搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

托卡马克装置中等离子体环向旋转对三维响应场的影响

李春雨 郝广周 刘钺强 王炼 刘艺慧子

引用本文:
Citation:

托卡马克装置中等离子体环向旋转对三维响应场的影响

李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子

Influence of toroidal rotation on plasma response to external RMP fields in tokamak

Li Chun-Yu, Hao Guang-Zhou, Liu Yue-Qiang, Wang Lian, Liu Yi-Hui-Zi
PDF
HTML
导出引用
  • 本文利用MARS-F程序, 数值研究了HL-2M托卡马克装置高比压等离子体中,环向旋转对外加共振磁扰动场的响应特性的影响. 研究发现, 等离子体响应显著改变共振磁扰动的谱分布, 并影响等离子体内部共振磁扰动场与共振磁扰动线圈电流相位差的依赖关系, 从而改变有理面处径向扰动场的幅值. 当边界旋转频率较小时, 在最外有理面处, 等离子体响应对外加共振磁扰动场有明显的放大效应. 通常, 边缘局域模的控制效果依赖于最外有理面处共振磁扰动场的幅度, 因此可通过控制旋转剖面实现对共振磁扰动场的调控, 进而优化边缘局域模的控制方案.
    The type-I edge localized mode (ELM) is a critical event associated with magneto-hydrodynamic(MHD) instabilities occurring in tokamak high-confinement (H-mode) discharges, that leads to huge heat loads on the plasma phasing components (PFC) and may result in material damages. It is important to effectively control large ELMs, in order to ensure safe operation of the future reactor-scale devices such as ITER and DEMO. Resonant magnetic perturbation (RMP) has been experimentally demonstrated to be a mature and robust technique for controlling ELMs. A set of parameters, such as the edge safety factor, the plasma flow, the RMP coil geometry and the spectrum of the applied external field, have been found to play important roles in controlling ELMs by RMP. Furthermore, the plasma pressure is known to affect the plasma response to the RMP field, in particular near the no-wall beta limit. This is because high plasma pressure drives the resonant field amplification of the external field by the plasma response. The ITER 10 MA steady state scenario will be operated near the no-wall stability limit. The new tokamak device HL-2M will also operate in the relatively high-beta regimes. On the other hand, more investigations are still needed to understand the influence of toroidal flow on the high-beta plasma response. This work employs a single fluid toroidal model to compute the plasma RMP response in HL-2M, emphasizing on the roles of two key physical quantities: the plasma resistivity and the toroidal rotation. The former allows penetration of the external RMP field into the plasma, while the latter mainly provides screening effect on the resonant field component. More specifically, the MARS-F code is utilized to study the plasma response to the externally applied n =1 ( n is the toroidal mode number) RMP field for high-beta HL-2M discharges, while varying the plasma toroidal rotation profile. The plasma response is found to (i) substantially modify the poloidal spectrum of the applied vacuum RMP field, (ii) change the amplitude of the resonant radial field amplitude near the plasma edge, and (iii) affect optimal current phasing between the two rows of RMP coils on HL-2M. A sufficiently slow toroidal flow near the plasma edge amplifies the radial field at rational surfaces associated with the perturbation. Since the latter serves as a reliable indicator for controlling the type-I edge localized mode (Type-I ELM) by RMP, varying rotation profile near the plasma edge offers a promising approach to optimize ELM control.
      通信作者: 郝广周, haogz@swip.ac.cn
    • 基金项目: 核工业西南物理研究院创新项目(批准号: 202001XWCXRC001)和国家自然科学基金(批准号: 11775067)资助的课题.
      Corresponding author: Hao Guang-Zhou, haogz@swip.ac.cn
    • Funds: Project supported by the Innovation Program of Southwestern Institute of Physics, China (Grant No. 202001XWCXRC001), and the National Natural Science Foundation of China (Grant No. 11775067).
    [1]

    Zohm H 1996 Plasma Phys. Controlled Fusion 38 105Google Scholar

    [2]

    Connor J W 1998 Plasma Phys. Controlled Fusion 40 531Google Scholar

    [3]

    Loarte A, Saibene G, Sartori R, Becoulet M, Horton L, Eich T, Herrmann A, Laux M, Matthews G, Jachmich S, Asakura N, Chankin A, Leonard A, Porter G, Federici G, Shimada M, Sugihara M, Janeschitz G 2003 J. Nucl. Mater. 313 962Google Scholar

    [4]

