搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强聚焦泵浦产生纠缠光子的Hong-Ou-Mandel干涉

田颖 蔡吾豪 杨子祥 陈峰 金锐博 周强

引用本文:
Citation:

强聚焦泵浦产生纠缠光子的Hong-Ou-Mandel干涉

田颖, 蔡吾豪, 杨子祥, 陈峰, 金锐博, 周强

Hong-Ou-Mandel interference of entangled photons generated under pump-tight-focusing condition

Tian Ying, Cai Wu-Hao, Yang Zi-Xiang, Chen Feng, Jin Rui-Bo, Zhou Qiang
PDF
HTML
导出引用
  • Hong-Ou-Mandel (HOM)干涉是光子的一种非经典效应, 在量子光学中起到重要作用. 偏硼酸钡(β-barium borate, BBO)具有较高的非线性效率, 常被用来产生双光子态, 进而展示HOM干涉. 然而, 在以前的实验中, 人们往往使用带通滤光片对双光子的频谱进行过滤, 所得光谱由带通滤光片直接决定, 而对BBO晶体自身的原始光谱, 特别是泵浦光强聚焦下的原始光谱, 缺乏系统性研究. 本文对泵浦光强聚焦条件下BBO晶体产生的双光子纠缠态光谱分布和HOM干涉进行了深入研究. 理论计算发现, 使用50 mm透镜聚焦的情况和无聚焦情况相比, 下转换光的光谱宽度会增加7.4倍, HOM干涉条纹的宽度会减少为无聚焦情况的1/8, 干涉条纹可见度会从53.0% 提高到98.7%. 实验上使用II型BBO晶体制备了能量-时间纠缠态, 并进行了HOM干涉, 获得了$(86.6 \pm 1.0) $% 的干涉可见度. 干涉可见度极大提高的原因在于强聚焦改善了光谱的对称性. 此外, 本文提出的不同入射角获得不同光谱分布的技术方案有望在未来应用于高维量子纠缠态的制备.
    Hong-Ou-Mandel (HOM) interference is a non-classical effect of photons and plays an important role in quantum optics. The β-barium borate (BBO) has a high nonlinear efficiency, and is commonly used to generate biphoton states, thereby exhibiting HOM interference. However, in previous experiments, researchers often used band-pass filters, so the resulting spectrum was directly determined by the band-pass filter. As a result, the original spectrum of the BBO crystal, especially the spectrum under tight focusing, was lack of systematic research. In this paper, the biphoton spectral distribution and HOM interference generated by the BBO crystal under the condition of tight focusing are systematically studied for the first time. Theoretical calculations show that using a lens with 50-mm focusing length, the spectral width of the down-converted photons is increased by 7.9 times that of the non-focused case; the width of the HOM interference fringe is reduced to 1/8, and the visibility of the interference fringe increases from 53.0% to 98.7%. We experimentally prepare the energy-time entanglement state by using type-II BBO crystal and perform HOM interference, thereby obtaining the interference visibility of $(86.6 \pm 1.0)$%. The increasing of the HOM visibility is due to the improvement of biphoton's spectral symmetry. In addition, the proposed technique by which different spectral distributions are obtained at different incident angles is expected to be applied to the preparation of high-dimensional qudits in the future.
      通信作者: 金锐博, jrbqyj@foxmail.com ; 周强, zhouqiang@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074299, 91836102, 11704290)和国家重点研发计划(批准号: 2018YFA0307400)资助的课题
      Corresponding author: Jin Rui-Bo, jrbqyj@foxmail.com ; Zhou Qiang, zhouqiang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074299, 91836102, 11704290) and the National Key R&D Program of China (Grant No. 2018YFA0307400)
    [1]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044Google Scholar

    [2]

    张越, 候飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳 2018 物理学报 67 144204Google Scholar

    Zhang Y, Hou F Y, Liu T, Zhang X F, Zhang S G, Dong R F 2018 Acta Phys. Sin. 67 144204Google Scholar

    [3]

