搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

闭合磁场的作用原理与布局逻辑

崔岁寒 郭宇翔 陈秋皓 金正 杨超 吴忠灿 苏雄宇 马正永 田修波 吴忠振

引用本文:
Citation:

闭合磁场的作用原理与布局逻辑

崔岁寒, 郭宇翔, 陈秋皓, 金正, 杨超, 吴忠灿, 苏雄宇, 马正永, 田修波, 吴忠振

Working principle and layout logic of closed magnetic field in sputtering

Cui Sui-Han, Guo Yu-Xiang, Chen Qiu-Hao, Jin Zheng, Yang Chao, Wu Zhong-Can, Su Xiong-Yu, Ma Zheng-Yong, Tian Xiu-Bo, Wu Zhong-Zhen
PDF
HTML
导出引用
  • 采用非平衡磁控溅射阴极在镀膜区间构建闭合磁场已经成为设计开发磁控溅射真空镀膜系统的通用手段, 然而闭合磁场具体的作用对象、作用机制、闭合条件、布局逻辑以及作用效果等仍没有定量的判定标准或设计依据. 本文从带电粒子在磁场中的运动出发, 推导了真空室内电子与离子运动行为, 得出闭合磁场的作用机制, 并依此研究了磁控溅射阴极和离子源布局方式对电子约束效果和沉积效率的影响. 结果表明, 闭合磁场在真空室中主要通过约束电子来约束等离子体, 进而减少系统内电子损失; 阴极数量和真空室尺寸对闭合磁场的作用效果有重要影响. 提出在真空室中央增加对偶离子源, 研究了闭合磁场中阴极类型、旋转角度和磁场方向对电子的约束作用, 发现当离子源正对阴极相斥或相吸时, 真空室内分别形成了局部高密度和均匀连续的两种等离子体分布特征, 边缘电子溢出比均低于3%, 镀膜区的电子占比相对无对偶离子源时分别提高到53.41%和42.25%.
    Closed magnetic field constructed by unbalanced magnetron sputtering (MS) cathodes has been a general means of developing the MS coating system. However, owing to the difficulties in characterizing the complex plasma behaviors, there are still no quantitative criteria or design bases for some critical points, such as the effective object, the working mechanism, the closure condition, the layout logic and the effectivity of the closed magnetic field. Here in this work, out of the movements of charged particles in magnetic field, the motion behaviors of electrons and ions in the vacuum chamber are studied and it is also revealed that the closed magnetic field can affect mainly the electrons and further control the distributions of ions. A Monte-Carlo collision (MCC) model of the closed magnetic field MS coating system is established by test-electron to characterize the plasma transport characteristics, and the electron constraint and coating deposition efficiency are studied by different layouts of the magnetron cathodes and the ion sources. The simulation results show that the cathode numbers and vacuum chamber size determine the constraint effect on electrons in closed magnetic field. By 8 MS cathodes and the chamber radius of 0.5 m, the proportion of the overflow electrons can decrease to 1.77%. To increase the proportion of the electrons in the coating region, four coupled magnetic fields are introduced in the center of vacuum chamber. The studies of cathode type, rotation angle and magnetic field direction reveal that the proportion of the overflow electrons is less than 3%. A local dense plasma distribution and a continuous uniform plasma distribution can be observed in the vacuum chamber, corresponding to the same and opposite layout in magnetic poles of the MS cathodes and the ion sources, and the proportion of the electrons in the coating region significantly increases to 53.41% and 42.25%, respectively.
      通信作者: 吴忠振, wuzz@pkusz.edu.cn
    • 基金项目: 国家材料基因组计划(批准号: 2016YFB0700600)和深圳科学研究基金(批准号: JSGG20191129112631389)资助的课题.
      Corresponding author: Wu Zhong-Zhen, wuzz@pkusz.edu.cn
    • Funds: Project supported by the National Materials Genome Project of China (Grant No. 2016YFB0700600) and the Science and Research Fundation of Shenzhen, China (Grant No. JSGG20191129112631389).
    [1]

    Window B, Savvides N 1986 J. Vac. Sci. Technol. A-Vac. Surf. Films 4 196Google Scholar

    [2]

    Window B 1986 J. Vac. Sci. Technol. A-Vac. Surf. Films 4 453Google Scholar

    [3]