    Degeling A W, Martin Y R, Lister J B, Villard L, Dokouka V N, Lukash V E, Khayrutdinov R R 2003 Plasma Phys. Controlled Fusion 45 1637Google Scholar

    [5]

    Evans T E, Moyer R A, Watkins J G, Thomas P R, Osborne T H, Boedo J A, Fenstermacher M E, Finken K H, Groebner R J, Groth M, Harris J, Jackson G L, Haye R J L, Lasnier C J, Schaffer M J, Wang G, Zeng L 2005 J. Nucl. Mater. 337 691Google Scholar

    [6]

    Kirk A, Nardon E, Akers R, Bécoulet M, De Temmerman G, Dudson B, Hnat B, Liu Y Q, Martin R, Tamain P, Taylor D, Team M 2010 Nucl. Fusion 50 034008Google Scholar

    [7]

    Suttrop W, Kirk A, Nazikian R, Leuthold N, Strumberger E, Willensdorfer M, Cavedon M, Dunne M, Fischer R, Fietz S, Fuchs J C, Liu Y Q, McDermott R M, Orain F, Ryan D A, Viezzer E, Team A U, Team D D, Team E F M 2017 Plasma Phys. Controlled Fusion 59 014049Google Scholar

    [8]

    Li L, Liu Y Q, Kirk A, Wang N, Liang Y, Ryan D, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M, Zhong F C, Team A U, Team E F M 2016 Nucl. Fusion 56 126007Google Scholar

    [9]

    Hao G Z, Li C Y, Liu Y Q, Chen H T, Wang S, Bai X, Dong G Q, He H D, Zhao Y F, Miao Y T, Zhou L N, Xu J Q, Zhang N, Sun T F, Ji X Q, Liu Y, Zhong W L, Xu M, Duan X R 2021 Nucl. Fusion 61 126031

    [10]

    陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建 2020 物理学报 69 195201Google Scholar

    Chen X Y, Mou M L, Su C Y, Chen S Y, Tang C J 2020 Acta Phys. Sin. 69 195201Google Scholar

    [11]

    汪茂泉, 赵晴初 1984 物理学报 33 449Google Scholar

    Wang M Q, Zhao J C 1984 Acta Phys. Sin. 33 449Google Scholar

    [12]

    Liu Y, Kirk A, Nardon E 2010 Phys. Plasmas 17 122502Google Scholar

    [13]

    曹琦琦, 刘悦, 王硕 2021 物理学报 70 045201Google Scholar

    Cao Q Q, Liu Y, Wang S 2021 Acta Phys. Sin. 70 045201Google Scholar

    [14]

    Liu Y 2006 Plasma Phys. Controlled Fusion 48 969Google Scholar

    [15]

    苏春燕, 牟茂淋, 陈少永, 郭文平, 唐昌建 2021 物理学报 70 095207Google Scholar

    Su C Y, Mou M L, Chen S Y, Guo W P, Tang J C 2021 Acta Phys. Sin. 70 095207Google Scholar

    [16]

    Liu Y, Ham C J, Kirk A, Li L, Loarte A, Ryan D A, Sun Y, Suttrop W, Yang X, Zhou L 2016 Plasma Phys. Controlled Fusion 58 114005Google Scholar

    [17]

    Xiao J, Sun T, Rao B, Yang Y, Ji X, Li X, Liu Y 2020 Nucl. Eng. Des. 158 111866Google Scholar

    [18]

    Li L, Liu Y Q, Liang Y, Wang N, Luan Q, Zhong F C, Liu Y 2016 Nucl. Fusion 56 092008Google Scholar

    [19]

    Fenstermacher M E, Evans T E, Osborne T H, Schaffer M J, Aldan M P, Moyer R A, Snyder P B, Groebner R J, Jakubowski M, Leonard A W, Schmitz O 2014 Phys. Plasmas 13

    [20]

    Jeon Y M, Park J K, Yoon S W, Ko W H, Lee S G, Lee K D, Yun G S, Nam Y U, Kim W C, Kwak J G, Lee K S, Kim H K, Yang H L 2012 Phys. Rev. Lett. 109 035004Google Scholar

    [21]

    Kamiya K, Asakura N, Boedo J, Eich T, Federici G, Fenstermacher M, Finken K, Herrmann A, Terry J, kirk A, Koch B, Loarte A, Maingi R, Maqueda R, Nardon E, Oyama N, Sartori R 2007 Plasma Phys. Controlled Fusion 49 S43Google Scholar

    [22]

