搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超小晶粒锡掺杂CsPbBr3蓝光量子点的合成及其光学性能研究

曾凡菊 谭永前 胡伟 唐孝生 张小梅 尹海峰

引用本文:
Citation:

超小晶粒锡掺杂CsPbBr3蓝光量子点的合成及其光学性能研究

曾凡菊, 谭永前, 胡伟, 唐孝生, 张小梅, 尹海峰

Synthesis and optical properties of ultra-small Tin doped CsPbBr3 blue luminescence quantum dots

Zeng Fan-Ju, Tan Yong-Qian, Hu Wei, Tang Xiao-Sheng, Zhang Xiao-Mei, Yin Hai-Feng
PDF
HTML
导出引用
  • 近年来, 铅卤钙钛矿CsPbX3 (X = Cl, Br或I)因其具有荧光波段可调、荧光量子产率高(Photoluminescence quantum yield, PLQY)以及荧光半峰宽窄等优点而被广泛应用于光电器件领域. 然而, 与PLQY接近于100%的绿光和红光相比, 蓝光卤素钙钛矿的PLQY仍比较低. 在此, 采用过饱和结晶的方法在室温下合成了粒径低于4 nm的超小晶粒锡(Sn)掺杂CsPbBr3量子点, 并对其结构特性和光学特性进行了研究. 结果表明: 随着SnBr2添加量的增大, 量子点晶粒的粒径略微减小, 荧光发射峰发生蓝移, 粒径由3.33 nm (SnBr2为0.03 mmol)减小到2.23 nm(SnBr2为0.06 mmol时), 对应的荧光发射峰由490 nm蓝移至472 nm. 当SnBr2添加量为0.05 mmol时合成的超小晶粒锡掺杂CsPbBr3量子点显示出最优的光学性能, 其粒径约为2.91 nm, 对应的XRD各晶面衍射峰强度最强, 荧光发射峰位于472 nm处, PLQY最高, 达到了53.4%, 在空气中存放15 d后, 其荧光发射峰位置不发生明显改变, 荧光PLQY仍保留最初的80%, 为42.7%. 证明适量添加SnBr2对CsPbBr3进行锡掺杂可有效提高超小晶粒量子点的结晶性能和光学性能.
    All-inorganic perovskite CsPbX3 (X = Cl, Br and I) quantum dots (QDs) have been wildly utilized in optoelectronic devices due to their tunable photoluminescence, high photoluminescence quantum yield (PLQY), and narrow-line width photoluminescence. However, the blue luminescence PLQY of CsPbX3 perovskite quantum dots is still lower than their red and green luminescence counterparts (PLQYs nearly 100%). Here in this work, we present a handy strategy to synthesise the ultra-small blue luminescence Tin-doped CsPbBr3 perovskite QDs by supersaturated recrystallization synthetic approach at room temperature, and the particle size of as-prepared QDs is lower than 4 nm. The crystal structure and optical property of Tin doped CsPbBr3 QDs are characterized by XRD, TEM, ultraviolet-visible spectrophotometer, and fluorescence spectrophotometer. The results show that the particle size of as-prepared QDs is slightly shrunk from 3.33 nm (SnBr2 0.03 mmol) to 2.23 nm (SnBr2 0.06 mmol) as the SnBr2 adding quantity increases, but there is no obvious change in the lattice spacing of doped QDs. The partial substitution of Pb for Tin leads the optical spectra to blue-shift from 490 nm (SnBr2 0.03 mmol) to 472 nm (SnBr2 0.06 mmol). The highest PLQY and the strongest XRD diffraction of ultra-small Tin doped CsPbBr3blue luminescence QDs are obtained by adding SnBr2 0.05 mmol, and the blue luminescence peak is located at 472 nm with the PLQY of 53.4%. There is no any change in PL peak of Tin doped CsPbBr3 QDs (SnBr2 0.05 mmol) by storing it under the ambient atmosphere for 15 days, and the PLQY of Sn2+ doped QDs is still 80% of the initial after 15 days. It is concluded that the crystallization and optical property can be effectively improved in Tin doped CsPbBr3 QDs by partially replacing appropriate quantity of Pb by Tin.
      通信作者: 曾凡菊, zengfanju@cqu.edu.cn ; 胡伟, weihu@cqu.edu.cn ; 唐孝生, xstang@cqu.edu.cn
    • 基金项目: 贵州省科技计划项目(批准号: ZK[2021]245)、国家自然科学基金(批准号: 61975023, 61875211, 51602033, 61520106012)、凯里学院博士专项课题(批准号: BS202004, BS201301)、凯里学院学术新苗培养及创新探索专项课题(批准号: 黔科合平台人才[2019]01-4)和贵州省教育厅创新群体重大研究项目(批准号: 黔教合 KY 字[2018]035)资助的课题.
      Corresponding author: Zeng Fan-Ju, zengfanju@cqu.edu.cn ; Hu Wei, weihu@cqu.edu.cn ; Tang Xiao-Sheng, xstang@cqu.edu.cn
    • Funds: Project supported by Science and Technology Program of Guizhou Province, China (grant No. ZK[2021]245), the National Natural Science Foundation of China (Grant Nos.61975023, 61875211, 51602033, 61520106012), the Doctoral Project of Kaili University (Grant Nos. BS202004, BS201301), the Academic New Seedling Cultivation and Innovation Exploration Special Project of Kaili University (Grant No. Qian Ke He Ping Tai Ren Cai [2019]01-4), and the Major Research Projects of Innovative Groups in Education Department of Guizhou Province of China (Grant No. Qian Jiao He KY[2018]035).
    [1]