    孙涛, 汪垟, 李剑, 王琴 2019 光子学报 48 0427001Google Scholar

    Sun T, Wang Y, Li J, Wang Q 2019 Acta Photon. Sin. 48 0427001Google Scholar

    [4]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [5]

    Gisin N, Pironio S, Sangouard N 2010 Phys. Rev. Lett. 105 070501Google Scholar

    [6]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [7]

    Zhang Z, Yuan C, Shen S, Yu H, Zhang R, Wang H, Li H, Wang Y, Deng G, Wang Z, You L, Wang Z, Song H, Guo G, Zhou Q 2021 NPJ Quantum Inf. 7 123Google Scholar

    [8]

    Fan Y R, Yuan C Z, Zhang R M, Shen S, Wu P, Wang H Q, Li H, Deng G W, Song H Z, You L X, Wang Z, Wang Y, Guo G C, Zhou Q 2021 Photonics Res. 9 1134Google Scholar

    [9]

    Lyons A, Knee G C, Bolduc E, Roger T, Leach J, Gauger E M, Faccio D 2018 Sci. Adv. 4 eaap9416Google Scholar

    [10]

    Gerrits T, Marsili F, Verma V B, Shalm L K, Shaw M, Mirin R P, Nam S W 2015 Phys. Rev. A 91 013830Google Scholar

    [11]

    Jin R B, Gerrits T, Fujiwara M, Wakabayashi R, Yamashita T, Miki S, Terai H, Shimizu R, Takeoka M, Sasaki M 2015 Opt. Express 23 28836Google Scholar

    [12]

    Jin R B, Shimizu R, Fujiwara M, Takeoka M, Wakabayashi R, Yamashita T, Miki S, Terai H, Gerrits T, Sasaki M 2016 Quantum Sci. Technol. 1 015004Google Scholar

    [13]

    Jachura M, Chrapkiewicz R 2015 Opt. Lett. 40 1540Google Scholar

    [14]

    Kobayashi T, Ikuta R, Yasui S, Miki S, Yamashita T, Terai H, Yamamoto T, Koashi M, Imoto N 2016 Nat. Photonics 10 441Google Scholar

    [15]

    Ono T, Okamoto R, Takeuchi S 2013 Nat. Commun. 4 2426Google Scholar

    [16]

    陈创天, 吴柏昌, 江爱栋, 尤桂铭 1984 中国科学 B 14 598

    Chen C T, Wu B C, Jiang A D, You G M 1984 Sci. Sin. B 14 598

    [17]

    Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V, Shih Y 1995 Phys. Rev. Lett. 75 4337Google Scholar

    [18]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 6 0

    [19]

    Niu X L, Huang Y F, Xiang G Y, Guo G C, Ou Z Y 2008 Opt. Lett. 33 968Google Scholar

    [20]

    Takeuchi S 2001 Opt. Lett. 26 843Google Scholar

    [21]

    Xu X Y, Wang Q Q, Pan W W, Sun K, Xu J S, Chen G, Tang J S, Gong M, Han Y J, Li C F, Guo G C 2018 Phys. Rev. Lett. 120 260501Google Scholar

    [22]

    Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W 2007 Nat. Phys. 3 91Google Scholar

    [23]

    Yao X C, Wang T X, Xu P, Lu H, Pan G S, Bao X H, Peng C Z, Lu C Y, Chen Y A, Pan J W 2012 Nat. Photonics 6 225Google Scholar

    [24]

    Huang Y F, Liu B H, Peng L, Li Y H, Li L, Li C F, Guo G C 2011 Nat. Commun. 2 546Google Scholar

    [25]

    Zhong H S, Li Y, Li W, Peng L C, Su Z E, Hu Y, He Y M, Ding X, Zhang W, Li H, Zhang L, Wang Z, You L, Wang X L, Jiang X, Li L, Chen Y A, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 121 250505Google Scholar

    [26]

    Li Z, Cheng C, Romero C, Lu Q, de Aldana J R V, Chen F 2017 Opt. Mater. 73 45Google Scholar