    Li L, Liu Y Q, Wang N, Kirk A, Koslowski H R, Liang Y, Loarte A, Ryan D, Zhong F C 2017 Plasma Phys. Controlled Fusion 59 044005Google Scholar

    [23]

    Liu Y, Kirk A, Li L, In Y, Nazikian R, Sun Y, Suttrop W, Lyons B, Ryan D, Wang S, Yang X, Zhou L, Team E F M 2017 Phys. Plasmas 24 056111Google Scholar

  • 图 1  (a) HL-2M装置真空室壁(蓝色)和等离子体边界 (红色)极向截面示意图, 以及RMP线圈极向位置(红色方块); (b) RMP线圈的三维几何位形, 图中方框的红色和蓝色示意RMP线圈不同的电流方向, 这里展示的是环向模数$ n=1 $, 相位差为180°的示意图

    Fig. 1.  (a) Wall shapes (blue lines) of HL-2M, plasma boundary (red line) and the poloidal location of RMP coils (red squares); (b) geometry of the RMP coils. Red and blue colors indicate the different directions of RMP current flow. (b) shows a $ n=1 $ case with a toroidal phase difference $\Delta \phi =180°$.

    图 2  HL-2M上等离子体平衡的径向剖面 (a) 由$ {B}_{0}^{2}/{\mu }_{0} $归一化的压强剖面; (b) 归一化的密度剖面; (c) 由磁轴处阿尔芬频率归一化的旋转频率剖面‘p1’和‘p2’; (d)安全因子剖面

    Fig. 2.  The radial profiles of the HL-2M plasma equilibrium used in this study: (a) The plasma equilibrium pressure normalized by $ {B}_{0}^{2}/{\mu }_{0} $; (b) the normalized plasma density; (c) the plasma toroidal rotation, normalized by the Alfven frequency at the magnetic axis; (d) the safety factor profile.

    图 3  真空和包含等离子体响应的最后一个有理面处径向扰动场共振分量($ {b}_{\mathrm{r}\mathrm{e}\mathrm{s}}^{1} $)随上下组线圈(环向模数 $ n=1 $)电流相位差$ \Delta \phi $的变化

    Fig. 3.  The resonant radial field amplitude ($ {b}_{\mathrm{r}\mathrm{e}\mathrm{s}}^{1} $) at the last rational surface of the vacuum RMP field and the total RMP field including the resistive plasma response, while scanning the coil phasing $ \Delta \phi $ for the $ n=1 $ configuration.

    图 4  (a), (b) 在最优相位差${\Delta \phi }_{\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}}=-130°$情况下, 真空RMP($ n=1 $)场和总的RMP场(考虑了等离子体响应场)共振分量径向分布的对比; (c), (d)对应选取最差相位${{\Delta }\phi }_{\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{t}}=50^\circ$的对比. (a)和(c)展示的是共振傅里叶分量的径向分布对比, (b)和(d)展示的是有理面处相应共振分量的对比. p1和p2分别表示不同的旋转速度剖面(图2(c)所示)

    Fig. 4.  Comparison of the n = 1 vacuum RMP field and the total field perturbation including the plasma response, for the resonant radial field components assuming: (a), (b) The coil phasing ${\Delta \phi }_{\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}}=-130°$; (c), (d) the coil phasing ${{\Delta }\phi }_{\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{t}}=50°$. Shown in left panels are radial profiles of all resonant poloidal harmonics and in right panels the resonant field amplitude at the corresponding rational surfaces indicated by the vertical dashed lines in Figure (a) and Figure (c). p1 and p2 denote the adopted different rotation profiles as shown in Fig. 2(c).

    图 5  真空径向场和总径向场的不同极向模数傅里叶谐波沿径向的最大振幅比较, 实心为$m=2, 3, \cdots , 10$, 的共振谐波, 空心为非共振谐波. p1和p2分别表示不同的旋转速度剖面(图2(c)所示). 这里选取了最优相位${{\Delta }\phi }_{\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}}=-130^\circ$

    Fig. 5.  Comparison of the maximal amplitude (along the minor radius) of the poloidal Fourier harmonics of the radial magnetic field for the vacuum and total RMP. Solid and hollow markers denote the resonant (i.e. $m=2, 3, \cdots , 10$) and non-resonant harmonics, respectively. p1 and p2 denote the adopted different rotation profiles as shown in Fig. 2(c). ${{\Delta }\phi }_{\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}}=-130^\circ$ is used here.

