搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应

徐永虎 邓小清 孙琳 范志强 张振华

引用本文:
Citation:

边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应

徐永虎, 邓小清, 孙琳, 范志强, 张振华

Strain engineering of electronic structure and mechanical switch device for edge modified Net-Y nanoribbons

Xu Yong-Hu, Deng Xiao-Qing, Sun Lin, Fan Zhi-Qiang, Zhang Zhen-Hua
PDF
HTML
导出引用
  • 利用密度泛函理论和非平衡态格林函数相结合的方法, 系统地研究了边修饰Net-Y纳米带的电子结构和器件特性的应变调控效应. 计算表明: 本征纳米带为金属, 但边缘的氢或氧原子端接能使其转变为半导体. 应变能有效地调控纳米带带隙的大小, 适当的应变使能带结构从间接带隙转变为较小的直接带隙, 这有利于光的吸收. 应变也能改变纳米带的功函数, 压缩应变能明显减小功函数, 这有利于纳米带实现场发射功能. 特别是应变能有效地调控纳米带相关器件的I-V特性, 能使其开关比(Ion/Ioff )达到106, 据此, 可设计一个机械开关, 通过拉伸及压缩纳米带使其可逆地工作在“开”和“关”态之间. 这种高开关比器件也许对于制备柔性可穿戴电子设备具有重要意义.
    Net-Y is a new two-dimensional carbon structure, which has attracted research interest recently. Here, we study the relevant AB-type ribbons with edge modification, focusing on their strain controlling effects on their electronic structure and device characteristics. Intrinsic ribbons are metallic, but hydrogen or oxygen termination can transform them into semiconductors. Applying strain can effectively control the band gap size, resulting in a transition from an indirect band gap to a smaller direct band gap under appropriate strain, favorably to light absorbing. Strain can also change the work function of ribbons, especially for compressive strains, the work function is lowered significantly, which is beneficial to the improving of the field emission behaviors of ribbons. The analysis demonstrates that the change in band gap size is closely related to the variation of bonding and non-bonding composition between atoms with strain, while the change of work function is due to the variation of the attraction force and repulsion force between atoms upon strain. More interestingly, the strain can significantly regulates the I-V characteristic of device based on related ribbons. Therefore, a strain-gated mechanical switch with a very high current switching ratio Ion/Ioff can be obtained by making it reversibly work between the “on” and “off” states with stretching and compressing ribbons, which is of great significance in developing the logic circuits for flexible wearable electronic devices.
      通信作者: 张振华, zhzhang@csust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61771076, 12074046)、湖南省自然科学基金(批准号: 2020JJ4625, 2021JJ30733)、湖南省教育厅科研项目(批准号: 19A029)和湖南省研究生科研创新项目(批准号: CX20210824)资助的课题.
      Corresponding author: Zhang Zhen-Hua, zhzhang@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771076, 12074046), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2020JJ4625, 2021JJ30733), the Scientific Research Fund of Education Department of Hunan Province, China (Grant No. 19A029), and the Postgraduate Scientific Research Innovation Project of Hunan Province, China (Grant No. CX20210824).
    [1]

    Hirsch A 2010 Nat. Mater. 9 868Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Fischer J, Trauzettel B, Loss D 2009 Phys. Rev. B 80 155401Google Scholar

    [4]

    Zeng YJ, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar

    [5]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469Google Scholar

    [6]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar

    [7]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [8]

    Choi S M, Jhi S H, Son Y W 2010 Phys. Rev. B 81 081407Google Scholar

    [9]

    Pisani L, Chan J A, Montanari B, Harrison N M 2007 Phys. Rev. B 75 064418Google Scholar

    [10]

    Tang Y N, Chen W G, Wang Z W, Zhao G, Cui Y Q, Dai X Q 2020 Appl. Surf. Sci. 530 147178Google Scholar

    [11]

    Zhang S L, Wang N, Liu S G, Huang S P, Zhou W H, Cai B, Xie M Q, Yang Q, Chen X P, Zeng H B 2016 Nanotechnology 27 274001Google Scholar

