合物ThMnSbN. 基于X射线粉末衍射的结构精修显示, 该化合物属于P4/nmm空间群. 其晶胞参数为a = 4.1731 Å, c = 9.5160 Å. 电输运测量显示, 该化合物电阻率随温度下降缓慢上升, 且在16 K附近出现电阻率异常. 与此同时, 该材料的磁化率在同一温度附近出现异常, 显示出类似磁性相变的行为. 进一步的比热测量中没有观察到磁相变导致的比热异常. 另外, 低温下的比热分析显示, 该材料的电子比热系数为γ = 19.7 mJ·mol–1·K–2, 远高于其他同类锰基化合物. 该结果与电输运测量中观察到的低电阻率行为相符, 暗示ThMnSbN中费米面附近存在可观的电子态密度. 基于对一系列ZrCuSiAs型化合物晶体结构细节的比较, 分析了含有萤石型Th2N2层的系列化合物中导电层所受化学压力的不同作用形式.
    A quasi-two-dimensional manganese-based compound ThMnSbN is synthesized by the solid-state reaction method. Structural refinement based on X-ray powder diffraction shows that the compound structure belongs to the P4/nmm space group. The lattice parameters are a = 4.1731 Å and c = 9.5160 Å. Electrical transport measurements show that the resistivity of the compound is the lowest in the Mn-based family. When cooling it, its resistivity rises slowly and shows a shoulder-like anomaly at 16 K. Also, the magnetic susceptibility exhibits an anomaly at the very same temperature. Though the specific heat data indicate the inexistence of transition-induced anomaly, the electron specific heat coefficient of γ = 19.7 mJ·mol–1·K–2 is derived by fitting the low-temperature C-T curve. This γ value is much higher than those of the isostructural manganese-based compounds. Thus, the specific heat is consistent with the low resistivity, implying a considerable electronic density of states near the Fermi surface for ThMnSbN. By comparing the crystal structure for a group of ZrCuSiAs-type compounds, various chemical pressure effects of the fluorite-type Th2N2 layer on the conducting layer in different compounds are discussed.
      通信作者: 梅玉雪, meiyuxue@sdut.edu.cn ; 王操, wangcao@sdut.edu.cn
    • 基金项目: 国家重点研究发展计划(批准号: 2017YFA0303002)和山东省自然科学基金(批准号: ZR2019MA036, ZR2016AQ08)资助的课题
      Corresponding author: Mei Yu-Xue, meiyuxue@sdut.edu.cn ; Wang Cao, wangcao@sdut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303002) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2019MA036, ZR2016AQ08).
    [1]

    Tegel M, Schellenberg I, Pöttgen R, Johrendt D 2008 Z. Naturforsch. , B:Chem. Sci. 63 1057Google Scholar

    [2]

    Ozawa T C, Kauzlarich S M 2008 Sci. Technol. Adv. Mater. 9 033003Google Scholar

    [3]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761Google Scholar

    [4]

    Wang C, Li L, Chi S, Zhu Z, Ren Z, Li Y, Wang Y, Lin X, Luo Y, Jiang S, Xu X, Cao G, Xu Z A 2008 Europhys. Lett. 83 67006Google Scholar

    [5]

    Ren Z A, Che G C, Dong X L, Yang J, Lu W, Yi W, Shen X L, Li Z C, Sun L L, Zhou F, Zhao Z X 2008 Europhys. Lett. 83 17002Google Scholar

    [6]

    Tegel M, Johansson S, Weiß V, Schellenberg I, Hermes W, Pöttgen R, Johrendt D 2008 Europhys. Lett. 84 67007Google Scholar

    [7]

    Cheng P, Shen B, Mu G, Zhu X, Han F, Zeng B, Wen H H 2009 Europhys. Lett. 85 67003Google Scholar

    [8]

    Muraba Y, Matsuishi S, Hosono H 2014 J. Phys. Soc. Jpn. 83 033705Google Scholar

    [9]

    Park S W, Mizoguchi H, Kodama K, Shamoto S, Otomo T, Matsuishi S, Kamiya T, Hosono H 2013 Inorg. Chem. 52 13363Google Scholar

    [10]

    McGuire M A, Garlea V O 2016 Phys. Rev. B 93 054404Google Scholar

    [11]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [12]

