搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种可用于轨道角动量的受激布里渊放大的光子晶体光纤放大器

赵丽娟 赵海英 徐志钮

引用本文:
Citation:

一种可用于轨道角动量的受激布里渊放大的光子晶体光纤放大器

赵丽娟, 赵海英, 徐志钮

Design of photonic crystal fiber amplifier based on stimulated Brillouin amplification for orbital angular momentum

Zhao Li-Juan, Zhao Hai-Ying, Xu Zhi-Niu
PDF
HTML
导出引用
  • 为了实现高纯度轨道角动量模式的传输和放大, 本文提出了一种可用于轨道角动量的受激布里渊放大的光子晶体光纤放大器并对其结构进行了设计. 利用有限元法在C波段内对该光子晶体光纤放大器的传输性能进行了系统分析, 研究结果表明, 该光子晶体光纤放大器可支持66种轨道角动量模式的高纯度传输和放大, 其传输的轨道角动量模式的纯度均高于99.4%. 通过对不同拓扑荷数的轨道角动量模式的布里渊增益谱进行系统的分析, 发现均具有较高的布里渊增益系数(> 7 × 10–9 m/W), 与现有的性能最优的OAM放大器相比提高了4—5个数量级, 实现了较高的信号增益. 该光子晶体光纤放大器的综合性能显著优于现有基于受激布里渊放大的光纤放大器和掺杂稀土离子的光纤放大器, 这使其能够稳定、准确地对OAM模式进行同步放大和长距离传输, 为轨道角动量模式激光系统的设计提供了一种可能.
    A probe made of amino acids is arranged in a linear chain and joined together by peptide bonds between the carboxyl and amino groups of adjacent amino acid residues. The sequence of amino acids in a protein is determined by a gene and encoded in the genetic code. This can happen either before the protein is used in the cell, or as part of control mechanisms. In order to transmit and amplify high-purity orbital angular momentum mode, a photonic crystal fiber amplifier based on stimulated Brillouin amplification is proposed and designed in this paper. The transmission properties of the photonic crystal fiber amplifier are systematically analyzed by using the finite element method in the C-band. The results show that this photonic crystal fiber amplifier can support the transmission and amplification of 66 orbital angular momentum modes, and all values of the purity of the orbital angular momentum modes supported by this amplifier are higher than 99.4%. By systematically analyzing the Brillouin gain spectra of orbital angular momentum modes with different topological charges, it is found that they have all high Brillouin gain coefficients (> 7 × 10–9 m/W) which are 4–5 orders of magnitude higher than the existing OAM amplifiers with the best performance, thus higher signal gain can be obtained. The comprehensive performance of the proposed photonic crystal fiber amplifier is superior to that of the existing optical fiber amplifiers based on stimulated Brillouin amplification and the optical fiber amplifiers doped with rare-earth ions. This makes the amplification and long-distance transmission of OAM mode stable and accurate and provides a possibility for designing the orbital angular momentum mode laser system.
      通信作者: 徐志钮, wzcnjxx@163.com
    • 基金项目: 国家自然科学基金(批准号: 62171185, 61775057)、河北省自然科学基金(批准号: E2019502177, E2020502010)、中央高校基本科研业务费专项资金(批准号: 2021MS072)和河北省省级科技计划(SZX2020034)资助的课题
      Corresponding author: Xu Zhi-Niu, wzcnjxx@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171185, 61775057), the Natural Science Foundation of Hebei Province, China (Grant Nos. E2019502177, E2020502010), the Fundamental Research Fund for the Central Universities, China (Grant No. 2021MS072), and the Science and Technology Program of Hebei Province, China (Grant No. SZX2020034)
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Fujisawa T, Saitoh K 2020 Photosynth. Res. 2020 1278

    [3]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [4]

    Heckenberg N R, Mcduff R, Smith C P, White A G 1992 Opt. Lett. 17 221Google Scholar

    [5]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F 2011 J. Opt. 13 064001Google Scholar

    [6]

    Bozinovic N, Golowich S, Kristensen P, Ramachandran S 2012 Opt. Lett. 37 2451Google Scholar

    [7]

    Willner A E, Huang H, Yan Y, Ren Y, Ashrafi S 2015 Adv. Opt. Photonics 7 66Google Scholar

    [8]

    Heng X B, Gan J L, Zhang Z S, Qian Q, Yang Z M 2019 Opt. Commun. 433 132Google Scholar

    [9]

    Gao W, Mu C, Li H, Yang Y, Zhu Z 2015 Appl. Phys. Lett. 107 041119Google Scholar

    [10]

    Devaux F, Passier R 2007 Eur. Phys. J. D 42 133Google Scholar

    [11]