    Savvides N, Window B 1986 J. Vac. Sci. Technol. A 4 504Google Scholar

    [4]

    Kelly P J, Arnell R D, Ahmed W, Afzal A 1996 Mater. Des. 17 215Google Scholar

    [5]

    Monaghan D P, Teer D G, Laing K C, Efeoglu I, Arnell R D 1993 Surf. Coat. Technol. 59 21Google Scholar

    [6]

    Arnell R D, Kelly P J 1999 Surf. Coat. Technol. 112 170Google Scholar

    [7]

    Zhou J, Wu Z, Liu Z H 2008 J. Univ. Sci. Technol. Beijing Miner. Metallurgy Mater. 15 775

    [8]

    Kelly P J, Aenell R D 1998 Surf. Coat. Technol. 108 317

    [9]

    Kelly P J, Arnell R D 1998 J. Vac. Sci. Technol. A-Vac. Surf. Films 16 2858Google Scholar

    [10]

    Rohde S L, Petrov I, Sproul W D, Barnett S A, Rudnik P J, Graham M E 1990 Thin Solid Films 193 117

    [11]

    Sproul W D, Rudnik P J, Graham M E, Rohde S L 1990 Surf. Coat. Technol. 43 270

    [12]

    蒋百灵, 曹政, 鲁媛媛, 栾亚 2011 材料热处理学报 32 92

    Jiang B L, Cao Z, Lu Y Y, Luan Y 2011 Transact. mater. heat treatment 32 92

    [13]

    Kelly P J, Arnell R D 1996 Surf. Coat. Technol. 86–87 425

    [14]

    Kelly P J, Arnell R D 1998 Vacuum 49 43Google Scholar

    [15]

    迈克尔·A. 力伯曼, 阿伦·J. 里登伯格著(浦以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第18—30页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp5–7 (in Chinese)

    [16]

    曹政, 蒋百灵, 鲁媛媛, 王陶 2011 材料研究学报 25 313

    Cao Z, Jiang B L, Lu Y Y, Wang T 2011 Chin. J. Mater. Res. 25 313

    [17]

    陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良 2014 物理学报 63 098103Google Scholar

    Chen M, Zhou X Y, Mao X J, Shao J J, Yang G L 2014 Acta Phys. Sin. 63 098103Google Scholar

    [18]

    Yusupov M, Bultinck E, Depla D, Bogaerts 2011 New J. Phys. 13 033018Google Scholar

    [19]

    Bultinck E, Bogaerts A 2009 New J. Phys. 11 103010Google Scholar

    [20]

    汪天龙, 邱清泉, 靖立伟, 张小波 2018 物理学报 67 070703Google Scholar

    Wang T L, Qiu Q Q, Jing L W, Zhang X B 2018 Acta Phys. Sin. 67 070703Google Scholar

    [21]

    Shidoji E, Ohtake H, Nakano N, Makabe T 1999 Jpn. J. Appl. Phys. Part 1 38 2131

    [22]

    Kim J S, Liu C, Edgell D H, Pardo R 2006 Rev. Sci. Instrum. 77 03B106Google Scholar

    [23]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204

    Cui S H, Wu Z Z, Xiao S, Chen L, Li T J, Liu L L, Fu J Y, Tian X B, Zhu J H, Tan W C 2019 Acta Phys. Sin 68 195204

    [24]

    Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A-Vac. Surf. Films 5 2276Google Scholar

    [25]

    Rossnagel S M, Kaufman H R 1988 J. Vac. Sci. Technol. A-Vac. Surf. Films 6 223Google Scholar

    [26]

    弗朗西斯F. 陈(林光海 译) 1980 等离子体物理学导论 (北京: 科学出版社) 第5—7页

    Chen F F (translated by Lin G H) 1980 Introduction to Plasma Physics (Beijing: Science Press) pp5–7 (in Chinese)

    [27]

    Sirghi L, Aoki T, Hatanaka Y 2004 Surf. Coat. Technol. 187 358Google Scholar

    [28]

    Chen L, Cui S H, Tang W, Zhou L, Li T J, Liu L L, An X K, Wu Z C, Ma Z Y, Lin H, Tian X B, Fu J Y, Chu P K, Wu Z Z 2020 Plasma Sources Sci. Technol. 29 025016Google Scholar

    [29]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [30]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Tech. 205 591Google Scholar

  • 图 1  仿真区域示意图, el表示弹性碰撞, iz表示电离碰撞, ex表示激发碰撞

    Fig. 1.  Schematic diagram of simulation region, el represents elastic collision, iz represents ionization collision, ex represents excitation collision.