    Yanagi H, Kawamura R, Kamiya T, Kamihara Y, Hirano M, Nakamura T, Osawa H, Hosono H 2008 Phys. Rev. B 77 224431Google Scholar

    [13]

    Ohta H, Yoshimura K 2009 Phys. Rev. B 80 184409Google Scholar

    [14]

    Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M, Hosono H 2007 Inorg. Chem. 46 7719Google Scholar

    [15]

    Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M, Hosono H 2008 J. Solid State Chem. 181 2117Google Scholar

    [16]

    Emery N, Wildman E J, Skakle J M S, McLaughlin A C, Smith R I, Fitch A N 2011 Phys. Rev. B 83 144429Google Scholar

    [17]

    Marcinkova A, Hansen T C, Curfs C, Margadonna S, Bos J W G 2010 Phys. Rev. B 82 174438Google Scholar

    [18]

    Corkett A J, Free D G, Clarke S J 2015 Inorg. Chem. 54 1178Google Scholar

    [19]

    Kimber S A J, Hill A H, Zhang Y Z, et al. 2010 Phys. Rev. B 82 100412Google Scholar

    [20]

    Simonson J W, Yin Z P, Pezzoli M, et al. 2012 Proc. Natl. Acad. Sci. U. S. A. 109 E1815Google Scholar

    [21]

    Wang C, Wang Z C, Mei Y X, Li Y K, Li L, Tang Z T, Liu Y, Zhang P, Zhai H F, Xu Z A, Cao G H 2016 J. Am. Chem. Soc. 138 2170Google Scholar

    [22]

    Wang Z C, Shao Y T, Wang C, Wang Z, Xu Z A, Cao G H 2017 Europhys. Lett. 118 57004Google Scholar

    [23]

    Zhang F, Li B, Ren Q, et al. 2020 Inorg. Chem. 59 2937Google Scholar

    [24]

    Zheng L, Chen G, Jing D, Gang L, Luo J 2008 Phys. Rev. B 78 060504Google Scholar

    [25]

    Rodríguez-Carvajal J 1993 Phys. B 192 55Google Scholar

    [26]

    Plokhikh I V, Charkin D O, Verchenko V Y, Kuznetsov A N, Tsirlin A A, Kazakov S M, Shevelkov A V 2018 J. Solid State Chem. 258 682Google Scholar

    [27]

    Sangeetha N S, Smetana V, Mudring A V, Johnston D C 2018 Phys. Rev. B 97 014402Google Scholar

    [28]

    Kimber S, Hill A H, Zhang Y Z, Jeschke H O, Valenti R, Ritter C, Schellenberg I, Hermes W, Poettgen R, Argyriou D N 2010 Physical Review B 82 100412

    [29]

    Gurgul J, Rinke M T, Schellenberg I, Pöttgen R 2013 Solid State Sci. 17 122Google Scholar

    [30]

    Okita T, Makino Y 1968 J. Phys. Soc. Jpn. 25 120Google Scholar

    [31]

    Hanna T, Matsuishi S, Kodama K, Otomo T, Shamoto S I, Hosono H 2013 Phys. Rev. B 87 020401

    [32]

    Wildman E J, Emery N, McLaughlin A C 2014 Phys. Rev. B 90 224413Google Scholar

    [33]

    Wildman E J, Skakle J M S, Emery N, McLaughlin A C 2012 J. Am. Chem. Soc. 134 8766Google Scholar

    [34]

    Kageyama H, Yoshimura K, Kosuge K, Mitamura H, Goto T 1997 J. Phys. Soc. Jpn. 66 1607Google Scholar

    [35]

    Niitaka S, Kageyama H, Yoshimura K, Kosuge K, Kawano S, Aso N, Mitsuda A, Mitamura H, Goto T 2001 J. Phys. Soc. Jpn. 70 1222Google Scholar

    [36]

    Niitaka S, Yoshimura K, Kosuge K, Nishi M, Kakurai K 2001 Phys. Rev. Lett. 87 177202Google Scholar

    [37]

    Hardy V, Lees M R, Maignan A, H bert S, Flahaut D, Martin C, Paul D M 2003 J. Phys. Condens. Matter 15 5737Google Scholar

    [38]

    de la Cruz C, Huang Q, Lynn J W, Li J, Ratcliff W, 2 nd, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P 2008 Nature 453 899Google Scholar