    Prabhakar G, Liu X, Demas J, Gregg P, Ramachandran S 2018 Conference on Lasers and Electro-Optics, OSA Technical Digest

    [12]

    Sheng L W, Ba D X, Lu Z W 2019 Appl. Opt. 58 147Google Scholar

    [13]

    Li H W, Zhao B, Jin L W, Wang D M, Gao W 2019 Photosynth. Res. 7 07000748

    [14]

    Mu C, Wei G, Zhu Z, Zhang H, Pu S 2014 Asia Communications and Photonics Conference

    [15]

    Kabir M A, Ahmed K, Hassan M M, Hossain M M, Paul B K 2020 Opt. Commun. 475 126192Google Scholar

    [16]

    Kang Q, Gregg P, Jung Y, Lim E, Alam S 2015 Opt. Express 23 28341Google Scholar

    [17]

    Kumar C, Kumar G 2020 J. Opt. 49 178Google Scholar

    [18]

    曹介元, 扬开宇 1995 光通信技术 1 30

    Cao J Y, Yang K Y 1995 Optical Communication Technology 1 30

    [19]

    Liu J, Chen S, Wang H Y, Zheng S, Zhu L, Wang A, Wang L L, Du C, Wang J 2020 Research 2020 7623751

    [20]

    Pakarzadeh H, Sharif V 2019 Opt. Commun. 438 18Google Scholar

    [21]

    Zhao L J, Zhao H Y, Xu Z N, Liang R Y 2021 Commun. Theor. Phys. 73 085501

    [22]

    Chen X, Xia L, Li W, Li C 2017 Chin. Opt. Lett. 15 69Google Scholar

    [23]

    Israk M F, Razzak M A, Ahmed K, Hassan M M, Kabir M A, Hossain M N, Paula B K, Dhasarathan V 2020 Opt. Commun. 473 126003Google Scholar

    [24]

    Ghazanfari A, Li W B, Leu M C, Hilmas G E 2017 Addit. Manuf. 15 102

    [25]

    Cubillas A M, Unterkofler S, Euser T G, Etzold B J M, Jones A C, Sadler P J, Wasserscheid P, Russell P St J 2013 Chem. Soc. Rev. 42 8629Google Scholar

    [26]

    Ebendorff-Heidepriem H, Schuppich J, Dowler A, Lima-Marques L, Monro T M 2014 Opt. Mater. Express 4 1494Google Scholar

    [27]

    Hicham El H, Youcef O, Laurent B, Géraud B, Bruno C, Aziz B, Sylvain G, Mohamed B 2012 Opt. Express 20 29751Google Scholar

    [28]

    Vienne G, Xu Y, Jakobsen C, Deyerl H, Jensen J B, Sørensen T, Hansen T P, Huang Y, Terrel M, Lee R K, Mortensen N A, Broeng J, Simonsen H, Bjarklev A, Yariv A 2004 Opt. Express 12 3500Google Scholar

    [29]

    Issa N A, Eijkelenborg M A V, Fellew M, Cox F, Henry G, Large M C J 2004 Opt. Express 29 1336

    [30]

    Baek J H, Song D S, Hwang I, Lee K H, Lee Y H, Ju Y G, Kondo T, Miyamoto T, Koyama F 2004 Opt. Express 12 859Google Scholar

    [31]

    Sun C, Wang W, Jia H 2020 Opt. Commun. 458 124757Google Scholar

  • 图 1  光子晶体光纤横截面示意图

    Fig. 1.  Schematic diagram of the proposed PCF.

    图 2  PCF放大器支持的OAM模式数量随r的变化

    Fig. 2.  Number of OAM modes supported by the SBA-PCFA varies with r.

    图 3  不同拓扑荷的OAM模式的BGS随纤芯半径变化 (a) l = 1; (b) l = 4; (c) l = 8 (d) l = 12; (e) l = 14; (f) g0r的变化

    Fig. 3.  The BGS of OAM modes with different topological charges varies with r: (a) l = 1; (b) l = 4; (c) l = 8; (d) l = 12; (e) l = 14; (f) g0 varies with r.

    图 4  (a)支持的OAM模式数量随a的变化; (b) g0a的变化

    Fig. 4.  (a) Number of supported OAM modes varies with a; (b) g0 varies with a.

    图 5  模场分布 (a) EH2,1; (b) HE5,1; (c) HE10,1; (d) EH14,1

    Fig. 5.  Intensity of the electric field: (a) EH2,1; (b) HE5,1; (c) HE10,1; (d) EH14,1.

    图 6  有效折射率差与波长的关系

    Fig. 6.  Relationship between the differences in effective refractive index of different modes with wavelength.

    图 7  不同模式的纯度与波长的关系

    Fig. 7.  Relationship between the mode purity and wavelength for different modes.

