-
更宽的工作频带和更低的雷达散射截面(radar cross section, RCS)一直是低可探测领域研究的热点, 然而这两者往往难以兼顾. 鉴于此, 本文提出了一种幅相同调的吸波-对消RCS减缩超表面, 通过在宽带范围内同时设计两个单元的反射相位和反射幅度, 使目标RCS在空间域和能量域分别获得10 dB以上减缩, 从而通过叠加获得20 dB以上的宽带RCS减缩. 仿真和实验结果表明, 在两种极化下, 幅相同调的吸波-对消RCS减缩超表面可以在6.10—12.15 GHz频带范围内获得20 dB以上的RCS减缩效果, 同时10 dB减缩带宽为4.3—14.2 GHz. 所设计的超表面具有减缩幅度大、减缩频带宽、质量轻、单层结构、极化稳定性好、柔性易共形等优点, 有望为低可探测材料研制以及低可探测装备性能提升提供新的技术途径.
-
关键词:
- 雷达散射截面减缩超表面 /
- 幅相同调 /
- 吸波 /
- 相位对消
Wider band and deeper radar cross section (RCS) reduction by lower profile is always a very noticeable subject in stealth material researches. Most of researchers have designed and measured the RCS reduction bandwidth with 10 dB standard, that is, the return energy is reduced by 90%. In this paper we present a dual-mechanism method to design a single-layer absorptive metasurface with wideband 20-dB RCS reduction by simultaneously combining the absorption mechanism and the phase cancellation mechanism. Firstly, the impedance condition for 20-dB RCS reduction is theoretically analyzed considering both the absorption and the phase cancellation based on the two unit cells, and the relationship between the surface impedance and the reflection phase/amplitude is revealed. According to these analyses, two unit cells with absorption performance and different reflection phases are designed and utilized to realize the absorptive metasurface. Then, we simulate the plane case and the cylinder case with the designed flexible metasurface and compare them with the counterparts with equal-sized metal. Finally, the sample is fabricated and characterized experimentally to verify the simulated results. Both numerical and experimental results show that the 7-mm-thick single-layer absorptive metasurface features a wideband 20-dB RCS within 6.10–12.15 GHz (66%). Our designed metasurface features wideband, 20-dB reduction, polarization insensitivity, light weight and flexible, promising great potential in real-world low-scattering stealth applications.[1] Fan J, Cheng Y 2020 J. Phys. D:Appl. Phys. 53 025109Google Scholar
[2] Fan J, Cheng Y, He B 2021 J. Phys. D:Appl. Phys. 54 115101Google Scholar
[3] Paquay M, Iriarte J C, Ederra I, Gonzalo R, De M P 2007 IEEE Trans. Antenn. Propag. 55 3630Google Scholar
[4] Iriarte G J C, Pereda A T, De F J L M, Ederra I 2013 IEEE Trans. Antenn. Propag. 61 6136Google Scholar
[5] Li Y, Zhang J, Qu S, Wang J, Chen H, Zhuo X, Zhang A 2014 Appl. Phys. Lett. 104 221110Google Scholar
[6] Sang D, Chen Q, Ding L, Guo M, Fu Y 2019 IEEE Trans. Antenn. Propag. 67 2604Google Scholar
[7] Yuan F, Xu H, Jia X, Wang G, Fu Y 2020 IEEE Trans. Antenn. Propag. 68 2463Google Scholar
[8] Xu H, Ma S, Ling X, Zhang X, Tang S, Cai T, Sun S, He Q, Zhou L 2018 ACS Photonics 5 1691Google Scholar