    [39]

    Zhigadlo N D, Katrych S, Weyeneth S, Puzniak P, Moll P W, Bukowski Z, Karpinski J, Keller H, Batlogg B 2010 Phys. Rev. B 82 064517Google Scholar

    [40]

    Nitsche F, Jesche A, Hieckmann E, Doert T, Ruck M 2010 Phys. Rev. B 82 134514Google Scholar

    [41]

    Nientiedt A T, Jeitschko W, Pollmeier P G, Brylak M 1997 Z. Naturforsch. , B:Chem. Sci. 52 560Google Scholar

    [42]

    Muir S, Subramanian M A 2012 Prog. Solid State Chem. 40 41Google Scholar

    [43]

    Schellenberg I, Nilges T, Pöttgen R 2008 Z. Naturforsch. , B:Chem. Sci. 63 834Google Scholar

  • 图 1  ThMnSbN多晶样品的X射线衍射谱精修结果.

    Fig. 1.  Rietveld refinement of X-ray powder diffraction data.

    图 2  (a) ThMnSbN样品的电阻率随温度变化曲线. 其中右坐标表示电阻率对温度微分后的结果, T *表示电阻率异常的温度点; (b) 按照阿伦尼乌斯方程绘制的lnρ-T曲线; (c) 按照变程跳跃模型绘制的lnρ-T –1/4曲线

    Fig. 2.  (a) Electronic resistivity for ThMnSbN polycrystalline sample. The right axis shows the plot of dρ/dT versus T, where T * marks the resistivity anomaly; (b) Arrhenius plot of the lnρ-T data; (c) the plot of lnρ versus T –0.25 according to the three-dimensional Mott variable-range hopping (VRH) mechanism.

    图 3  ThMnSbN样品摩尔磁化率随温度的变化曲线. 测量中采用零场冷(ZFC)和场冷(FC)两种测量方式, 施加外磁场的磁感应强度为B = 0.1 T. 插图显示样品在300 K时的磁化曲线

    Fig. 3.  Temperature dependence of magnetic susceptibility for ThMnSbN sample. Both zero-field cooling (ZFC) and field cooling (FC) were performed in a static field of B = 0.1 T. The inset shows the magnetization curve of the sample at 300 K.

    图 4  扣除杂相铁磁信号背景后的磁化率随温度变化规律. 其中红色实线为采用居里-外斯公式χ = χ0+C/(T θ)拟合150—300 K之间磁化率的结果. 插图显示了样品在不同温度下测量得到的磁化曲线. 通过线性拟合3 × 104—5 × 104 Oe之间的磁化强度得到了本征磁化率χ = dM/dH

    Fig. 4.  The magnetic susceptibility (χ = dM/dH) after deducting the ferromagnetic background of the impurities by linearly fitting the M-H curve between 3 × 104 and 5 × 104 Oe. The solid red line fits the data between 150 and 300 K using the Curie-Weiss relation χ = χ0 + C/(T θ). The inset shows the original magnetization curves.

    图 5  (a) ThMnAsN样品的比热随温度的变化曲线; (b) ThMnAsN的比热-温度曲线在30 K以下部分的放大图, 其中右纵轴显示了比热对温度的微分随温度的变化曲线; (c) C/TT 2曲线, 其中红色的直线为参照

    Fig. 5.  (a) The data of specific heat for the ThMnSbN sample; (b) an enlarged view of the CT curve below 30 K, in which the right vertical axis shows the differential of specific heat as a function of temperature; (c) C/TT 2 curve, where the red straight line fits the data in the range of 6 K<T<15 K.

    图 6  (a), (b) 含有不同载流子库层的ZrCuSiAs型锰基化合物归一化晶胞参数; (c) 不同导电层的ZrCuSiAs型系列化合物中Pn原子的高度(HPn)与晶胞a轴的关系. 其中Vlayer表示一个惯用晶胞中导电层所占据的体积[20,21,23,26,28,38-43]

    Fig. 6.  (a), (b) The normalized cell parameters of ZrCuSiAs-type manganese-based compounds with different conducting layers; (c) the relationship between the height of the Pn atom (HPn) and the a-axis for ZrCuSiAs-type compounds, where Vlayer represents the volume of the conducting layer in a conventional cell[20,21,23,26,28,38-43].