    图 6  展示了包含(a), (b), (d), (e) 和不包含等离子体响应(c), (f)情况时$ n=1 $ RMP场在模数(m)和极向磁通($ {\psi }_{\mathrm{p}}^{1/2} $)二维空间上谱的分布情况. (a)—(c) 选取了相位$\Delta \varphi =-130^\circ$, (d)—(f) 选取了相位${\Delta }\phi =50^\circ$. p1和p2分别表示不同的旋转速度剖面(图2(c)所示)

    Fig. 6.  Computed poloidal spectra of the n = 1 RMP for the total response radial field including the plasma response (a), (b), (d), (e) and that of the vacuum radial field alone (c), (f), plotted along the poloidal harmonic number m and the plasma radial coordinate. Assumed in Figure (a)–(c) is the coil phasing $\Delta \phi =-130^\circ$. And in Figure (d)–(f) the coil phasing${\Delta }\phi =50^\circ$. p1 and p2 denote the adopted different rotation profiles as shown in Fig. 2(c).

    图 7  (a) 选取的不同旋转速度剖面; (b) 不同旋转速度剖面情况下, 最后一个有理面处共振径向扰动场($ {b}_{\mathrm{r}\mathrm{e}\mathrm{s}}^{1} $)和$ n=1 $ RMP 线圈电流相位差${\Delta }\phi$的依赖关系. p1和p2对应于图2(c)所展示了两种旋转速度剖面. (b)中垂直虚线为p1对应的最优相位差, 实心点标记不同旋转剖面分别对应的最优相位差

    Fig. 7.  (a) The chosen various rotation profiles; (b) the resonant radial field amplitude ($ {b}_{\mathrm{r}\mathrm{e}\mathrm{s}}^{1} $) at the last rational surface of the total RMP field as scanning the coil phasing ${\Delta }\phi$ for the $ n=1 $ configuration, for choosing different rotation profiles given in Figure (a). p1 and p2 denote the rotation profiles shown in Fig. 2(c). Vertical line denotes the best coil phasing for the p1 case, while the solid dots label the corresponding best coil phasing for the different rotation profiles.

    图 8  (a) 最后一个有理面处共振径向扰动场($ {b}_{\mathrm{r}\mathrm{e}\mathrm{s}}^{1} $)和边界处等离子体环向旋转之间的依赖关系. 这里选取了${\Delta }\phi =-130^\circ$; (b) 展示了(${{\Delta }\phi , \varOmega }_{\mathrm{边}\mathrm{界}}$)二维参数空间上$ {b}_{\mathrm{r}\mathrm{e}\mathrm{s}}^{1} $的分布情况

    Fig. 8.  (a) The resonant radial field amplitude ($ {b}_{\mathrm{r}\mathrm{e}\mathrm{s}}^{1} $) at the last rational surface of the total RMP field as varying the plasma toroidal rotation at edge (as shown in Fig. 7). ${\Delta }\phi =-130°$ is used; (b) contour plot of $ {b}_{\mathrm{r}\mathrm{e}\mathrm{s}}^{1} $ on the 2-D plane of (${{\Delta }\phi , \varOmega }_{\mathrm{边}\mathrm{界}}$).

  • [1]

    Zohm H 1996 Plasma Phys. Controlled Fusion 38 105Google Scholar

    [2]

    Connor J W 1998 Plasma Phys. Controlled Fusion 40 531Google Scholar

    [3]

    Loarte A, Saibene G, Sartori R, Becoulet M, Horton L, Eich T, Herrmann A, Laux M, Matthews G, Jachmich S, Asakura N, Chankin A, Leonard A, Porter G, Federici G, Shimada M, Sugihara M, Janeschitz G 2003 J. Nucl. Mater. 313 962Google Scholar

    [4]

    Degeling A W, Martin Y R, Lister J B, Villard L, Dokouka V N, Lukash V E, Khayrutdinov R R 2003 Plasma Phys. Controlled Fusion 45 1637Google Scholar

    [5]

    Evans T E, Moyer R A, Watkins J G, Thomas P R, Osborne T H, Boedo J A, Fenstermacher M E, Finken K H, Groebner R J, Groth M, Harris J, Jackson G L, Haye R J L, Lasnier C J, Schaffer M J, Wang G, Zeng L 2005 J. Nucl. Mater. 337 691Google Scholar

    [6]

    Kirk A, Nardon E, Akers R, Bécoulet M, De Temmerman G, Dudson B, Hnat B, Liu Y Q, Martin R, Tamain P, Taylor D, Team M 2010 Nucl. Fusion 50 034008Google Scholar