    图 8  (a) 有效模场面积和(b) 非线性系数随波长的变化

    Fig. 8.  Relationship between wavelength and (a) the effective mode area, (b) nonlinear coefficient for different modes.

    图 9  不同模式的色散与波长的关系

    Fig. 9.  Relationship between dispersion and wavelength for different modes.

    图 10  不同模式的限制性损耗与波长的关系

    Fig. 10.  The relationship between confinement and wavelength for different modes.

    图 11  不同拓扑荷数的OAM模式的BGS (a) 1530 nm; (b) 1540 nm; (c) 1550 nm; (d) 1560 nm

    Fig. 11.  BGS of OAM modes with different topological charge: (a) 1530 nm; (b) 1540 nm; (c) 1550 nm; (d) 1560 nm.

    图 12  布里渊增益谱特征参数随拓扑荷数的变化 (a) 最大布里渊增益系数; (b) 布里渊频移; (c) 线宽

    Fig. 12.  Change of the characteristic parameters of BGS with topological charge: (a) g0; (b) υB; (c) ГB.

    图 13  阈值随拓扑荷数的变化 (a) Leff = 0.4 m; (b) Leff = 10 m

    Fig. 13.  Values of threshold change with topological charge when (a) Leff = 0.4 m, (b) Leff = 10 m.

    图 14  光纤有效长度为 (a) 0.4 m和 (b) 10 m时信号增益随泵浦光能量的变化

    Fig. 14.  Gain changes with the pump energy in the SBA-PCFA with an effective optical fiber length of (a) 0.4 m and (b) 10 m.

    图 15  制造误差的影响 (a) 支持的OAM模式数量; (b) 最大布里渊增益系数

    Fig. 15.  Influence of manufacturing error on (a) the number of supported OAM modes, and (b) the max Brillouin gain.

    表 1  Schott SF2的Sellmeier系数

    Table 1.  Sellmeier coefficients of Schott SF2.

    CoefficientB1C1/µm2B2C2/µm2B3C3/µm2
    Value1.47343130.01090190.163681850.0585683691.36920899127.404933
    下载: 导出CSV

    表 2  本文提出的SBA-PCFA的性能

    Table 2.  Properties of the proposed SBA-PCFA in this work.

    Number of supported
    OAM modes
    η/%γ/(W–1·km–1)D/(ps·km–1·nm–1)LC/(dB·cm)g0/(m·W–1)Pth/mWυB/GHzГB/MHzGain/dB
    66 > 99.4 > 25 < 45 < 10–5 > 7 × 10–9 < 14.18—8.712.6—14.4 < 1697.5
    下载: 导出CSV

    表 3  本文提出的SBA-PCFA与现有光纤放大器的比较

    Table 3.  Comparison between the SBA-PCFA and the existing fiber amplifier.

    Ref. [12]Ref. [13]Ref. [8]Ref. [19]Proposed
    Gain45 dB32 dB20 dB20 dB1697.5 dB
    Number of modes6386266
    下载: 导出CSV
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Fujisawa T, Saitoh K 2020 Photosynth. Res. 2020 1278

    [3]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [4]

    Heckenberg N R, Mcduff R, Smith C P, White A G 1992 Opt. Lett. 17 221Google Scholar

    [5]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F 2011 J. Opt. 13 064001Google Scholar

    [6]

    Bozinovic N, Golowich S, Kristensen P, Ramachandran S 2012 Opt. Lett. 37 2451Google Scholar

    [7]

    Willner A E, Huang H, Yan Y, Ren Y, Ashrafi S 2015 Adv. Opt. Photonics 7 66Google Scholar

    [8]

    Heng X B, Gan J L, Zhang Z S, Qian Q, Yang Z M 2019 Opt. Commun. 433 132Google Scholar

    [9]

    Gao W, Mu C, Li H, Yang Y, Zhu Z 2015 Appl. Phys. Lett. 107 041119Google Scholar

    [10]

    Devaux F, Passier R 2007 Eur. Phys. J. D 42 133Google Scholar

    [11]

    Prabhakar G, Liu X, Demas J, Gregg P, Ramachandran S 2018 Conference on Lasers and Electro-Optics, OSA Technical Digest

    [12]

    Sheng L W, Ba D X, Lu Z W 2019 Appl. Opt. 58 147Google Scholar

    [13]

    Li H W, Zhao B, Jin L W, Wang D M, Gao W 2019 Photosynth. Res. 7 07000748

    [14]

    Mu C, Wei G, Zhu Z, Zhang H, Pu S 2014 Asia Communications and Photonics Conference

    [15]