    Li C L, Han C, Zhang Y B, Zang Z G, Wang M, Tang X S, Du J 2017 Sol. Energy Mater. Sol. Cells 172 341Google Scholar

    [2]

    Li C L, Zang Z G, Han C, Hu Z P, Tang X S, Du J, Leng Y X, Sun K 2017 Nano Energy 40 195Google Scholar

    [3]

    Song J Z, Tao F, Li J H, Xu L M, Zhang F J, Han B N, Shan Q S, Zeng H B 2018 Adv. Mater. 30 1805409Google Scholar

    [4]

    Tang X S, Hu Z P, Chen W W, Xing X, Zang Z G, Hu W, Qiu J, Du J, Leng Y X, Jiang X F, Mai L Q 2016 Nano Energy 28 462Google Scholar

    [5]

    Zhang X, Lin H, Huang H, Reckmeier C, Zhang Y, Choy W C, Rogach A L 2016 Nano Lett. 16 1415Google Scholar

    [6]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [7]

    Shirasaki Y, Supran G J, Bawendi M G, Bulović V 2012 Nat. Photon. 7 13

    [8]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [9]

    Liu F, Zhang Y H, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S, Shen Q 2017 ACS Nano 11 10373Google Scholar

    [10]

    段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar

    Duan C C, Cheng L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [11]

    石文奇, 田宏, 陆玉新, 朱虹, 李芬, 王小霞, 刘燕文 2021 物理学报 70 087303Google Scholar

    Shi W Q, Tian H, Lu Y X, Zhu H, Li F, Wang X X, Liu Y W 2021 Acta Phys. Sin. 70 087303Google Scholar

    [12]

    Chen W W, Xin X, Zang Z G, Tang X S, Li C L, Hu W, Zhou M, Du J 2017 J. Solid State Chem. 255 115Google Scholar

    [13]

    Guner T, Demir M M 2018 Phys. Status Solidi A 215 1800120Google Scholar

    [14]

    Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [15]

    Bi C H, Wang S X, Li Q, Kershaw S V, Tian J J, Rogach A L 2019 J. Phys. Chem. Lett. 10 943Google Scholar

    [16]

    Liu H W, Wu Z N, Shao J R, Yao D, Gao H, Liu Y, Yu W L, Zhang H, Yang B 2017 ACS Nano 11 2239Google Scholar

    [17]

    van der Stam W, Geuchies J J, Altantzis T, van den Bos K H, Meeldijk J D, Van Aert S, Bals S, Vanmaekelbergh D, de Mello Donega C 2017 J. Am. Chem. Soc. 139 4087Google Scholar

    [18]

    Liu M, Zhong G H, Yin Y M, Miao J S, Li K, Wang C Q, Xu X R, Shen C, Meng H 2017 Adv. Sci. 4 1700335Google Scholar

    [19]

    Li M, Zhang X, Matras-Postolek K, Chen H S, Yang P 2018 J. Mater. Chem. C 6 5506Google Scholar

    [20]

    Pradeep K R, Chakraborty S, Viswanatha R 2019 Mater. Res. Express 6 114004Google Scholar

    [21]

