-
基于一维水平光晶格的锶原子光晶格钟实验平台, 当系统的稳定度和不确定度达到10–18量级以上时, 由量子隧穿效应引起的钟频移变得不容忽视. 在浅光晶格中, 量子隧穿效应会使钟跃迁谱线发生明显的展宽现象, 因此, 本文通过研究浅光晶格中的量子隧穿现象, 为87Sr原子光晶格钟系统不确定度的评估奠定基础. 本实验在一维87Sr原子光晶格钟平台上, 利用超稳超窄线宽的698 nm激光激发87Sr冷原子1S0(
$ \left|g \right\rangle $ )→3P0($ \left|e \right\rangle $ )跃迁(即钟跃迁), 实现了对锶原子分布在特定量子态的制备. 在深光晶格中, 将原子制备到$ \left|e,{n}_{z}=1 \right\rangle $ 态后, 再绝热地降低光晶格阱深, 然后在浅光晶格中, 探测激发态的载波-边带可分辨的钟跃迁谱线. 从钟跃迁谱线中观测到载波谱线发生了明显的劈裂, 表明原子在光晶格相邻格点间产生了明显的量子隧穿现象. 通过对光晶格中量子隧穿机制的理解, 不仅有利于提高光晶格钟的不确定度, 也可为观测光晶格中费米子的自旋轨道耦合效应提供基础数据.For a one-dimensional optical lattice clock built in the horizontal direction, when the stability and uncertainty of the system reach the order of 10–18 or more, the clock frequency shift caused by the quantum tunneling effect becomes not negligible. In the shallow optical lattice, the quantum tunneling effect will cause the clock transition spectrum to be significantly broadened. So, in this paper the quantum tunneling phenomenon in the shallow optical lattice is studied, laying a foundation for the evaluation of uncertainty of 87Sr atomic optical lattice clock system. In this experiment, on the platform of one-dimensional 87Sr atomic optical lattice clock, the narrow-linewidth 1S0($ \left|g \right\rangle $ )→3P0($ \left|e \right\rangle $ ) transition (that is, the clock transition) is excited by an ultra-stable and ultra-narrow linewidth 698 nm laser, and the distribution of strontium atoms in a specific quantum state is prepared. In the deep optical lattice, after the cold 87Sr atoms in preparation reach a$ \left|e,{n}_{z}=1 \right\rangle $ state, the lattice depth of the optical lattice is adiabatically reduced. Then, the carrier-sideband resolved clock transition spectral line is detected in the shallow optical lattice. The obvious splitting of the carrier spectral line is observed from the clock transition spectral line, which indicates that the strontium atom has an obvious quantum tunneling phenomenon between the adjacent lattice sites of the optical lattice. In addition, when the lattice potential lattice depth is reduced, owing to the incommensurability of lattice light wavelength (813 nm) and clock laser wavelength (698 nm), the tunneling of atoms between adjacent lattice points will lead to spin-orbit coupling effect. Owing to the exceptionally long lifetime (120(3) s) of 3P0 state, it can not only suppress the decoherence, but also reduce the atomic loss rate caused by spontaneous emission. This has a natural advantage for studying the spin-orbit coupling of fermions. Therefore, the understanding of quantum tunneling mechanism in optical lattice is not only conducive to improving the uncertainty of the 87Sr atomic optical lattice clock, but also lays the foundation for observing the spin-orbit coupling effect of fermions on this platform.-
Keywords:
- optical lattice /
- clock transition spectrum /
- quantum state /
- tunneling phenomenon
[1] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar
[2] Oelker E, R. Huston B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Legero T, Giunta M, Holzwarth R, Riehle R, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar
[3] Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar
[4] Brewer S M, Chen J S, Hankin A M 2019 Phys. Rev. Lett. 123 033201Google Scholar
[5] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar
[6] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215Google Scholar
[7] Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185Google Scholar
[8] Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, Mcally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90Google Scholar
[9] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar
[10] Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar
[11] Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar
[12] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Ye J 2016 Phys. Rev. D 94 124043Google Scholar
[13] Sanner C, Huntemann N, Lange R, Tamm C, Peik E, Safronova M S, Porsev S G 2019 Nature 567 204Google Scholar
[14] Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar
[15] H Lignier, C Sias, D Ciampini, Y Singh, A Zenesini, O Morsch 2007 Phys. Rev. Lett. 99 220403Google Scholar
[16] Grossmann F, Dittrich T, Jung P, Hänggi P 1991 Phys. Rev. Lett. 67 516Google Scholar
[17] Lemonde P, Wolf P 2005 Phys. Rev. A 72 033409Google Scholar