[9] Al-Nuaimi M, Wei H, Whittow W G 2020 IEEE Antenn. Wirel. Pr. 19 1048Google Scholar
[10] Yuan F, Wang G, Xu H, Cai T, Zou X, Pang Z 2017 IEEE Antenn. Wirel. Pr. 16 3188Google Scholar
[11] Yang J, Li Y, Cheng Y, Chen F, Luo H, Wang X, Gong R 2020 J. Appl. Phys. 127 235304Google Scholar
[12] Yoo M, Lim S 2014 IEEE Trans. Antenn. Propag. 62 2652Google Scholar
[13] Shen Y, Pang Y, Wang J, Ma H, Pei Z, Qu S 2015 J. Phys. D:Appl. Phys. 48 445008Google Scholar
[14] Begaud X, Lepage A, Varault S, Soiron M, Barka A 2018 Materials 11 2045Google Scholar
[15] Liu X, Lan C, Bi K, Li B, Zhao Q, Zhou J 2016 Appl. Phys. Lett. 109 062902Google Scholar
[16] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[17] Marin P, Cortina D, Hernando A 2008 IEEE Trans. Magn. 44 3934Google Scholar
[18] 刘祥萱, 陈鑫, 王煊军, 刘渊 2013 表面技术 42 104
Liu X X, Chen X, Wang X J, Liu Y 2013 Surf. Technol. 42 104
[19] Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104Google Scholar
[20] Chen X, Grzegorczyk T M, Wu B I, Pacheco J J, Kong J A 2004 Phys. Rev. E 70 016608Google Scholar
[21] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617Google Scholar
[22] Cheng Y, Chen F, Luo H 2021 Nanoscale Res. Lett. 16 12Google Scholar
[23] Cheng Y, Liu J, Chen F, Luo H, Li X 2021 Phys. Lett. A 402 127345Google Scholar
[24] Zhuang Y, Wang G, Liang J G, Zhang Q 2017 IEEE Antenn. Wirel. Pr. 16 2606Google Scholar
[25] Ji C, Huang C, Zhang X, Yang J, Song J, Luo X 2019 Opt. Express 27 23368Google Scholar
[26] Zhou L, Shen Z 2020 IEEE Antenn. Wirel. Pr. 19 1201Google Scholar
[27] Leung S, Liang C P, Tao X F, Li F F, Poo Y, Wu R X 2021 Opt. Express 29 33536Google Scholar
[28] Zhuang Y, Wang G, Liang J G, Cai T, Guo W L, Zhang Q 2017 J. Phys. D: Appl. Phys. 50 465102Google Scholar
[29] Chen W, Balanis C A, Birtcher C R, Modi A Y 2018 IEEE Antenn. Wirel. Pr. 17 343Google Scholar
[30] Malhat H A, Zainud-Deen S H, Shabayek N A 2020 Plasmonics 15 1025Google Scholar
-
图 6 (a) 复阻抗域上不同频率处|S11|= –10 dB 的椭圆曲线; (b) 满足10 dB 吸收的阻抗实部R的取值范围; (c) 满足10 dB 吸收的阻抗虚部X 的取值范围
Fig. 6. (a) The elliptic curves of |S11|= –10 dB at different frequencies in the complex impedance domain; (b) the value range of the impedance real part R that meets the 10 dB absorption; (c) the value range of the impedance imaginary part X that meets the 10 dB absorption.
图 10 在特定频率10 GHz处仿真远场图 (a) CST仿真远场3D图; (b) Matlab理论计算远场3D图; (c) CST仿真远场2D图; (d) Matlab理论计算远场2D图
Fig. 10. Simulated far-field pattern at a special frequency of 10 GHz: (a) 3D far-field pattern of CST simulated; (b) 3D far-field pattern of Matlab; (c) 2D pattern of CST simulated; (d) 2D pattern of Matlab.
表 1 相关文献研究成果比较
Table 1. Comparison of related research results.