    [27]

    Jia Y, de Aldana J R V, Romero C, Ren Y, Lu Q, Chen F 2012 Appl. Phys. Express 5 072701Google Scholar

    [28]

    Molina-Terriza G, Minardi S, Deyanova Y, Osorio C I, Hendrych M, Torres J P 2005 Phys. Rev. A 72 065802Google Scholar

    [29]

    Torres J P, Molina-Terriza G, Torner L 2005 J. Opt. B: Quantum Semiclassical Opt. 7 235Google Scholar

    [30]

    Bennink R S, Liu Y, Earl D D, Grice W P 2006 Phys. Rev. A 74 023802Google Scholar

    [31]

    Osorio C I, Valencia A, Torres J P 2008 New J. Phys. 10 113012Google Scholar

    [32]

    Brambilla E, Caspani L, Lugiato L A, Gatti A 2010 Phys. Rev. A 82 013835Google Scholar

    [33]

    Kolenderski P, Wasilewski W, Banaszek K 2009 Phys. Rev. A 80 013811Google Scholar

    [34]

    Bennink R S 2010 Phys. Rev. A 81 053805Google Scholar

    [35]

    Mosley P J, Lundeen J S, Smith B J, Walmsley I A 2008 New J. Phys. 10 093011Google Scholar

    [36]

    Raymer M G, Noh J, Banaszek K, Walmsley I A 2005 Phys. Rev. A 72 023825Google Scholar

    [37]

    翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚 2021 物理学报 70 120302Google Scholar

    Zhai Y W, Dong R F, Quan R A, Xiang X, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 120302Google Scholar

    [38]

    Jin R B, Shimizu R 2018 Optica 5 93Google Scholar

    [39]

    Cai N, Cai W H, Wang S, Li F, Shimizu R, Jin R B 2022 J. Opt. Soc. Am. B 39 77Google Scholar

    [40]

    Smith A "SNLO" http://www.as-photonics.com/snlo[2021-11-22]

    [41]

    Jin R B, Cai W H, Ding c, Mei F, Deng G W, Shimizu R, Zhou Q 2020 Quan. Eng. 2 e38

  • 图 1  (a) 泵浦光强聚焦于BBO晶体的示意图; (b)—(d) 入射角分别为42.29°, 41.79°和41.29°时的方案图和联合频谱强度图; (e) 计算泵浦光斑上任意一点p的入射角的立体模型; (f)—(h) 透镜焦距分别为50, 100和200 mm时泵浦光斑的入射角分布

    Fig. 1.  (a) Schematic diagram of the BBO crystal under the tight focusing; (b)–(d) setups and JSIs with the incident angles of 42.29°, 41.79°, and 41.29°, respectively; (e) three dimensional (3D) model for calculating the incident angle of an arbitrary point p on the pump; (f)–(h) distribution of the incident angle using lenses with the focal lengths of 50, 100, and 200 mm, respectively.

    图 2  不同聚焦条件下的JSI分布和边缘投影分布 (a) 无透镜(焦距为$ \infty $); (b)—(d) 透镜焦距分别为200, 50和100 mm; (e) 透镜焦距为100 mm加上带宽为12.1 nm的BPF; (f) BPF的透过率测试图, 图中Δ为半波全宽

    Fig. 2.  Joint spectral intensities and marginal projection under different focusing conditions: (a) No lens; (b)–(d) using lenes with focal lengths of 200, 50, and 100 mm, respectively; (e) focal length of the lens is 100 mm and the BPF with a bandwidth of 12.1 nm; (f) transmittance of the BPF, Δ is FWHM.

    图 3  不同焦距透镜聚焦条件下的HOM干涉模拟图 (a) 无透镜聚焦; (b)—(d) 透镜焦距分别为200, 100和50 mm; (e) 透镜焦距为100 mm加上带宽为12 nm的BPF, 图中V为干涉可见度, FWHM为干涉条纹的宽度

    Fig. 3.  Simulated HOM interference under different focusing conditions: (a) Using no lens; (b)–(d) using lenes with a focal length of 200, 100, and 50 mm respectively; (e) focal length of the lens is 100 mm and a BPF with a bandwidth of 12 nm. In the figure, V is the visibility of interference, and FWHM is the width of the interference fringe.