    图 2  真空室内磁感应强度分布

    Fig. 2.  Distribution of magnetic induction intensity in vacuum chamber.

    图 3  (a)闭合磁场; (b)非闭合磁场; (c) 10 μs闭合磁场电子分布; (d) 10 μs非闭合磁场电子分布

    Fig. 3.  (a) Closed and (b) unclosed magnetic field; electron distribution in (c) closed and (d) unclosed magnetic field at 10 μs.

    图 4  (a)实际磁感应强度与临界磁感应强度; (b)磁场闭合程度示意图

    Fig. 4.  (a) The actual and limit magnetic induction intensity; (b) closure degree of magnetic field.

    图 5  磁场分布和对应的30 μs的检验电子概率密度分布 (a)四阴极; (b)六阴极; (c)八阴极; (d)十阴极

    Fig. 5.  Distribution of the magnetic field and the electronic probability density at 30 μs: (a) Four cathodes; (b) six cathodes; (c) eight cathodes; (d) ten cathodes.

    图 6  磁场分布和对应的30 μs的检验电子概率密度分布 (a) 400 mm; (b) 500 mm; (c) 600 mm; (d) 700 mm

    Fig. 6.  Distribution of the magnetic field and the electronic probability density at 30 μs: (a) 400 mm; (b) 500 mm; (c) 600 mm; (d) 700 mm.

    图 7  磁场分布和对应的30 μs的检验电子概率密度分布 (a)正对相吸; (b)正对相斥

    Fig. 7.  Distribution of the magnetic field and the electronic probability density at 30 μs: (a) Attract exactly; (b) repel exactly.

    图 8  相吸模式下磁场分布和对应的30 μs的检验电子概率密度分布 (a) 0°; (b) 15°; (c) 30°; (d) 45°

    Fig. 8.  Distribution of the magnetic field and the electronic probability density at 30 μs in attraction mode: (a) 0°; (b) 15°; (c) 30°; (d) 45°.

    图 9  相斥模式下磁场分布和对应的30 μs的检验电子概率密度分布 (a) 0°; (b) 15°; (c) 30°; (d) 45°

    Fig. 9.  Distribution of the magnetic field and the electronic probability density at 30 μs: (a) 0°; (b) 15°; (c) 30°; (d) 45°.

    图 10  不同转角下镀膜区域电子占比(30 μs)

    Fig. 10.  The proportion of the electron in the coating region with different angles at 30 μs.

    表 1  电子参与的Ar放电主要反应表

    Table 1.  Reactions of Ar discharge involving electrons.

    序号反应方程式反应类型反应能量阈值/eV
    1e + Ar → Ar+ + 2e电离碰撞15.7
    2e + Ar → Arm + e激发碰撞11.5
    3e + Ar → Ar + e弹性碰撞
    下载: 导出CSV

    表 2  不同数量阴极构成的闭合磁场中30 μs电子运动情况统计

    Table 2.  Statistics of electron motion in closed magnetic field composed of 4, 6, 8 and 10 cathodes at 30 μs.

    阴极数量电子溢出比例/%镀膜区域电子占比/%
    47.5722.77
    64.4525.78
    81.7727.53
    100.1026.87
    下载: 导出CSV

    表 3  不同真空室尺寸构成的闭合磁场中30 μs电子运动情况统计

    Table 3.  Statistics of electron motion in closed magnetic field with different sizes at 30 μs.