    [7]

    Suttrop W, Kirk A, Nazikian R, Leuthold N, Strumberger E, Willensdorfer M, Cavedon M, Dunne M, Fischer R, Fietz S, Fuchs J C, Liu Y Q, McDermott R M, Orain F, Ryan D A, Viezzer E, Team A U, Team D D, Team E F M 2017 Plasma Phys. Controlled Fusion 59 014049Google Scholar

    [8]

    Li L, Liu Y Q, Kirk A, Wang N, Liang Y, Ryan D, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M, Zhong F C, Team A U, Team E F M 2016 Nucl. Fusion 56 126007Google Scholar

    [9]

    Hao G Z, Li C Y, Liu Y Q, Chen H T, Wang S, Bai X, Dong G Q, He H D, Zhao Y F, Miao Y T, Zhou L N, Xu J Q, Zhang N, Sun T F, Ji X Q, Liu Y, Zhong W L, Xu M, Duan X R 2021 Nucl. Fusion 61 126031

    [10]

    陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建 2020 物理学报 69 195201Google Scholar

    Chen X Y, Mou M L, Su C Y, Chen S Y, Tang C J 2020 Acta Phys. Sin. 69 195201Google Scholar

    [11]

    汪茂泉, 赵晴初 1984 物理学报 33 449Google Scholar

    Wang M Q, Zhao J C 1984 Acta Phys. Sin. 33 449Google Scholar

    [12]

    Liu Y, Kirk A, Nardon E 2010 Phys. Plasmas 17 122502Google Scholar

    [13]

    曹琦琦, 刘悦, 王硕 2021 物理学报 70 045201Google Scholar

    Cao Q Q, Liu Y, Wang S 2021 Acta Phys. Sin. 70 045201Google Scholar

    [14]

    Liu Y 2006 Plasma Phys. Controlled Fusion 48 969Google Scholar

    [15]

    苏春燕, 牟茂淋, 陈少永, 郭文平, 唐昌建 2021 物理学报 70 095207Google Scholar

    Su C Y, Mou M L, Chen S Y, Guo W P, Tang J C 2021 Acta Phys. Sin. 70 095207Google Scholar

    [16]

    Liu Y, Ham C J, Kirk A, Li L, Loarte A, Ryan D A, Sun Y, Suttrop W, Yang X, Zhou L 2016 Plasma Phys. Controlled Fusion 58 114005Google Scholar

    [17]

    Xiao J, Sun T, Rao B, Yang Y, Ji X, Li X, Liu Y 2020 Nucl. Eng. Des. 158 111866Google Scholar

    [18]

    Li L, Liu Y Q, Liang Y, Wang N, Luan Q, Zhong F C, Liu Y 2016 Nucl. Fusion 56 092008Google Scholar

    [19]

    Fenstermacher M E, Evans T E, Osborne T H, Schaffer M J, Aldan M P, Moyer R A, Snyder P B, Groebner R J, Jakubowski M, Leonard A W, Schmitz O 2014 Phys. Plasmas 13

    [20]

    Jeon Y M, Park J K, Yoon S W, Ko W H, Lee S G, Lee K D, Yun G S, Nam Y U, Kim W C, Kwak J G, Lee K S, Kim H K, Yang H L 2012 Phys. Rev. Lett. 109 035004Google Scholar

    [21]

    Kamiya K, Asakura N, Boedo J, Eich T, Federici G, Fenstermacher M, Finken K, Herrmann A, Terry J, kirk A, Koch B, Loarte A, Maingi R, Maqueda R, Nardon E, Oyama N, Sartori R 2007 Plasma Phys. Controlled Fusion 49 S43Google Scholar

    [22]

    Li L, Liu Y Q, Wang N, Kirk A, Koslowski H R, Liang Y, Loarte A, Ryan D, Zhong F C 2017 Plasma Phys. Controlled Fusion 59 044005Google Scholar

    [23]

    Liu Y, Kirk A, Li L, In Y, Nazikian R, Sun Y, Suttrop W, Lyons B, Ryan D, Wang S, Yang X, Zhou L, Team E F M 2017 Phys. Plasmas 24 056111Google Scholar