    Kabir M A, Ahmed K, Hassan M M, Hossain M M, Paul B K 2020 Opt. Commun. 475 126192Google Scholar

    [16]

    Kang Q, Gregg P, Jung Y, Lim E, Alam S 2015 Opt. Express 23 28341Google Scholar

    [17]

    Kumar C, Kumar G 2020 J. Opt. 49 178Google Scholar

    [18]

    曹介元, 扬开宇 1995 光通信技术 1 30

    Cao J Y, Yang K Y 1995 Optical Communication Technology 1 30

    [19]

    Liu J, Chen S, Wang H Y, Zheng S, Zhu L, Wang A, Wang L L, Du C, Wang J 2020 Research 2020 7623751

    [20]

    Pakarzadeh H, Sharif V 2019 Opt. Commun. 438 18Google Scholar

    [21]

    Zhao L J, Zhao H Y, Xu Z N, Liang R Y 2021 Commun. Theor. Phys. 73 085501

    [22]

    Chen X, Xia L, Li W, Li C 2017 Chin. Opt. Lett. 15 69Google Scholar

    [23]

    Israk M F, Razzak M A, Ahmed K, Hassan M M, Kabir M A, Hossain M N, Paula B K, Dhasarathan V 2020 Opt. Commun. 473 126003Google Scholar

    [24]

    Ghazanfari A, Li W B, Leu M C, Hilmas G E 2017 Addit. Manuf. 15 102

    [25]

    Cubillas A M, Unterkofler S, Euser T G, Etzold B J M, Jones A C, Sadler P J, Wasserscheid P, Russell P St J 2013 Chem. Soc. Rev. 42 8629Google Scholar

    [26]

    Ebendorff-Heidepriem H, Schuppich J, Dowler A, Lima-Marques L, Monro T M 2014 Opt. Mater. Express 4 1494Google Scholar

    [27]

    Hicham El H, Youcef O, Laurent B, Géraud B, Bruno C, Aziz B, Sylvain G, Mohamed B 2012 Opt. Express 20 29751Google Scholar

    [28]

    Vienne G, Xu Y, Jakobsen C, Deyerl H, Jensen J B, Sørensen T, Hansen T P, Huang Y, Terrel M, Lee R K, Mortensen N A, Broeng J, Simonsen H, Bjarklev A, Yariv A 2004 Opt. Express 12 3500Google Scholar

    [29]

    Issa N A, Eijkelenborg M A V, Fellew M, Cox F, Henry G, Large M C J 2004 Opt. Express 29 1336

    [30]

    Baek J H, Song D S, Hwang I, Lee K H, Lee Y H, Ju Y G, Kondo T, Miyamoto T, Koyama F 2004 Opt. Express 12 859Google Scholar

    [31]

    Sun C, Wang W, Jia H 2020 Opt. Commun. 458 124757Google Scholar

  • [1] 吴航, 陈燎, 李帅, 杜禺璠, 张驰, 张新亮. 百兆赫兹重频的轨道角动量模式飞秒光纤激光器. 物理学报, 2024, 73(1): 014204. doi: 10.7498/aps.73.20231085
    [2] 吴航, 陈燎, 舒学文, 张新亮. 基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生. 物理学报, 2023, 72(4): 044201. doi: 10.7498/aps.72.20221928
    [3] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成. 物理学报, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [4] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [5] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [6] 付栋之, 贾俊亮, 周英男, 陈东旭, 高宏, 李福利, 张沛. 利用Sagnac干涉仪实现光子轨道角动量分束器. 物理学报, 2015, 64(13): 130704. doi: 10.7498/aps.64.130704
    [7] 赵楠, 陈瑰, 王一礴, 彭景刚, 李进延. 双包层大模场面积保偏掺镱光子晶体光纤研究. 物理学报, 2014, 63(2): 024202. doi: 10.7498/aps.63.024202
    [8] 王鑫, 娄淑琴, 鹿文亮. 新型三角芯抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [9] 娄淑琴, 鹿文亮, 王鑫. 新型抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [10] 陈瑰, 蒋作文, 彭景刚, 李海清, 戴能利, 李进延. 空气包层大模场面积掺镱光子晶体光纤研究. 物理学报, 2012, 61(14): 144206. doi: 10.7498/aps.61.144206
    [11] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [12] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [13] 齐跃峰, 乔汉平, 毕卫红, 刘燕燕. 热激法光子晶体光纤光栅制备工艺中热传导特性研究. 物理学报, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [14] 郭艳艳, 侯蓝田. 全固态八边形大模场光子晶体光纤的设计. 物理学报, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [15] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器. 物理学报, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [16] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [17] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [18] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [19] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究. 物理学报, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [20] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
计量
  • 文章访问数:  4641
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 修回日期:  2021-11-16
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回