    真空室尺寸/mm电子溢出比例/%镀膜区域电子占比/%
    4000.8229.93
    5001.7727.53
    6003.9521.59
    7005.4919.13
    下载: 导出CSV
  • [1]

    Window B, Savvides N 1986 J. Vac. Sci. Technol. A-Vac. Surf. Films 4 196Google Scholar

    [2]

    Window B 1986 J. Vac. Sci. Technol. A-Vac. Surf. Films 4 453Google Scholar

    [3]

    Savvides N, Window B 1986 J. Vac. Sci. Technol. A 4 504Google Scholar

    [4]

    Kelly P J, Arnell R D, Ahmed W, Afzal A 1996 Mater. Des. 17 215Google Scholar

    [5]

    Monaghan D P, Teer D G, Laing K C, Efeoglu I, Arnell R D 1993 Surf. Coat. Technol. 59 21Google Scholar

    [6]

    Arnell R D, Kelly P J 1999 Surf. Coat. Technol. 112 170Google Scholar

    [7]

    Zhou J, Wu Z, Liu Z H 2008 J. Univ. Sci. Technol. Beijing Miner. Metallurgy Mater. 15 775

    [8]

    Kelly P J, Aenell R D 1998 Surf. Coat. Technol. 108 317

    [9]

    Kelly P J, Arnell R D 1998 J. Vac. Sci. Technol. A-Vac. Surf. Films 16 2858Google Scholar

    [10]

    Rohde S L, Petrov I, Sproul W D, Barnett S A, Rudnik P J, Graham M E 1990 Thin Solid Films 193 117

    [11]

    Sproul W D, Rudnik P J, Graham M E, Rohde S L 1990 Surf. Coat. Technol. 43 270

    [12]

    蒋百灵, 曹政, 鲁媛媛, 栾亚 2011 材料热处理学报 32 92

    Jiang B L, Cao Z, Lu Y Y, Luan Y 2011 Transact. mater. heat treatment 32 92

    [13]

    Kelly P J, Arnell R D 1996 Surf. Coat. Technol. 86–87 425

    [14]

    Kelly P J, Arnell R D 1998 Vacuum 49 43Google Scholar

    [15]

    迈克尔·A. 力伯曼, 阿伦·J. 里登伯格著(浦以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第18—30页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp5–7 (in Chinese)

    [16]

    曹政, 蒋百灵, 鲁媛媛, 王陶 2011 材料研究学报 25 313

    Cao Z, Jiang B L, Lu Y Y, Wang T 2011 Chin. J. Mater. Res. 25 313

    [17]

    陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良 2014 物理学报 63 098103Google Scholar

    Chen M, Zhou X Y, Mao X J, Shao J J, Yang G L 2014 Acta Phys. Sin. 63 098103Google Scholar

    [18]

    Yusupov M, Bultinck E, Depla D, Bogaerts 2011 New J. Phys. 13 033018Google Scholar

    [19]

    Bultinck E, Bogaerts A 2009 New J. Phys. 11 103010Google Scholar

    [20]

    汪天龙, 邱清泉, 靖立伟, 张小波 2018 物理学报 67 070703Google Scholar

    Wang T L, Qiu Q Q, Jing L W, Zhang X B 2018 Acta Phys. Sin. 67 070703Google Scholar

    [21]

    Shidoji E, Ohtake H, Nakano N, Makabe T 1999 Jpn. J. Appl. Phys. Part 1 38 2131

    [22]

    Kim J S, Liu C, Edgell D H, Pardo R 2006 Rev. Sci. Instrum. 77 03B106Google Scholar

    [23]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204

    Cui S H, Wu Z Z, Xiao S, Chen L, Li T J, Liu L L, Fu J Y, Tian X B, Zhu J H, Tan W C 2019 Acta Phys. Sin 68 195204

    [24]

    Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A-Vac. Surf. Films 5 2276Google Scholar

    [25]

    Rossnagel S M, Kaufman H R 1988 J. Vac. Sci. Technol. A-Vac. Surf. Films 6 223Google Scholar

    [26]

    弗朗西斯F. 陈(林光海 译) 1980 等离子体物理学导论 (北京: 科学出版社) 第5—7页

    Chen F F (translated by Lin G H) 1980 Introduction to Plasma Physics (Beijing: Science Press) pp5–7 (in Chinese)

    [27]

    Sirghi L, Aoki T, Hatanaka Y 2004 Surf. Coat. Technol. 187 358Google Scholar

    [28]

    Chen L, Cui S H, Tang W, Zhou L, Li T J, Liu L L, An X K, Wu Z C, Ma Z Y, Lin H, Tian X B, Fu J Y, Chu P K, Wu Z Z 2020 Plasma Sources Sci. Technol. 29 025016Google Scholar