    [12]

    Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505Google Scholar

    [13]

    Liu Q, Li J, Wu D, Deng X, Zhang Z, Fan Z, Chen K 2021 Phys. Rev. B 104 045412Google Scholar

    [14]

    Li X Y, Wang Q, Jena P 2017 Phys. Chem. Lett. 8 3234Google Scholar

    [15]

    Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 PNAS 112 2372Google Scholar

    [16]

    Aierken Y, Leenaerts O, Peeters F M 2016 Phys. Rev. B 94 155410Google Scholar

    [17]

    Wang Z H, Zhou X F, Zhang X M, Zhu Q, Dong H F, Zhao M W, Oganov A R 2015 Nano Lett. 15 6182Google Scholar

    [18]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804Google Scholar

    [19]

    Liu M Z, Liu M X, She L M, Zha Z Q, Pan J L, Li T, He Y Y, Cai Z Y, Qiu X H, Zhong D Y 2017 Nat. Commun. 8 14924Google Scholar

    [20]

    Rong J, Dong H C, Feng J, Wang X, Zhang Y N, Yu X H, Zhan Z L 2018 Carbon 135 21Google Scholar

    [21]

    Liu J W, Yu G T, Huang X R, Chen W 2020 2D Mater. 7 015015

    [22]

    Wang Y H, Zhang K, Ren S L, Li C G, Huang X, Yang Z H 2019 Chem. Phys. Lett. 734 136733Google Scholar

    [23]

    Son Y W, Cohen M L, Louie S G 2006 Physical Review Letters 97 216803

    [24]

    Wakabayashi K, Sasaki K, Nakanishi T, Enoki T, Technol S 2010 Sci. Technol. Adv. Mater. 11 054504Google Scholar

    [25]

    Wakabayashi K, Takane Y, Yamamoto M, Sigrist M 2009 New J. Phys. 11 095016Google Scholar

    [26]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D:Appl. Phys. 52 475301Google Scholar

    [27]

    Niu L L, Fu H Y, Suo Y Q, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Physica E 128 114542Google Scholar

    [28]

    Fu H Y, Sun F, Liu R, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [29]

    Hu J K, Zhang Z H, Fan Z Q, Zhou R L 2019 Nanotechnology 30 485703Google Scholar

    [30]

    Hu J K, Fan Z Q, Zhang Z H, Zhang H 2020 J. Phys. D:Appl. Phys. 53 485001Google Scholar

    [31]

    Brandbyge M, Mozos J, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [32]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [33]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [34]

    李野华, 范志强, 张振华 2019 物理学报 68 198503Google Scholar

    Li Y H, Fan Z Q, Zhang Z H 2019 Acta Phys. Sin. 68 198503Google Scholar

    [35]

    Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press)

    [36]

    Xue Y, Ratner M A 2003 Phys. Rev. B 68 115406Google Scholar

    [37]

    Xue Y, Datta S, Ratner M A 2003 Chem. Phys. 281 151

    [38]

    Landauer R 1970 Philos. Mag. 21 863Google Scholar

    [39]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765Google Scholar

    [40]

    Li Z L. Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [41]

    孙峰, 刘然, 索雨晴, 牛乐乐, 傅焕俨, 季文芳, 李宗良 2019 物理学报 68 178502Google Scholar

    Sun F, Liu R, Suo Y Q, Niu L L, Fu H Y, Ji W F, Li Z L 2019 Acta Phys. Sin. 68 178502Google Scholar

    [42]

    索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良 2020 物理学报 69 208502Google Scholar

    Suo Y Q, Liu R, Sun F, Niu L L, Liu L, Wang S S, Li Z L 2020 Acta Phys. Sin. 69 208502Google Scholar

    [43]

    Dong Q X, Hu R, Fan Z Q, Zhang Z H 2018 Carbon 130 206Google Scholar

    [44]

    Luo A Y, Hu R, Fan Z Q, Zhang H L, Yuan J H, Yang C H, Zhang Z H 2017 Org. Electron. 51 277Google Scholar