[18] Beloy K, Bodine M I, Bothwell T, Brewer S M, Zhang X 2021 Nature 591 564Google Scholar
[19] Kolkowitz S, Bromley S L, Bothwell T, Wall M L, Ye J 2017 Nature 542 66Google Scholar
[20] Bromley S L, Kolkowitz S, Bothwell T, Kedar D, Safavi-Naini A, Wall M L, Salomon C, Rey A M, Ye J 2018 Nat. Phys. 14 399Google Scholar
[21] Van Hove L 1953 Phys. Rev. 89 1189Google Scholar
[22] Kim P, Odom T W, Huang J L, Lieber C M 1999 Phys. Rev. Lett. 82 1225Google Scholar
[23] Zwerger W 2003 J. Opt. B.:Quantum Semiclass. Opt. 5 S9Google Scholar
[24] Wall M L, Koller A P, Li S, Zhang X, Cooper N R, Ye J 2016 Phys. Rev. Lett. 116 035301Google Scholar
[25] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 233401Google Scholar
Lu X T, Li T, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 233401Google Scholar
[26] Lu X T, Yin M J, Li T, Wang Y B, Chang H 2020 Appl. Sci. 10 1440Google Scholar
[27] Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar
[28] Blatt S, Thomsen J W, CaMpbell G K, Ludlow A D, Swallows M D, Martin M J 2009 Phys. Rev. A 80 3590
[29] Yin M J, Wang T, Lu X T, Li T, Xia J J, Zhang X F, Chang H 2022 Phys. Rev. Lett. 128 073603
-
图 2 实验装置简图. 其中HR为高反镜, CL为凸透镜, GP为格兰-泰勒棱镜, PBS为偏振分光棱镜, PMF为保偏光纤, FNC为相位噪声抑制系统, AOM为声光调制器, PMT为光电倍增管, ULE为超稳光学参考腔, DAQ为数据采集卡, VVA为压控衰减器, AFG为信号源, MS为微波开关
Fig. 2. Experimental setup. HR, high-reflection mirror; CL, convex lens; GP, Gran Taylor prism; PBS, polarization splitting prism; PMF, polarization maintaining fiber; FNC, phase noise cancellation system; AOM, acoustic-optic modulator; PMT, photomultiplier tube; ULE, ultra-stable optical reference cavity; DAQ, data acquisition card; VVA, voltage variable attenuator; AFG, signal source; MS, microwave switch.
-
[1] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar
[2] Oelker E, R. Huston B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Legero T, Giunta M, Holzwarth R, Riehle R, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar
[3] Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar
[4] Brewer S M, Chen J S, Hankin A M 2019 Phys. Rev. Lett. 123 033201Google Scholar
[5] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar
[6] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215Google Scholar
[7] Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185Google Scholar
[8] Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, Mcally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90Google Scholar
[9] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar
[10] Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar
[11] Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar
[12] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Ye J 2016 Phys. Rev. D 94 124043Google Scholar
[13] Sanner C, Huntemann N, Lange R, Tamm C, Peik E, Safronova M S, Porsev S G 2019 Nature 567 204Google Scholar
[14] Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar
[15] H Lignier, C Sias, D Ciampini, Y Singh, A Zenesini, O Morsch 2007 Phys. Rev. Lett. 99 220403Google Scholar
[16] Grossmann F, Dittrich T, Jung P, Hänggi P 1991 Phys. Rev. Lett. 67 516Google Scholar
[17] Lemonde P, Wolf P 2005 Phys. Rev. A 72 033409Google Scholar
[18] Beloy K, Bodine M I, Bothwell T, Brewer S M, Zhang X 2021 Nature 591 564Google Scholar
[19] Kolkowitz S, Bromley S L, Bothwell T, Wall M L, Ye J 2017 Nature 542 66Google Scholar
[20] Bromley S L, Kolkowitz S, Bothwell T, Kedar D, Safavi-Naini A, Wall M L, Salomon C, Rey A M, Ye J 2018 Nat. Phys. 14 399Google Scholar
[21] Van Hove L 1953 Phys. Rev. 89 1189Google Scholar
[22] Kim P, Odom T W, Huang J L, Lieber C M 1999 Phys. Rev. Lett. 82 1225Google Scholar
[23] Zwerger W 2003 J. Opt. B.:Quantum Semiclass. Opt. 5 S9Google Scholar
[24] Wall M L, Koller A P, Li S, Zhang X, Cooper N R, Ye J 2016 Phys. Rev. Lett. 116 035301Google Scholar
[25] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 233401Google Scholar
Lu X T, Li T, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 233401Google Scholar
[26] Lu X T, Yin M J, Li T, Wang Y B, Chang H 2020 Appl. Sci. 10 1440Google Scholar
[27] Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar
[28] Blatt S, Thomsen J W, CaMpbell G K, Ludlow A D, Swallows M D, Martin M J 2009 Phys. Rev. A 80 3590
[29] Yin M J, Wang T, Lu X T, Li T, Xia J J, Zhang X F, Chang H 2022 Phys. Rev. Lett. 128 073603
计量
- 文章访问数: 5259
- PDF下载量: 89
- 被引次数: 0