    [29]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [30]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Tech. 205 591Google Scholar

  • [1] 刘文姝, 高润亮, 冯红梅, 刘悦悦, 黄怡, 王建波, 刘青芳. 真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响. 物理学报, 2020, 69(9): 097401. doi: 10.7498/aps.69.20191942
    [2] 郝广辉, 韩攀阳, 李兴辉, 李泽鹏, 高玉娟. 真空沟道结构GaAs光电阴极电子发射特性. 物理学报, 2020, 69(10): 108501. doi: 10.7498/aps.69.20191893
    [3] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [4] 莫润阳, 吴临燕, 詹思楠, 张引红. 匀强磁场对水中气泡运动的影响. 物理学报, 2015, 64(12): 124301. doi: 10.7498/aps.64.124301
    [5] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响. 物理学报, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [6] 丁光涛. 磁场中带电粒子阻尼运动的分析力学表示. 物理学报, 2012, 61(2): 020204. doi: 10.7498/aps.61.020204
    [7] 朱孔金, 杨立中. 房间出口位置及内部布局对疏散效率的影响研究. 物理学报, 2010, 59(11): 7701-7707. doi: 10.7498/aps.59.7701
    [8] 赵鼎. 关于闭合及偏置PCM结构约束带状电子注可行性的研究. 物理学报, 2010, 59(3): 1712-1720. doi: 10.7498/aps.59.1712
    [9] 任树洋, 任忠鸣, 任维丽, 操光辉. 3 T强磁场对真空蒸发Zn薄膜晶体结构的影响. 物理学报, 2009, 58(8): 5567-5571. doi: 10.7498/aps.58.5567
    [10] 王晓艳, 王鹏程, 冯圣平, 谢晋东. 平行电磁场中He+2的回归谱与闭合轨道的研究. 物理学报, 2008, 57(3): 1347-1351. doi: 10.7498/aps.57.1347
    [11] 王海龙, 吴 群, 李乐伟, 吴 健, 孟繁义. 垂直电偶极子在球外侧电磁场的闭合解及验证. 物理学报, 2007, 56(1): 195-200. doi: 10.7498/aps.56.195
    [12] 王新军, 王玲玲, 黄维清, 唐黎明, 陈克求. 磁场下含结构缺陷多组分超晶格中的局域电子态和电子输运. 物理学报, 2006, 55(7): 3649-3655. doi: 10.7498/aps.55.3649
    [13] 梁昌洪, 褚庆昕. 运动边界的电磁场边界条件. 物理学报, 2002, 51(10): 2202-2204. doi: 10.7498/aps.51.2202
    [14] 苍宇, 张杰, 邱阳, 张军, 彭练矛. 超热电子在非均匀磁场中的运动轨迹. 物理学报, 2002, 51(4): 843-846. doi: 10.7498/aps.51.843
    [15] 吴奇学. 有旋电子在电磁场及二维谐振子场中运动的双波描述. 物理学报, 2000, 49(11): 2118-2122. doi: 10.7498/aps.49.2118
    [16] 陈永洲, 陈清明, 李 军, 赖建军, 丘军林. 磁场下空心阴极氦放电过程中电子运动的计算机模拟. 物理学报, 1998, 47(10): 1665-1672. doi: 10.7498/aps.47.1665
    [17] 黄湘友, 刘全慧, 田旭, 裘忠平. 均匀磁场中带电粒子运动的双波描述. 物理学报, 1993, 42(2): 180-187. doi: 10.7498/aps.42.180
    [18] 张世昌, 王文耀. 电磁波荡器及导引磁场中相对论电子三维运动的线性与非线性分析. 物理学报, 1991, 40(5): 748-755. doi: 10.7498/aps.40.748
    [19] 沐建林, 蔡诗东. 梯度磁场中静电波引起的粒子随机运动. 物理学报, 1989, 38(11): 1818-1825. doi: 10.7498/aps.38.1818
    [20] 熊小明, 周世勋. 强磁场中二维电子的量子运动. 物理学报, 1987, 36(7): 935-939. doi: 10.7498/aps.36.935
计量
  • 文章访问数:  3722
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-24
  • 修回日期:  2021-10-13
  • 上网日期:  2022-02-25
  • 刊出日期:  2022-03-05

/

返回文章
返回