    Wang H C, Wang W G, Tang A C, Tsai H Y, Bao Z, Ihara T, Yarita N, Tahara H, Kanemitsu Y, Chen S M, Liu R S 2017 Angew. Chem. Int. Edit. 56 13650Google Scholar

    [22]

    Zhang X T, Wang H, Hu Y, Pei Y X, Wang S X, Shi Z F, Colvin V L, Wang S N, Zhang Y, Yu W W 2019 J. Phys. Chem. Lett. 10 1750Google Scholar

    [23]

    Zhang X L, Cao W Y, Wang W G, Xu B, Liu S, Dai H T, Chen S M, Wang K, Sun X W 2016 Nano Energy 30 511Google Scholar

    [24]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [25]

    Wang H C, Bao Z, Tsai H Y, Tang A C, Liu R S 2018 Small 14 1702433Google Scholar

    [26]

    Huang H, Susha A S, Kershaw S V, Hung T F, Rogach A L 2015 Adv. Sci. 2 1500194Google Scholar

    [27]

    Pan G C, Bai X, Xu W, Chen X, Zhai Y, Zhu J Y, Shao H, Ding N, Xu L, Dong B, Mao Y L, Song H W 2020 ACS Appl. Mater. Interfaces 12 14195Google Scholar

    [28]

    Wang S X, Wang Y, Zhang Y, Zhang X T, Shen X Y, Zhuang X W, Lu P, Yu W W, Kershaw S V, Rogach A L 2019 J. Phys. Chem. Lett. 10 90Google Scholar

  • 图 1  锡掺杂CsPbBr3量子点的XRD谱

    Fig. 1.  XRD patterns of tin doped CsPbBr3 quantum dots.

    图 2  锡掺杂CsPbBr3量子点的TEM图谱(标尺为20 nm) (a) SnBr2为0.03 mmol; (b) SnBr2为0.05 mmol; (c) SnBr2为0.06 mmol. (a) (b)中插图为对应TEM图量子点的HRTEM图谱(标尺为2 nm)

    Fig. 2.  TEM images of tin doped CsPbBr3 quantum dots (scale bars represent 20 nm): (a) SnBr2 is 0.03 mmol; (b) SnBr2 is 0.05 mmol; (c) SnBr2 is 0.06 mmol. Inset pictures show the HRTEM of corresponding quantum dots (scale bars represent 2 nm).

    图 3  锡掺杂CsPbBr3量子点的Cs, Pb, Br和Sn元素的元素映射图像(SnBr2 为0.05 mmol), 标尺为50 nm

    Fig. 3.  Cs, Pb, Br, and Sn element mapping images of tin doped CsPbBr3 quantum dots (SnBr2 is 0.05 mmol). The scale bars represent 50 nm.

    图 4  锡掺杂CsPbBr3量子点的EDS(SnBr2为0.05 mmol)

    Fig. 4.  EDS of tin doped CsPbBr3 quantum dots (SnBr2 0.05 mmol).

    图 5  锡掺杂CsPbBr3量子点的 (a)吸收光谱; (b)荧光光谱; (c) PLQY

    Fig. 5.  (a) Absorption spectra; (b) emission spectra; (c) PLQY of tin doped CsPbBr3 quantum dots.

    图 6  锡离子掺杂CsPbBr3量子点的荧光衰减图

    Fig. 6.  Time-resolved PL decays of tin doped CsPbBr3 quantum dots.

    图 7  锡离子掺杂CsPbBr3量子点大气氛围存放1—15 d的荧光峰位置及PLQY变化

    Fig. 7.  PL peak and PLQY of tin doped CsPbBr3 quantum dots from 1 to 15 days.

    表 1  锡掺杂CsPbBr3量子点的衰减曲线拟合参数

    Table 1.  Fitting results fitted by time-resolved PL decays curve of tin doped CsPbBr3 quantum dots.

    SnBr2/
    mmol
    A1/
    %
    τ1/
    ns
    A2/
    %
    τ2/
    ns
    A3/
    %
    τ3/
    ns
    τavg/
    ns
    0.0312.363.6069.059.3318.5926.1716.09
    0.044.521.8369.019.1626.4822.9215.81
    0.057.432.0963.978.9628.6025.0717.73
    0.064.421.6569.568.1026.0321.6414.78
    下载: 导出CSV

    表 2  τr, τnr, κrκnr计算结果

    Table 2.  Calculate results of τr, τnr, κrκnr.