    表 1  室温下ThMnSbN多晶X射线衍射谱的Rietveld精修结果. 其中HSb表示Sb原子与Fe平面的垂直间距

    Table 1.  Structural data for ThMnSbN at room-temperature, where HSb represents the distance from Sb atom to the Fe plane

    CompoundsThMnSbN
    Space groupP4/nmm
    a4.1731
    c9.5160
    Rp/%5.71
    Rwp/%7.48
    Re/%6.16
    χ21.475
    HSb1.7467
    Sb-Mn-Sb angle100.13°
    AtomsWyckoffxyzBisoOccupancy
    Th2c0.250.250.116920.172871.0054
    Mn2b0.750.250.50.827830.9946
    Sb2c0.250.250.683560.228820.9921
    N2a0.750.2501.0 (fixed)1.0 (fixed)
    下载: 导出CSV

    表 2  ThMnPnN系列化合物中电子比热系数γ、泡利顺磁磁化率χP以及居里-外斯拟合所得磁化率中的温度无关项χ0的对比

    Table 2.  Comparison of the Sommerfeld coefficient γ, Pauli paramagnetic susceptibility χP and the temperature-independent term χ0 in the magnetic susceptibility obtained by the Curie-Weiss fitting in ThMnPnN compounds.

    Compoundsγ/
    (mJ·mol–1·K–2)
    χP/(10–4 emu·mol–1)χ0/(10–4 emu·mol–1)
    ThMnPN[23]8.111.113.3
    ThMnAsN[23]9.621.325.2
    ThMnSbN19.72.7013.7
    下载: 导出CSV
  • [1]

    Tegel M, Schellenberg I, Pöttgen R, Johrendt D 2008 Z. Naturforsch. , B:Chem. Sci. 63 1057Google Scholar

    [2]

    Ozawa T C, Kauzlarich S M 2008 Sci. Technol. Adv. Mater. 9 033003Google Scholar

    [3]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761Google Scholar

    [4]

    Wang C, Li L, Chi S, Zhu Z, Ren Z, Li Y, Wang Y, Lin X, Luo Y, Jiang S, Xu X, Cao G, Xu Z A 2008 Europhys. Lett. 83 67006Google Scholar

    [5]

    Ren Z A, Che G C, Dong X L, Yang J, Lu W, Yi W, Shen X L, Li Z C, Sun L L, Zhou F, Zhao Z X 2008 Europhys. Lett. 83 17002Google Scholar

    [6]

    Tegel M, Johansson S, Weiß V, Schellenberg I, Hermes W, Pöttgen R, Johrendt D 2008 Europhys. Lett. 84 67007Google Scholar

    [7]

    Cheng P, Shen B, Mu G, Zhu X, Han F, Zeng B, Wen H H 2009 Europhys. Lett. 85 67003Google Scholar

    [8]

    Muraba Y, Matsuishi S, Hosono H 2014 J. Phys. Soc. Jpn. 83 033705Google Scholar

    [9]

    Park S W, Mizoguchi H, Kodama K, Shamoto S, Otomo T, Matsuishi S, Kamiya T, Hosono H 2013 Inorg. Chem. 52 13363Google Scholar

    [10]

    McGuire M A, Garlea V O 2016 Phys. Rev. B 93 054404Google Scholar

    [11]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [12]

    Yanagi H, Kawamura R, Kamiya T, Kamihara Y, Hirano M, Nakamura T, Osawa H, Hosono H 2008 Phys. Rev. B 77 224431Google Scholar

    [13]

    Ohta H, Yoshimura K 2009 Phys. Rev. B 80 184409Google Scholar

    [14]

    Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M, Hosono H 2007 Inorg. Chem. 46 7719Google Scholar

    [15]

    Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M, Hosono H 2008 J. Solid State Chem. 181 2117Google Scholar

    [16]

    Emery N, Wildman E J, Skakle J M S, McLaughlin A C, Smith R I, Fitch A N 2011 Phys. Rev. B 83 144429Google Scholar

    [17]

    Marcinkova A, Hansen T C, Curfs C, Margadonna S, Bos J W G 2010 Phys. Rev. B 82 174438Google Scholar

    [18]

    Corkett A J, Free D G, Clarke S J 2015 Inorg. Chem. 54 1178Google Scholar

    [19]