-
[1] Fan J, Cheng Y 2020 J. Phys. D:Appl. Phys. 53 025109Google Scholar
[2] Fan J, Cheng Y, He B 2021 J. Phys. D:Appl. Phys. 54 115101Google Scholar
[3] Paquay M, Iriarte J C, Ederra I, Gonzalo R, De M P 2007 IEEE Trans. Antenn. Propag. 55 3630Google Scholar
[4] Iriarte G J C, Pereda A T, De F J L M, Ederra I 2013 IEEE Trans. Antenn. Propag. 61 6136Google Scholar
[5] Li Y, Zhang J, Qu S, Wang J, Chen H, Zhuo X, Zhang A 2014 Appl. Phys. Lett. 104 221110Google Scholar
[6] Sang D, Chen Q, Ding L, Guo M, Fu Y 2019 IEEE Trans. Antenn. Propag. 67 2604Google Scholar
[7] Yuan F, Xu H, Jia X, Wang G, Fu Y 2020 IEEE Trans. Antenn. Propag. 68 2463Google Scholar
[8] Xu H, Ma S, Ling X, Zhang X, Tang S, Cai T, Sun S, He Q, Zhou L 2018 ACS Photonics 5 1691Google Scholar
[9] Al-Nuaimi M, Wei H, Whittow W G 2020 IEEE Antenn. Wirel. Pr. 19 1048Google Scholar
[10] Yuan F, Wang G, Xu H, Cai T, Zou X, Pang Z 2017 IEEE Antenn. Wirel. Pr. 16 3188Google Scholar
[11] Yang J, Li Y, Cheng Y, Chen F, Luo H, Wang X, Gong R 2020 J. Appl. Phys. 127 235304Google Scholar
[12] Yoo M, Lim S 2014 IEEE Trans. Antenn. Propag. 62 2652Google Scholar
[13] Shen Y, Pang Y, Wang J, Ma H, Pei Z, Qu S 2015 J. Phys. D:Appl. Phys. 48 445008Google Scholar
[14] Begaud X, Lepage A, Varault S, Soiron M, Barka A 2018 Materials 11 2045Google Scholar
[15] Liu X, Lan C, Bi K, Li B, Zhao Q, Zhou J 2016 Appl. Phys. Lett. 109 062902Google Scholar
[16] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[17] Marin P, Cortina D, Hernando A 2008 IEEE Trans. Magn. 44 3934Google Scholar
[18] 刘祥萱, 陈鑫, 王煊军, 刘渊 2013 表面技术 42 104
Liu X X, Chen X, Wang X J, Liu Y 2013 Surf. Technol. 42 104
[19] Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104Google Scholar
[20] Chen X, Grzegorczyk T M, Wu B I, Pacheco J J, Kong J A 2004 Phys. Rev. E 70 016608Google Scholar
[21] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617Google Scholar
[22] Cheng Y, Chen F, Luo H 2021 Nanoscale Res. Lett. 16 12Google Scholar
[23] Cheng Y, Liu J, Chen F, Luo H, Li X 2021 Phys. Lett. A 402 127345Google Scholar
[24] Zhuang Y, Wang G, Liang J G, Zhang Q 2017 IEEE Antenn. Wirel. Pr. 16 2606Google Scholar
[25] Ji C, Huang C, Zhang X, Yang J, Song J, Luo X 2019 Opt. Express 27 23368Google Scholar
[26] Zhou L, Shen Z 2020 IEEE Antenn. Wirel. Pr. 19 1201Google Scholar
[27] Leung S, Liang C P, Tao X F, Li F F, Poo Y, Wu R X 2021 Opt. Express 29 33536Google Scholar
[28] Zhuang Y, Wang G, Liang J G, Cai T, Guo W L, Zhang Q 2017 J. Phys. D: Appl. Phys. 50 465102Google Scholar
[29] Chen W, Balanis C A, Birtcher C R, Modi A Y 2018 IEEE Antenn. Wirel. Pr. 17 343Google Scholar
[30] Malhat H A, Zainud-Deen S H, Shabayek N A 2020 Plasmonics 15 1025Google Scholar
计量
- 文章访问数: 6687
- PDF下载量: 206
- 被引次数: 0