    SnBr2/
    mmol
    τavg/
    ns
    PLQY/
    %
    τr/
    ns
    τnr/
    ns
    κr×107/
    s–1
    κnr×107/
    s–1
    0.0316.0943.437.0728.432.703.52
    0.0415.8132.348.9523.352.044.28
    0.0517.7353.433.2038.053.012.63
    0.0614.7821.768.1118.881.475.30
    下载: 导出CSV
  • [1]

    Li C L, Han C, Zhang Y B, Zang Z G, Wang M, Tang X S, Du J 2017 Sol. Energy Mater. Sol. Cells 172 341Google Scholar

    [2]

    Li C L, Zang Z G, Han C, Hu Z P, Tang X S, Du J, Leng Y X, Sun K 2017 Nano Energy 40 195Google Scholar

    [3]

    Song J Z, Tao F, Li J H, Xu L M, Zhang F J, Han B N, Shan Q S, Zeng H B 2018 Adv. Mater. 30 1805409Google Scholar

    [4]

    Tang X S, Hu Z P, Chen W W, Xing X, Zang Z G, Hu W, Qiu J, Du J, Leng Y X, Jiang X F, Mai L Q 2016 Nano Energy 28 462Google Scholar

    [5]

    Zhang X, Lin H, Huang H, Reckmeier C, Zhang Y, Choy W C, Rogach A L 2016 Nano Lett. 16 1415Google Scholar

    [6]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [7]

    Shirasaki Y, Supran G J, Bawendi M G, Bulović V 2012 Nat. Photon. 7 13

    [8]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [9]

    Liu F, Zhang Y H, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S, Shen Q 2017 ACS Nano 11 10373Google Scholar

    [10]

    段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar

    Duan C C, Cheng L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [11]

    石文奇, 田宏, 陆玉新, 朱虹, 李芬, 王小霞, 刘燕文 2021 物理学报 70 087303Google Scholar

    Shi W Q, Tian H, Lu Y X, Zhu H, Li F, Wang X X, Liu Y W 2021 Acta Phys. Sin. 70 087303Google Scholar

    [12]

    Chen W W, Xin X, Zang Z G, Tang X S, Li C L, Hu W, Zhou M, Du J 2017 J. Solid State Chem. 255 115Google Scholar

    [13]

    Guner T, Demir M M 2018 Phys. Status Solidi A 215 1800120Google Scholar

    [14]

    Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [15]

    Bi C H, Wang S X, Li Q, Kershaw S V, Tian J J, Rogach A L 2019 J. Phys. Chem. Lett. 10 943Google Scholar

    [16]

    Liu H W, Wu Z N, Shao J R, Yao D, Gao H, Liu Y, Yu W L, Zhang H, Yang B 2017 ACS Nano 11 2239Google Scholar

    [17]

    van der Stam W, Geuchies J J, Altantzis T, van den Bos K H, Meeldijk J D, Van Aert S, Bals S, Vanmaekelbergh D, de Mello Donega C 2017 J. Am. Chem. Soc. 139 4087Google Scholar

    [18]

    Liu M, Zhong G H, Yin Y M, Miao J S, Li K, Wang C Q, Xu X R, Shen C, Meng H 2017 Adv. Sci. 4 1700335Google Scholar

    [19]

    Li M, Zhang X, Matras-Postolek K, Chen H S, Yang P 2018 J. Mater. Chem. C 6 5506Google Scholar

    [20]

    Pradeep K R, Chakraborty S, Viswanatha R 2019 Mater. Res. Express 6 114004Google Scholar

    [21]

    Wang H C, Wang W G, Tang A C, Tsai H Y, Bao Z, Ihara T, Yarita N, Tahara H, Kanemitsu Y, Chen S M, Liu R S 2017 Angew. Chem. Int. Edit. 56 13650Google Scholar

    [22]

    Zhang X T, Wang H, Hu Y, Pei Y X, Wang S X, Shi Z F, Colvin V L, Wang S N, Zhang Y, Yu W W 2019 J. Phys. Chem. Lett. 10 1750Google Scholar

    [23]

    Zhang X L, Cao W Y, Wang W G, Xu B, Liu S, Dai H T, Chen S M, Wang K, Sun X W 2016 Nano Energy 30 511Google Scholar

    [24]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [25]

    Wang H C, Bao Z, Tsai H Y, Tang A C, Liu R S 2018 Small 14 1702433Google Scholar

    [26]