    [45]

    Souza F A, Amorim R G, Prasongkit J, Scopel W L, Scheicher R H, Rocha A R 2018 Carbon 129 803Google Scholar

    [46]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2016 Carbon 98 204Google Scholar

    [47]

    Li Z L, Zou B, Wang C K 2006 Phys. Rev. B 73 075326Google Scholar

    [48]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503

  • 图 1  (a) 2维net-Y结构, 考虑沿x轴方向裁剪, 绿色标记为A型边缘, 蓝色标记为B型边缘; (b) H-AB(10)纳米带; (c) O-AB(10)纳米带; (d) 三种模型的ELF, 等值面取为0.2 |e| Å–3; (e)热稳定性BOMD模拟结果

    Fig. 1.  (a) 2D net-Y structure; (b) H-AB(10) nanoribbon; (c) O-AB(10) nanoribbon; (d) the ELF to measure the probability to find electrons in a certain space, the isosurface is set as 0.2 |e| Å–3; (e) BOMD simulation results for test thermal stability.

    图 2  (a) 纳米带能带结构; (b) 纳米带态密度和投影态密度分布; (c)—(e) 纳米带LCB及HVB子能带的部分电荷密度, 等值面为0.05 |e| Å–3; (f) 纳米带拉伸及压缩应变示意图, d1, d2, d3Θ1, Θ2为边缘键长及键角

    Fig. 2.  (a) Band structure; (b) the density of states and the atom-projected density of states; (c)–(e) the partial charge density of LCB and HVB, the isosurface is set as 0.05 |e| Å–3; (f) schematic of stretched and compressed nanoribbons. The bond lengths (angles) related to edge carbon atoms and their adjacent ones are marked as d1, d2, and d3 (Θ1 and Θ2), respectively.

    图 3  (a), (b) 边修纳米带能带结构的应变调控效应; (c), (d) 边修饰纳米带带隙和应变能随应变变化; (e), (f) 边修饰纳米带边缘键长及键角随应变变化

    Fig. 3.  The band structure versus strain for H-AB(10) (a) and O-AB(10) (b); the band gap and strain energy under different strains for H-AB(10) (c) and O-AB(10) (d); the evolution of edge-atomic bond lengths and bond angles with different strains for H-AB(10) (e) and O-AB(10) (f).

    图 4  (a), (b) 边修饰纳米带功函数随应变变化; (c), (d) 每一个H 和O外层平均电子数目随随应变变化; (e) 有效质量与应变变化关系; (f) H-AB(10)的VBM及CBM在几个典型应变值下的Bloch态, 等值面为0.1 |e| Å–3

    Fig. 4.  (a), (b) Work function of edge-modified nanoribbons under different strains; (c), (d) the average number of electrons for H and O atoms under different strains; (e) the effective mass versus strain; (f) the VBM and CBM Bloch states for H-AB (10) under several typical strains, the isosurface is set as 0.1 |e| Å–3.

    图 5  (a) 基于边修饰纳米带的双探针器件模型; (b), (c) 器件的I-V特性; (d), (e) H-AB(10)器件在“开”和“关”态时费米能级上的透射本征透, 等值面为0.02 |e| Å–3

    Fig. 5.  (a) Two-probe device model based on edge-modified nanoribbons; (b), (c) the I-V characteristics of the devices; (d), (e) the transmission eigenstates at the Fermi level, the isosurface is set as 0.02 |e| Å–3.