    图 4  HOM干涉实验装置图

    Fig. 4.  Experimental setup of HOM interference.

    图 5  (a) 信号光与闲频光的光谱图, 红色为信号光(通道1), 蓝色为闲频光(通道2); (b) 粗略扫描得到的HOM干涉图样; (c) 精细扫描得到的HOM干涉图样

    Fig. 5.  (a) Spectrogram of the signal and the idler, red is the signal (Channel 1), blue is the idler (Channel 2); (b) HOM interference pattern obtained from rough scanning; (c) HOM interference pattern obtained from precise scanning.

    图 6  (a) 透镜焦距f与双光子光谱宽度(Δ为半波全宽)之间的关系图; (b) 透镜焦距f与HOM干涉可见度之间的关系图

    Fig. 6.  (a) Diagram of the relationship between the lens focal length f and the biphoton spectral width (Δ, the FWHM); (b) diagram of the relationship between lens focal length f and HOM interference visibility.

    表 1  不同入射角对应的信号光与闲频光的波长

    Table 1.  Wavelengths of the signal and idler under different incident angles

    θ/(°) $\Delta \theta$/(°) ${\lambda _{{{\rm{s}}_0}}}$/nm ${\lambda _{{{\rm{i}}_0}}}$/nm
    40.79 –1.0 777.834 844.941
    41.29 –0.5 793.565 827.130
    41.79 0 809.897 810.103
    42.29 0.5 826.854 793.819
    42.79 1.0 844.459 778.243
    下载: 导出CSV
  • [1]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044Google Scholar

    [2]

    张越, 候飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳 2018 物理学报 67 144204Google Scholar

    Zhang Y, Hou F Y, Liu T, Zhang X F, Zhang S G, Dong R F 2018 Acta Phys. Sin. 67 144204Google Scholar

    [3]

    孙涛, 汪垟, 李剑, 王琴 2019 光子学报 48 0427001Google Scholar

    Sun T, Wang Y, Li J, Wang Q 2019 Acta Photon. Sin. 48 0427001Google Scholar

    [4]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [5]

    Gisin N, Pironio S, Sangouard N 2010 Phys. Rev. Lett. 105 070501Google Scholar

    [6]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [7]

    Zhang Z, Yuan C, Shen S, Yu H, Zhang R, Wang H, Li H, Wang Y, Deng G, Wang Z, You L, Wang Z, Song H, Guo G, Zhou Q 2021 NPJ Quantum Inf. 7 123Google Scholar

    [8]

    Fan Y R, Yuan C Z, Zhang R M, Shen S, Wu P, Wang H Q, Li H, Deng G W, Song H Z, You L X, Wang Z, Wang Y, Guo G C, Zhou Q 2021 Photonics Res. 9 1134Google Scholar

    [9]

    Lyons A, Knee G C, Bolduc E, Roger T, Leach J, Gauger E M, Faccio D 2018 Sci. Adv. 4 eaap9416Google Scholar

    [10]

    Gerrits T, Marsili F, Verma V B, Shalm L K, Shaw M, Mirin R P, Nam S W 2015 Phys. Rev. A 91 013830Google Scholar

    [11]

    Jin R B, Gerrits T, Fujiwara M, Wakabayashi R, Yamashita T, Miki S, Terai H, Shimizu R, Takeoka M, Sasaki M 2015 Opt. Express 23 28836Google Scholar

    [12]

    Jin R B, Shimizu R, Fujiwara M, Takeoka M, Wakabayashi R, Yamashita T, Miki S, Terai H, Gerrits T, Sasaki M 2016 Quantum Sci. Technol. 1 015004Google Scholar

    [13]

    Jachura M, Chrapkiewicz R 2015 Opt. Lett. 40 1540Google Scholar

    [14]