    Huang H, Susha A S, Kershaw S V, Hung T F, Rogach A L 2015 Adv. Sci. 2 1500194Google Scholar

    [27]

    Pan G C, Bai X, Xu W, Chen X, Zhai Y, Zhu J Y, Shao H, Ding N, Xu L, Dong B, Mao Y L, Song H W 2020 ACS Appl. Mater. Interfaces 12 14195Google Scholar

    [28]

    Wang S X, Wang Y, Zhang Y, Zhang X T, Shen X Y, Zhuang X W, Lu P, Yu W W, Kershaw S V, Rogach A L 2019 J. Phys. Chem. Lett. 10 90Google Scholar

  • [1] 吕行, 富容国, 常本康, 郭欣, 王芝. 透射式GaAs光电阴极性能提高以及结构优化. 物理学报, 2024, 73(3): 037801. doi: 10.7498/aps.73.20231542
    [2] 马天慧, 雷作涛, 张晓萌, 付秋月, 布和巴特尔, 朱崇强, 杨春晖. 密度泛函理论研究ZnGeP2晶体中缺陷的稳定性及迁移机制. 物理学报, 2022, 71(22): 227101. doi: 10.7498/aps.71.20220610
    [3] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究. 物理学报, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [4] 曾凡菊, 谭永前, Wei Hu, 唐孝生, 张小梅, 尹海峰. 超小晶粒锡掺杂CsPbBr3蓝光量子点的合成及其光学性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211895
    [5] 刘海永, 张敏, 林国强, 韩克昌, 张林. 脉冲偏压电弧离子镀Cr-O薄膜结构及光学性能研究. 物理学报, 2015, 64(13): 138104. doi: 10.7498/aps.64.138104
    [6] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究. 物理学报, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [7] 姜艳, 刘贵立. 剪切形变对硼氮掺杂碳纳米管超晶格电子结构和光学性能的影响. 物理学报, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [8] 黄小林, 侯丽珍, 喻博闻, 陈国良, 王世良, 马亮, 刘新利, 贺跃辉. Cu/C核/壳纳米结构的气相合成、形成机理及其光学性能研究. 物理学报, 2013, 62(10): 108102. doi: 10.7498/aps.62.108102
    [9] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响. 物理学报, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [10] 章瑞铄, 刘涌, 滕繁, 宋晨路, 韩高荣. 锐钛矿相和金红石相TiO2:Nb的光电性能研究. 物理学报, 2012, 61(1): 017101. doi: 10.7498/aps.61.017101
    [11] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [12] 彭静, 徐智谋, 王双保, 董泽华. 非晶钛酸锶钡薄膜的金属有机分解法制备及其光学性能. 物理学报, 2011, 60(5): 057702. doi: 10.7498/aps.60.057702
    [13] 王志勇, 胡慧芳, 顾林, 王巍, 贾金凤. 含Stone-Wales缺陷zigzag型石墨烯纳米带的电学和光学性能研究. 物理学报, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [14] 赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭. 高性能透射式GaAs光电阴极量子效率拟合与结构研究. 物理学报, 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [15] 吴雪炜, 吴大建, 刘晓峻. 硼(氮、氟)掺杂对TiO2纳米颗粒光学性能的影响. 物理学报, 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [16] 张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤. 硼掺杂单壁碳纳米管吸附甲醛的电子结构和光学性能研究. 物理学报, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [17] 谷建峰, 付伟佳, 刘 明, 刘志文, 马春雨, 张庆瑜. 电化学沉积高c轴取向ZnO薄膜及其光学性能分析. 物理学报, 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [18] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [19] 刘爱云, 孟祥建, 薛建强, 孙璟兰, 马建华, 汪 琳, 褚君浩. 化学溶液法制备的Pb(Mg1/3Nb2/3)O3-PbTiO3薄膜的光学性能. 物理学报, 2006, 55(6): 3128-3131. doi: 10.7498/aps.55.3128
    [20] 沈 健, 刘守华, 沈自才, 孔伟金, 黄建兵, 邵建达, 范正修. 基底微缺陷对介质薄膜光学性能影响的理论研究. 物理学报, 2005, 54(10): 4920-4925. doi: 10.7498/aps.54.4920
计量
  • 文章访问数:  5985
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 修回日期:  2021-10-26
  • 上网日期:  2022-02-18
  • 刊出日期:  2022-02-20

/

返回文章
返回