  • [1]

    Hirsch A 2010 Nat. Mater. 9 868Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Fischer J, Trauzettel B, Loss D 2009 Phys. Rev. B 80 155401Google Scholar

    [4]

    Zeng YJ, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar

    [5]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469Google Scholar

    [6]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803Google Scholar

    [7]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [8]

    Choi S M, Jhi S H, Son Y W 2010 Phys. Rev. B 81 081407Google Scholar

    [9]

    Pisani L, Chan J A, Montanari B, Harrison N M 2007 Phys. Rev. B 75 064418Google Scholar

    [10]

    Tang Y N, Chen W G, Wang Z W, Zhao G, Cui Y Q, Dai X Q 2020 Appl. Surf. Sci. 530 147178Google Scholar

    [11]

    Zhang S L, Wang N, Liu S G, Huang S P, Zhou W H, Cai B, Xie M Q, Yang Q, Chen X P, Zeng H B 2016 Nanotechnology 27 274001Google Scholar

    [12]

    Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505Google Scholar

    [13]

    Liu Q, Li J, Wu D, Deng X, Zhang Z, Fan Z, Chen K 2021 Phys. Rev. B 104 045412Google Scholar

    [14]

    Li X Y, Wang Q, Jena P 2017 Phys. Chem. Lett. 8 3234Google Scholar

    [15]

    Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 PNAS 112 2372Google Scholar

    [16]

    Aierken Y, Leenaerts O, Peeters F M 2016 Phys. Rev. B 94 155410Google Scholar

    [17]

    Wang Z H, Zhou X F, Zhang X M, Zhu Q, Dong H F, Zhao M W, Oganov A R 2015 Nano Lett. 15 6182Google Scholar

    [18]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804Google Scholar

    [19]

    Liu M Z, Liu M X, She L M, Zha Z Q, Pan J L, Li T, He Y Y, Cai Z Y, Qiu X H, Zhong D Y 2017 Nat. Commun. 8 14924Google Scholar

    [20]

    Rong J, Dong H C, Feng J, Wang X, Zhang Y N, Yu X H, Zhan Z L 2018 Carbon 135 21Google Scholar

    [21]

    Liu J W, Yu G T, Huang X R, Chen W 2020 2D Mater. 7 015015

    [22]

    Wang Y H, Zhang K, Ren S L, Li C G, Huang X, Yang Z H 2019 Chem. Phys. Lett. 734 136733Google Scholar

    [23]

    Son Y W, Cohen M L, Louie S G 2006 Physical Review Letters 97 216803

    [24]

    Wakabayashi K, Sasaki K, Nakanishi T, Enoki T, Technol S 2010 Sci. Technol. Adv. Mater. 11 054504Google Scholar

    [25]

    Wakabayashi K, Takane Y, Yamamoto M, Sigrist M 2009 New J. Phys. 11 095016Google Scholar

    [26]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D:Appl. Phys. 52 475301Google Scholar

    [27]

    Niu L L, Fu H Y, Suo Y Q, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Physica E 128 114542Google Scholar

    [28]

    Fu H Y, Sun F, Liu R, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [29]

    Hu J K, Zhang Z H, Fan Z Q, Zhou R L 2019 Nanotechnology 30 485703Google Scholar

    [30]

    Hu J K, Fan Z Q, Zhang Z H, Zhang H 2020 J. Phys. D:Appl. Phys. 53 485001Google Scholar

    [31]

    Brandbyge M, Mozos J, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [32]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [33]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [34]

    李野华, 范志强, 张振华 2019 物理学报 68 198503Google Scholar

    Li Y H, Fan Z Q, Zhang Z H 2019 Acta Phys. Sin. 68 198503Google Scholar

    [35]

    Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press)

    [36]

    Xue Y, Ratner M A 2003 Phys. Rev. B 68 115406Google Scholar

    [37]

    Xue Y, Datta S, Ratner M A 2003 Chem. Phys. 281 151

    [38]

    Landauer R 1970 Philos. Mag. 21 863Google Scholar

    [39]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765Google Scholar

    [40]

    Li Z L. Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [41]

    孙峰, 刘然, 索雨晴, 牛乐乐, 傅焕俨, 季文芳, 李宗良 2019 物理学报 68 178502Google Scholar

    Sun F, Liu R, Suo Y Q, Niu L L, Fu H Y, Ji W F, Li Z L 2019 Acta Phys. Sin. 68 178502Google Scholar

    [42]

    索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良 2020 物理学报 69 208502Google Scholar