    Kobayashi T, Ikuta R, Yasui S, Miki S, Yamashita T, Terai H, Yamamoto T, Koashi M, Imoto N 2016 Nat. Photonics 10 441Google Scholar

    [15]

    Ono T, Okamoto R, Takeuchi S 2013 Nat. Commun. 4 2426Google Scholar

    [16]

    陈创天, 吴柏昌, 江爱栋, 尤桂铭 1984 中国科学 B 14 598

    Chen C T, Wu B C, Jiang A D, You G M 1984 Sci. Sin. B 14 598

    [17]

    Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V, Shih Y 1995 Phys. Rev. Lett. 75 4337Google Scholar

    [18]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 6 0

    [19]

    Niu X L, Huang Y F, Xiang G Y, Guo G C, Ou Z Y 2008 Opt. Lett. 33 968Google Scholar

    [20]

    Takeuchi S 2001 Opt. Lett. 26 843Google Scholar

    [21]

    Xu X Y, Wang Q Q, Pan W W, Sun K, Xu J S, Chen G, Tang J S, Gong M, Han Y J, Li C F, Guo G C 2018 Phys. Rev. Lett. 120 260501Google Scholar

    [22]

    Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W 2007 Nat. Phys. 3 91Google Scholar

    [23]

    Yao X C, Wang T X, Xu P, Lu H, Pan G S, Bao X H, Peng C Z, Lu C Y, Chen Y A, Pan J W 2012 Nat. Photonics 6 225Google Scholar

    [24]

    Huang Y F, Liu B H, Peng L, Li Y H, Li L, Li C F, Guo G C 2011 Nat. Commun. 2 546Google Scholar

    [25]

    Zhong H S, Li Y, Li W, Peng L C, Su Z E, Hu Y, He Y M, Ding X, Zhang W, Li H, Zhang L, Wang Z, You L, Wang X L, Jiang X, Li L, Chen Y A, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 121 250505Google Scholar

    [26]

    Li Z, Cheng C, Romero C, Lu Q, de Aldana J R V, Chen F 2017 Opt. Mater. 73 45Google Scholar

    [27]

    Jia Y, de Aldana J R V, Romero C, Ren Y, Lu Q, Chen F 2012 Appl. Phys. Express 5 072701Google Scholar

    [28]

    Molina-Terriza G, Minardi S, Deyanova Y, Osorio C I, Hendrych M, Torres J P 2005 Phys. Rev. A 72 065802Google Scholar

    [29]

    Torres J P, Molina-Terriza G, Torner L 2005 J. Opt. B: Quantum Semiclassical Opt. 7 235Google Scholar

    [30]

    Bennink R S, Liu Y, Earl D D, Grice W P 2006 Phys. Rev. A 74 023802Google Scholar

    [31]

    Osorio C I, Valencia A, Torres J P 2008 New J. Phys. 10 113012Google Scholar

    [32]

    Brambilla E, Caspani L, Lugiato L A, Gatti A 2010 Phys. Rev. A 82 013835Google Scholar

    [33]

    Kolenderski P, Wasilewski W, Banaszek K 2009 Phys. Rev. A 80 013811Google Scholar

    [34]

    Bennink R S 2010 Phys. Rev. A 81 053805Google Scholar

    [35]

    Mosley P J, Lundeen J S, Smith B J, Walmsley I A 2008 New J. Phys. 10 093011Google Scholar

    [36]

    Raymer M G, Noh J, Banaszek K, Walmsley I A 2005 Phys. Rev. A 72 023825Google Scholar

    [37]

    翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚 2021 物理学报 70 120302Google Scholar

    Zhai Y W, Dong R F, Quan R A, Xiang X, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 120302Google Scholar

    [38]

    Jin R B, Shimizu R 2018 Optica 5 93Google Scholar

    [39]

    Cai N, Cai W H, Wang S, Li F, Shimizu R, Jin R B 2022 J. Opt. Soc. Am. B 39 77Google Scholar

