-
采用格子Boltzmann方法研究了孔隙尺度下多孔介质内含流固溶解反应的互溶驱替过程, 重点研究了被驱替流体与驱替流体黏性差异较大的情况下, 溶解反应引起的多孔介质内部结构变化对驱替过程的影响; 定量分析了不同达姆科勒数及佩克莱数下多孔介质孔隙率和驱替过程驱替效率随时间的演变. 研究结果表明: 达姆科勒数较大时, 溶解反应的发生会在多孔介质内部生成虫洞, 导致一部分被驱替流体不能被波及, 驱替流体沿虫洞离开多孔介质, 造成驱替效率的减少. 在此基础上, 随着达姆科勒数的增大, 孔隙率变化越大, 生成的虫洞越宽, 最终驱替效率变大, 但仍小于无溶解反应时的驱替效率; 随着佩克莱数的增大, 指进增长速度越快, 孔隙率变化越小, 驱替效率越小.
-
关键词:
- 多孔介质 /
- 互溶驱替 /
- 溶解反应 /
- 格子Boltzmann方法
The miscible displacement with fluid-solid dissolution reaction in a porous medium is a typical process in many industrial applications, such as underground-water pollution decontamination, and oil recovery or geological sequestration of carbon dioxide. It is a significant problem in engineering and physics applications. As is well known, the dissolution reaction can change the structure of the porous medium, which will have a great influence on the miscible displacement process. However, the relationship between the displacement process and the dissolution reaction in a porous medium has not been fully studied. In this study, the miscible displacement with dissolution in a porous medium is simulated by a lattice Boltzmann method (LBM). The study focuses on the influence of the internal structure change on the displacement process, and the further quantitative analyzing of the changes of the porosity and displacement efficiency by changing the Damkohler number (Da) and the Pèlcet number (Pe). The results show that when Da is large enough, the dissolution reaction will generate a few wormholes in the porous medium, and the displacement fluid will leave the porous medium along the wormholes, resulting in the decrease of the displacement efficiency. As Da increases, the reaction goes faster, the rate of change in porosity increases, and the wormholes become wider, thereby indeed yielding a larger displacement efficiency. With the increase of Pe, the fingerings develop faster, the rate of change in porosity decreases, and the displacement efficiency decreases as well.[1] Cubillas P, Kohler S, Prieto M, Causserand C, Oelkers E H 2005 Geochim. Cosmochim. Acta 69 5459Google Scholar
[2] Chen Y, Valocchi A J, Kang Q, Viswanathan H S 2019 Water Resour. Res. 55 11144Google Scholar
[3] Smith M M, Sholokhova Y, Hao Y, Carroll S A 2013 Adv. Water Resour. 62 370Google Scholar
[4] Saffman P G, Taylor G I 1958 Proc. R. Soc. London, Ser. A 245 312Google Scholar
[5] Zimmerman W B, Homsy G M 1992 Phys. Fluids A 4 2348Google Scholar
[6] Wit A D, Homsy G M 1999 Phys. Fluids. 11 949Google Scholar
[7] Nagatsu Y, Ishii Y, Tada Y, Wit A D 2014 Phys. Rev. Lett. 113 024502Google Scholar
[8] Békri S, ThoverT J F, Adler P M 1995 Chem. Eng. Sci. 50 2765Google Scholar
[9] Luo H, Quintard M, Debenest G, Laouafa F 2012 Comput. Geosci. 16 913Google Scholar
[10] Oltéan C, Golfier F, Buès M A 2013 J. Geophys. Res. 118 2038Google Scholar
[11] Soulaine C, Roman S, Kovscek A, Tchelepi H A 2017 J. Fluid Mech. 827 457Google Scholar
[12] Abadi R H H, Rahimian M H 2018 Int. J. Heat Mass Transfer 127 704Google Scholar
[13] 娄钦, 李涛, 杨茉 2018 物理学报 67 234701Google Scholar
Lou Q, Li T, Yang M 2018 Acta Phys. Sin. 67 234701Google Scholar
[14] 胡晓亮, 梁宏, 王会利 2020 物理学报 69 044701Google Scholar
Huo X L, Liang H, Wang H L 2020 Acta Phys. Sin. 69 044701Google Scholar
[15] He X, Li N, Goldstein B 2000 Mol. Simul. 25 145Google Scholar
[16] Kang Q, Zhang D, Chen S, He X 2002 Phys. Rev. E 65 036318Google Scholar
[17] Kang Q, Lichtner P C, Zhang D 2006 J. Geophys. Res. 111 B05203
[18] 张婷, 施保昌, 柴振华 2015 物理学报 15 154701Google Scholar
Zhang T, Shi B C, Chai Z H 2015 Acta Phys. Sin. 15 154701Google Scholar
[19] Ju L, Zhang C H, Guo Z L 2020 Int. J. Heat Mass Transfer 150 119314Google Scholar
[20] Meng X H, Sun H R, Guo Z L, Yang X F 2020 Adv. Water Resour. 142 103640
[21] Rakotomalala N, Salin D, Watzky P 1997 J. Fluid Mech. 338 277Google Scholar
[22] Islam M N, Azaier J 2007 J. Porous Media 10 357Google Scholar
[23] 刘高洁, 郭照立, 施保昌 2016 物理学报 65 014702Google Scholar
Liu G J, Guo Z L, Shi B C 2016 Acta Phys. Sin. 65 014702Google Scholar