    Kimber S A J, Hill A H, Zhang Y Z, et al. 2010 Phys. Rev. B 82 100412Google Scholar

    [20]

    Simonson J W, Yin Z P, Pezzoli M, et al. 2012 Proc. Natl. Acad. Sci. U. S. A. 109 E1815Google Scholar

    [21]

    Wang C, Wang Z C, Mei Y X, Li Y K, Li L, Tang Z T, Liu Y, Zhang P, Zhai H F, Xu Z A, Cao G H 2016 J. Am. Chem. Soc. 138 2170Google Scholar

    [22]

    Wang Z C, Shao Y T, Wang C, Wang Z, Xu Z A, Cao G H 2017 Europhys. Lett. 118 57004Google Scholar

    [23]

    Zhang F, Li B, Ren Q, et al. 2020 Inorg. Chem. 59 2937Google Scholar

    [24]

    Zheng L, Chen G, Jing D, Gang L, Luo J 2008 Phys. Rev. B 78 060504Google Scholar

    [25]

    Rodríguez-Carvajal J 1993 Phys. B 192 55Google Scholar

    [26]

    Plokhikh I V, Charkin D O, Verchenko V Y, Kuznetsov A N, Tsirlin A A, Kazakov S M, Shevelkov A V 2018 J. Solid State Chem. 258 682Google Scholar

    [27]

    Sangeetha N S, Smetana V, Mudring A V, Johnston D C 2018 Phys. Rev. B 97 014402Google Scholar

    [28]

    Kimber S, Hill A H, Zhang Y Z, Jeschke H O, Valenti R, Ritter C, Schellenberg I, Hermes W, Poettgen R, Argyriou D N 2010 Physical Review B 82 100412

    [29]

    Gurgul J, Rinke M T, Schellenberg I, Pöttgen R 2013 Solid State Sci. 17 122Google Scholar

    [30]

    Okita T, Makino Y 1968 J. Phys. Soc. Jpn. 25 120Google Scholar

    [31]

    Hanna T, Matsuishi S, Kodama K, Otomo T, Shamoto S I, Hosono H 2013 Phys. Rev. B 87 020401

    [32]

    Wildman E J, Emery N, McLaughlin A C 2014 Phys. Rev. B 90 224413Google Scholar

    [33]

    Wildman E J, Skakle J M S, Emery N, McLaughlin A C 2012 J. Am. Chem. Soc. 134 8766Google Scholar

    [34]

    Kageyama H, Yoshimura K, Kosuge K, Mitamura H, Goto T 1997 J. Phys. Soc. Jpn. 66 1607Google Scholar

    [35]

    Niitaka S, Kageyama H, Yoshimura K, Kosuge K, Kawano S, Aso N, Mitsuda A, Mitamura H, Goto T 2001 J. Phys. Soc. Jpn. 70 1222Google Scholar

    [36]

    Niitaka S, Yoshimura K, Kosuge K, Nishi M, Kakurai K 2001 Phys. Rev. Lett. 87 177202Google Scholar

    [37]

    Hardy V, Lees M R, Maignan A, H bert S, Flahaut D, Martin C, Paul D M 2003 J. Phys. Condens. Matter 15 5737Google Scholar

    [38]

    de la Cruz C, Huang Q, Lynn J W, Li J, Ratcliff W, 2 nd, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P 2008 Nature 453 899Google Scholar

    [39]

    Zhigadlo N D, Katrych S, Weyeneth S, Puzniak P, Moll P W, Bukowski Z, Karpinski J, Keller H, Batlogg B 2010 Phys. Rev. B 82 064517Google Scholar

    [40]

    Nitsche F, Jesche A, Hieckmann E, Doert T, Ruck M 2010 Phys. Rev. B 82 134514Google Scholar

    [41]

    Nientiedt A T, Jeitschko W, Pollmeier P G, Brylak M 1997 Z. Naturforsch. , B:Chem. Sci. 52 560Google Scholar

    [42]

    Muir S, Subramanian M A 2012 Prog. Solid State Chem. 40 41Google Scholar

    [43]

    Schellenberg I, Nilges T, Pöttgen R 2008 Z. Naturforsch. , B:Chem. Sci. 63 834Google Scholar