  • [1] 龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏. HL-2A托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运. 物理学报, 2024, 73(8): 088901. doi: 10.7498/aps.73.20231749
    [2] 樊浩, 陈少永, 牟茂淋, 刘泰齐, 张业民, 唐昌建. 低杂波注入对剥离气球模的作用. 物理学报, 2024, 73(9): 095204. doi: 10.7498/aps.73.20240130
    [3] 金仡飞, 张洪明, 尹相辉, 吕波, CheonhoBae, 叶凯萱, 盛回, 王士凡, 赵海林, 顾帅, 袁泓, 林子超, 傅盛宇, 卢迪安, 符佳, 王福地. EAST上RMP驱动等离子体自发旋转物理机制的实验研究. 物理学报, 2024, 73(24): 245203. doi: 10.7498/aps.73.20241357
    [4] 侯玉梅, 陈伟, 邹云鹏, 于利明, 石中兵, 段旭如. HL-2A装置高能量离子驱动的比压阿尔芬本征模的扫频行为. 物理学报, 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [5] 施培万, 朱霄龙, 陈伟, 余鑫, 杨曾辰, 何小雪, 王正汹. HL-2A装置上电子回旋共振加热沉积位置影响鱼骨模主动控制效果的实验研究. 物理学报, 2023, 72(21): 215208. doi: 10.7498/aps.72.20230696
    [6] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动. 物理学报, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [7] 潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群. EAST托卡马克上共振磁扰动对锯齿行为的影响. 物理学报, 2023, 72(13): 135203. doi: 10.7498/aps.72.20230347
    [8] 周利娜, 胡汉卿, 刘钺强, 段萍, 陈龙, 张瀚予. 等离子体对共振磁扰动的流体和动理学响应的模拟研究. 物理学报, 2023, 72(7): 075202. doi: 10.7498/aps.72.20222196
    [9] 孙梓源, 王元震, 刘悦. 预测HL-2A托卡马克台基结构的MHD稳定性数值研究. 物理学报, 2022, 71(22): 225201. doi: 10.7498/aps.71.20221098
    [10] 曹琦琦, 刘悦, 王硕. ITER装置中等离子体旋转和反馈控制对电阻壁模影响的数值研究. 物理学报, 2021, 70(4): 045201. doi: 10.7498/aps.70.20201391
    [11] 苏春燕, 牟茂淋, 陈少永, 郭文平, 唐昌建. 托卡马克等离子体中共振磁扰动场放大效应对离子轨道特性的作用. 物理学报, 2021, 70(9): 095207. doi: 10.7498/aps.70.20201860
    [12] 陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建. HL-2A中环向旋转影响等离子体对共振磁扰动的响应过程. 物理学报, 2020, 69(19): 195201. doi: 10.7498/aps.69.20200519
    [13] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [14] 刘春华, 聂林, 黄渊, 季小全, 余德良, 刘仪, 冯震, 姚可, 崔正英, 严龙文, 丁玄同, 董家齐, 段旭如. HL-2A托卡马克上的边缘局域模特性初步研究. 物理学报, 2012, 61(20): 205201. doi: 10.7498/aps.61.205201
    [15] 汪红志, 蔡筱云, 王鹤, 黄清明, 陈奇特, 俞捷, 王晓琰, 陆伦, 黄勇, 程红岩, 张学龙, 李鲠颖. 基于双带宽高斯滤波器的磁共振弹性图局域频率估算算法研究与实现. 物理学报, 2011, 60(9): 090204. doi: 10.7498/aps.60.090204
    [16] 陈帝伊, 申滔, 马孝义. 参数不定的旋转圆盘在有界扰动下混沌振动的滑模变结构控制. 物理学报, 2011, 60(5): 050505. doi: 10.7498/aps.60.050505
    [17] 洪文玉, 严龙文, 王恩耀, 李 强, 钱 俊. HL-1M装置边缘等离子体结构研究. 物理学报, 2005, 54(1): 173-179. doi: 10.7498/aps.54.173
    [18] 张大成, 王鹿霞, 刘德胜, 韩圣浩, 解士杰. 扰动对一维局域模的影响. 物理学报, 2003, 52(12): 3191-3196. doi: 10.7498/aps.52.3191
    [19] 董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文. HL-1M装置超声分子束注入等离子体穿透特性的诊断. 物理学报, 2002, 51(9): 2074-2079. doi: 10.7498/aps.51.2074
    [20] 姚良骅, 冯北滨, 冯震, 董贾福, 郦文忠, 徐德明, 洪文玉. HL-1M装置高气压超声分子束加料效果. 物理学报, 2002, 51(3): 596-602. doi: 10.7498/aps.51.596
计量
  • 文章访问数:  4889
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2021-11-24
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回