    Suo Y Q, Liu R, Sun F, Niu L L, Liu L, Wang S S, Li Z L 2020 Acta Phys. Sin. 69 208502Google Scholar

    [43]

    Dong Q X, Hu R, Fan Z Q, Zhang Z H 2018 Carbon 130 206Google Scholar

    [44]

    Luo A Y, Hu R, Fan Z Q, Zhang H L, Yuan J H, Yang C H, Zhang Z H 2017 Org. Electron. 51 277Google Scholar

    [45]

    Souza F A, Amorim R G, Prasongkit J, Scopel W L, Scheicher R H, Rocha A R 2018 Carbon 129 803Google Scholar

    [46]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2016 Carbon 98 204Google Scholar

    [47]

    Li Z L, Zou B, Wang C K 2006 Phys. Rev. B 73 075326Google Scholar

    [48]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503

  • [1] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 边修饰GeS2纳米带的电子特性及调控效应. 物理学报, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [2] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. 电场对GaN/g-C3N4异质结电子结构和光学性质影响的第一性原理研究. 物理学报, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [3] 刘洪亮, 郭志迎, 袁晓峰, 高倩倩, 段欣雨, 张忻, 张久兴. 典型二元单晶REB6的电子结构和发射性能. 物理学报, 2022, 71(9): 098101. doi: 10.7498/aps.71.20211870
    [4] 王娅巽, 郭迪, 李建高, 张东波. 低维材料物性的非均匀应变调控. 物理学报, 2022, 71(12): 127307. doi: 10.7498/aps.71.20220085
    [5] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化. 物理学报, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [6] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [7] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211748
    [8] 廖天军, 林比宏, 王宇珲. 新型高效热离子功率器件的性能特性研究. 物理学报, 2019, 68(18): 187901. doi: 10.7498/aps.68.20190882
    [9] 刘雅楠, 路俊哲, 祝恒江, 唐宇超, 林响, 刘晶, 王婷. 锯齿型碳纳米管的结构衍生及电子特性. 物理学报, 2017, 66(9): 093601. doi: 10.7498/aps.66.093601
    [10] 邓发明. 强激光照射对6H-SiC晶体电子特性的影响. 物理学报, 2016, 65(10): 107101. doi: 10.7498/aps.65.107101
    [11] 张耿鸿, 朱佳, 姜格蕾, 王彪, 郑跃. 压缩应变载荷下氮化镓隧道结微观压电特性及其巨压电电阻效应. 物理学报, 2016, 65(10): 107701. doi: 10.7498/aps.65.107701
    [12] 王晓媛, 赵丰鹏, 王杰, 闫亚宾. 金属有机框架材料力学、电学及其应变调控特性的第一原理研究. 物理学报, 2016, 65(17): 178105. doi: 10.7498/aps.65.178105
    [13] 邓发明. 强激光照射对2H-SiC晶体电子特性的影响. 物理学报, 2015, 64(22): 227101. doi: 10.7498/aps.64.227101
    [14] 李骏, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带卷曲效应对其电子特性的影响. 物理学报, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [15] 曾永昌, 田文, 张振华. 周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性. 物理学报, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [16] 杜玉杰, 常本康, 张俊举, 李飙, 王晓晖. GaN(0001)表面电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(6): 067101. doi: 10.7498/aps.61.067101
    [17] 周华杰, 徐秋霞. Ni全硅化金属栅功函数调节技术研究. 物理学报, 2011, 60(10): 108102. doi: 10.7498/aps.60.108102
    [18] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [19] 王国栋, 张 旺, 张文华, 李宗木, 徐法强. Fe/ZnO(0001)界面的同步辐射光电子能谱研究. 物理学报, 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [20] 李萍剑, 张文静, 张琦锋, 吴锦雷. 接触电极的功函数对基于碳纳米管构建的场效应管的影响. 物理学报, 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
计量
  • 文章访问数:  2741
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 修回日期:  2021-10-31
  • 上网日期:  2022-02-16
  • 刊出日期:  2022-02-20

/

返回文章
返回