  • [1] 李巧利, 李慎慎, 肖继军, 陈兆旭. 静水压力作用下(H2dabco)[K(ClO4)3]结构与稳定性的第一性原理研究. 物理学报, 2024, 73(14): 143101. doi: 10.7498/aps.73.20240477
    [2] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能. 物理学报, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [3] 肖宇森, 段清晨, 李佰卓, 柳绍华, 祝钦清, 谭树刚, 景强, Zhi Ren, 梅玉雪, 王操, 曹光旱. ZrCuSiAs型锰基化合物ThMnSbN中的化学压力效应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211706
    [4] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [5] 武力乾, 齐伟华, 李雨辰, 李世强, 李壮志, 唐贵德, 葛兴烁, 丁丽莉. 热处理对钙钛矿锰氧化物La0.95Sr0.05MnO3离子价态和磁结构的影响. 物理学报, 2016, 65(2): 027501. doi: 10.7498/aps.65.027501
    [6] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学. 物理学报, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [7] 潘敏, 黄整, 赵勇. 强关联效应下非磁性元素Ir掺杂的SmFeAsO电子结构理论研究. 物理学报, 2013, 62(21): 217401. doi: 10.7498/aps.62.217401
    [8] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究. 物理学报, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [9] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [10] 张彩红, 盛毅, 田红, 徐耀, 吕春祥, 吴忠华. 全谱拟合法研究聚丙烯腈基碳纤维形成过程中晶态结构演变. 物理学报, 2011, 60(3): 036101. doi: 10.7498/aps.60.036101
    [11] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [12] 任树洋, 任忠鸣, 任维丽, 操光辉. 3 T强磁场对真空蒸发Zn薄膜晶体结构的影响. 物理学报, 2009, 58(8): 5567-5571. doi: 10.7498/aps.58.5567
    [13] 陈怡, 申江. 稀土金属间化合物RFe2Zn20-xInx的结构属性研究. 物理学报, 2009, 58(13): 146-S150. doi: 10.7498/aps.58.146
    [14] 汪丽莉, 熊 锐, 魏 伟, 胡 妮, 林 颖, 朱本鹏, 汤五丰, 余祖兴, 汤 征, 石 兢. 缺氧条件下准一维自旋梯状结构化合物(Sr1-xCax)14Cu24O41-δ的磁化率特性研究. 物理学报, 2008, 57(7): 4334-4340. doi: 10.7498/aps.57.4334
    [15] 胡 妮, 谢 卉, 汪丽莉, 林 颖, 熊 锐, 余祖兴, 汤五丰, 石 兢. Fe掺杂对自旋梯状化合物Sr14(Cu1-yFey)24O41的结构和电输运性质的影响. 物理学报, 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [16] 伏广才, 李明星, 董 成, 郭 娟, 杨立红. KxCoO2·yH2O(x<0.2,y≤0.8)的晶体结构、输运及磁学性质. 物理学报, 2005, 54(12): 5713-5716. doi: 10.7498/aps.54.5713
    [17] 徐 敏, 沈 雯, 高 瞻, 赵良磊, 姜 蓓, 杨 磊, 张澜庭. La0.4FeCo3Sb12晶体结构的x射线和电子衍射表征. 物理学报, 2005, 54(7): 3302-3306. doi: 10.7498/aps.54.3302
    [18] 罗鸿志, 贾 琳, 李养贤, 孟凡斌, 申 江, 陈难先, 吴光恒, 杨伏明. (Nd1-xErx)3Fe25Cr4.0(0≤x≤1.0) 化合物的结构与磁性. 物理学报, 2005, 54(5): 2176-2182. doi: 10.7498/aps.54.2176
    [19] 陈镇平, 张金仓, 程国生, 李喜贵, 章讯生. 金属氧化物超导陶瓷Y-123体系烧结过程与结构缺陷的正电子实验研究. 物理学报, 2001, 50(3): 550-555. doi: 10.7498/aps.50.550
    [20] 唐新峰, 陈立东, 後藤 孝, 平井, 敏雄, 袁润章. Fe对CeyFexCo4-xSb12化合物结 构和热电传输性质的影响. 物理学报, 2000, 49(12): 2437-2442. doi: 10.7498/aps.49.2437
计量
  • 文章访问数:  4578
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 修回日期:  2021-10-12
  • 上网日期:  2022-02-15
  • 刊出日期:  2022-02-20

/

返回文章
返回