    [40]

    Smith A "SNLO" http://www.as-photonics.com/snlo[2021-11-22]

    [41]

    Jin R B, Cai W H, Ding c, Mei F, Deng G W, Shimizu R, Zhou Q 2020 Quan. Eng. 2 e38

  • [1] 郭牧城, 汪福东, 胡肇高, 任苗苗, 孙伟业, 肖婉婷, 刘书萍, 钟满金. 微纳尺度稀土掺杂晶体的量子相干性能及其应用研究进展. 物理学报, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [2] 徐耀坤, 孙仕海, 曾瑶源, 杨俊刚, 盛卫东, 刘伟涛. 基于双光子干涉的量子全息理论框架. 物理学报, 2023, 72(21): 214207. doi: 10.7498/aps.72.20231242
    [3] 翟艺伟, 李旺. 基于SSA-BP网络模型的Hong-Ou-Mandel干涉时延测量研究及其在量子陀螺仪中的应用. 物理学报, 2023, 72(13): 138503. doi: 10.7498/aps.72.20230283
    [4] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储. 物理学报, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [5] 窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏. 量子存储研究进展. 物理学报, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [6] 李明, 陈阳, 郭光灿, 任希锋. 表面等离激元量子信息应用研究进展. 物理学报, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [7] 李银海, 许昭怀, 王双, 许立新, 周志远, 史保森. 两个独立全光纤多通道光子纠缠源的Hong-Ou-Mandel干涉. 物理学报, 2017, 66(12): 120302. doi: 10.7498/aps.66.120302
    [8] 陈国柱, 沈咏, 刘曲, 邹宏新. 利用椭圆高斯光束产生266nm紫外连续激光. 物理学报, 2014, 63(5): 054204. doi: 10.7498/aps.63.054204
    [9] 李卓, 邢莉娟. 差错基、量子码与群代数. 物理学报, 2013, 62(13): 130306. doi: 10.7498/aps.62.130306
    [10] 邢莉娟, 李卓, 张武军. 加强的量子汉明限. 物理学报, 2011, 60(5): 050304. doi: 10.7498/aps.60.050304
    [11] 王云江, 白宝明, 王新梅. 量子稀疏图码的反馈式迭代译码. 物理学报, 2010, 59(11): 7591-7595. doi: 10.7498/aps.59.7591
    [12] 姜福仕, 赵翠兰. 量子环中量子比特的声子效应. 物理学报, 2009, 58(10): 6786-6790. doi: 10.7498/aps.58.6786
    [13] 尹辑文, 肖景林, 于毅夫, 王子武. 库仑势对抛物量子点量子比特消相干的影响. 物理学报, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [14] 邢莉娟, 李 卓, 白宝明, 王新梅. 量子卷积码的编译码方法. 物理学报, 2008, 57(8): 4695-4699. doi: 10.7498/aps.57.4695
    [15] 李 卓, 邢莉娟. 量子Generalized Reed-Solomon码. 物理学报, 2008, 57(1): 28-30. doi: 10.7498/aps.57.28
    [16] 李 卓, 邢莉娟. 一类基于级联结构的量子好码. 物理学报, 2007, 56(10): 5602-5606. doi: 10.7498/aps.56.5602
    [17] 王子武, 肖景林. 抛物线性限制势量子点量子比特及其光学声子效应. 物理学报, 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [18] 张权, 张尔扬. 非对称二状态量子密钥分配协议最优参量研究. 物理学报, 2002, 51(8): 1684-1689. doi: 10.7498/aps.51.1684
    [19] 张权, 唐朝京, 张森强. B92量子密钥分配协议的变形及其无条件安全性证明. 物理学报, 2002, 51(7): 1439-1447. doi: 10.7498/aps.51.1439
    [20] 张权, 唐朝京, 高峰. 量子Turbo码. 物理学报, 2002, 51(1): 15-20. doi: 10.7498/aps.51.15
计量
  • 文章访问数:  4442
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2021-11-08
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-05

/

返回文章
返回