[24] Pan C, Luo L S, Miller C T 2006 Comput. Fluids 35 898Google Scholar
[25] 郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (第一版) (北京: 科学出版社) 第66页
Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Vol. 1) (Beijing: Science Press) p66 (in Chinese)
[26] Laddy A J C 1994 J. Fluid Mech. 271 285Google Scholar
[27] Wang J, Wang D, Lallemand P, Luo L S 2013 Comput. Math. Appl. 65 262Google Scholar
[28] Zhang T, Shi B C, Guo Z L, Chai Z H, Lu J H 2012 Phys. Rev. E 85 016701Google Scholar
[29] Li C, Kang Q, Viswanathan H S, Tao W Q 2014 Water Resour. Res. 50 9343Google Scholar
[30] Wang H, Alvarado V, Bagdonas D A, McLaughlin J F, Kaszuba J P, Grana D, Campbell E, Ng K 2021 Int. J. Greenhouse Gas Control 107 103283Google Scholar
[31] 霍吉祥, 宋汉周, 杜京浓, 管清晨 2015 岩土力学与工程学报 5 1013Google Scholar
Huo J X, Song H Z, Du J N, Guan Q C 2015 J. Rock. Mech. Eng. 5 1013Google Scholar
[32] Meng X H, Guo Z L 2016 Int. J. Heat Mass Transfer 100 767Google Scholar
-
-
[1] Cubillas P, Kohler S, Prieto M, Causserand C, Oelkers E H 2005 Geochim. Cosmochim. Acta 69 5459Google Scholar
[2] Chen Y, Valocchi A J, Kang Q, Viswanathan H S 2019 Water Resour. Res. 55 11144Google Scholar
[3] Smith M M, Sholokhova Y, Hao Y, Carroll S A 2013 Adv. Water Resour. 62 370Google Scholar
[4] Saffman P G, Taylor G I 1958 Proc. R. Soc. London, Ser. A 245 312Google Scholar
[5] Zimmerman W B, Homsy G M 1992 Phys. Fluids A 4 2348Google Scholar
[6] Wit A D, Homsy G M 1999 Phys. Fluids. 11 949Google Scholar
[7] Nagatsu Y, Ishii Y, Tada Y, Wit A D 2014 Phys. Rev. Lett. 113 024502Google Scholar
[8] Békri S, ThoverT J F, Adler P M 1995 Chem. Eng. Sci. 50 2765Google Scholar
[9] Luo H, Quintard M, Debenest G, Laouafa F 2012 Comput. Geosci. 16 913Google Scholar
[10] Oltéan C, Golfier F, Buès M A 2013 J. Geophys. Res. 118 2038Google Scholar
[11] Soulaine C, Roman S, Kovscek A, Tchelepi H A 2017 J. Fluid Mech. 827 457Google Scholar
[12] Abadi R H H, Rahimian M H 2018 Int. J. Heat Mass Transfer 127 704Google Scholar
[13] 娄钦, 李涛, 杨茉 2018 物理学报 67 234701Google Scholar
Lou Q, Li T, Yang M 2018 Acta Phys. Sin. 67 234701Google Scholar
[14] 胡晓亮, 梁宏, 王会利 2020 物理学报 69 044701Google Scholar
Huo X L, Liang H, Wang H L 2020 Acta Phys. Sin. 69 044701Google Scholar
[15] He X, Li N, Goldstein B 2000 Mol. Simul. 25 145Google Scholar
[16] Kang Q, Zhang D, Chen S, He X 2002 Phys. Rev. E 65 036318Google Scholar
[17] Kang Q, Lichtner P C, Zhang D 2006 J. Geophys. Res. 111 B05203
[18] 张婷, 施保昌, 柴振华 2015 物理学报 15 154701Google Scholar
Zhang T, Shi B C, Chai Z H 2015 Acta Phys. Sin. 15 154701Google Scholar
[19] Ju L, Zhang C H, Guo Z L 2020 Int. J. Heat Mass Transfer 150 119314Google Scholar
[20] Meng X H, Sun H R, Guo Z L, Yang X F 2020 Adv. Water Resour. 142 103640
[21] Rakotomalala N, Salin D, Watzky P 1997 J. Fluid Mech. 338 277Google Scholar
[22] Islam M N, Azaier J 2007 J. Porous Media 10 357Google Scholar
[23] 刘高洁, 郭照立, 施保昌 2016 物理学报 65 014702Google Scholar
Liu G J, Guo Z L, Shi B C 2016 Acta Phys. Sin. 65 014702Google Scholar
[24] Pan C, Luo L S, Miller C T 2006 Comput. Fluids 35 898Google Scholar
[25] 郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (第一版) (北京: 科学出版社) 第66页
Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Vol. 1) (Beijing: Science Press) p66 (in Chinese)
[26] Laddy A J C 1994 J. Fluid Mech. 271 285Google Scholar
[27] Wang J, Wang D, Lallemand P, Luo L S 2013 Comput. Math. Appl. 65 262Google Scholar
[28] Zhang T, Shi B C, Guo Z L, Chai Z H, Lu J H 2012 Phys. Rev. E 85 016701Google Scholar
[29] Li C, Kang Q, Viswanathan H S, Tao W Q 2014 Water Resour. Res. 50 9343Google Scholar
[30] Wang H, Alvarado V, Bagdonas D A, McLaughlin J F, Kaszuba J P, Grana D, Campbell E, Ng K 2021 Int. J. Greenhouse Gas Control 107 103283Google Scholar
[31] 霍吉祥, 宋汉周, 杜京浓, 管清晨 2015 岩土力学与工程学报 5 1013Google Scholar
Huo J X, Song H Z, Du J N, Guan Q C 2015 J. Rock. Mech. Eng. 5 1013Google Scholar
[32] Meng X H, Guo Z L 2016 Int. J. Heat Mass Transfer 100 767Google Scholar
计量
- 文章访问数: 4742
- PDF下载量: 116
- 被引次数: 0