-
应用约化摄动法推导得到用来描述含有Kappa分布电子的多组分复杂等离子体中非线性离子声孤波的Zakharov-Kuznetsov (ZK)方程. 进而获得了非线性离子声孤波的非线性强度随系统参数的变化规律. 同时, 利用Sagdeev势方法求得Sagdeev势函数, 明确了系统参数对含有Kappa分布电子的多组分复杂等离子体相图、Sagdeev势函数及非线性离子声孤波的振幅与宽度等传播特征的重要影响.
-
关键词:
- 多组分复杂等离子体 /
- (3 + 1) 维非线性离子声波 /
- 约化摄动法
The (3 + 1) dimensional nonlinear ion acoustic waves in multicomponent complex plasma with Kappa electron distribution are studied in this work. The Zakharov-Kuznetsov (ZK) equation for ion acoustic wave is investigated by the reductive perturbation method. The variation of nonlinear ion acoustic wave with system parameter is obtained. Meanwhile, the Sagdeev potential function is obtained by using the Sagdeev potential method. And the phase diagram in a two-dimensional autonomous system of the multicomponent complex plasma with Kappa electron distribution is studied. Finally, the important influence of system parameter on the phase diagram, the Sagdeev potential function and the propagating characteristics of (3 + 1) dimensional nonlinear acoustic solitary waves are discussed in detail.-
Keywords:
- multicomponent complex plasma /
- (3 + 1) dimensional nonlinear ion acoustic wave /
- reductive perturbation method
[1] Guio P, Pécseli H I 2020 Phys. Rev. E 101 043210Google Scholar
[2] Saleem H, Shan S A 2021 CASS. 366 41Google Scholar
[3] 惠小霞, 尤斌兴 2012 四川兵工学报 33 127Google Scholar
Hui X X, You B X 2012 J. Sichuan Ordnance Engineering 33 127Google Scholar
[4] Cheng X W, Zhang Z G, Yang H W 2020 Chin. Phys. B. 29 124501Google Scholar
[5] Araghi F, Miraboutalebi S, Dorranian D 2020 Indian J. Phys. 94 547Google Scholar
[6] Anguma1 S K, Habumugisha I, Nazziwa L, Jurua E, Noreen N 2017 J. Mod. Phys. 8 892Google Scholar
[7] EI-Taibany W F, EI-Labany S K, Bebery E E, Abdelghany A M 2019 EUR Phys. J. Plus. 134 457Google Scholar
[8] Moinuddin A S M, Alam M S, Talukder M R 2020 Contrib. Plasma Phys. 60 e201900124Google Scholar
[9] Prasad P K, Saha A 2021 Adv. Space Res. 68 4155Google Scholar
[10] Hameed G, Zakir U, Haque Q, Rehan M, Hadi F 2021 Chinese J. Phys. 71 466Google Scholar
[11] Kocharovsky V V, Kocharovsky V V, Nechaev A A 2021 Dokl. Phys. 66 9Google Scholar
[12] Eyelade A V, Stepanova M, Espinoza C M, Moya P S 2021 The Astrophys. J. Suppl. Ser. 253 34Google Scholar
[13] Gravanis E, Akyias E, Livad, iotis G 2021 J. Stat. Mech. 2021 053201Google Scholar
[14] Summers D, Thorne R M 1992 J. Geophys. 97 16827Google Scholar
[15] Alam M S, Talukder M R 2020 Chin. Phys. B. 29 065202Google Scholar
[16] Abbasi M M, Masood W, M Khan, Ahmad A 2020 Contrib. Plasma Phys. 60 e202000050Google Scholar
[17] Guo S M, Mei L Q, Shi W J 2013 Mod. Phys. Lett. 337 2118Google Scholar
[18] 林麦麦, 龚雪, 段文山, 杜海粟 2019 西北师范大学学报 (自然科学版) 55 44Google Scholar
Lin M M, Gong X, Duan W S, Du H S 2019 J. Northwest Normal University (Natural Science) 55 44Google Scholar
[19] Tolba R E, MoslemW M, El-Bedwehy N A, El-Labany S K 2015 Phys. Plasmas. 22 043707Google Scholar
[20] 林麦麦, 文惠珊, 于腾萱, 宋秋影 2019 西北师范大学 (自然科学版) 55 33Google Scholar
Lin M M, Wen H S, Yu T X, Song Q Y 2019 J. Northwest Normal University (Natural Science) 55 33Google Scholar
[21] Wang L 2018 M. S. Thesis (Tianjin: Tianjin University) (in Chinese)
[22] Chen H 2014 Ph. D. Dissertation (Jiangxi: Nanchang University) (in Chinese)
-
表 1 Sagdeev势
$ V\left( \phi \right) = 0 $ ,$ {\mu _{{\text{i}} + }} $ ,$ {\mu _{{\text{i}} - }} $ ,$ {\mu _{\text{b}}} $ ,$ \kappa $ 取不同值时, 对应振幅的大小Table 1. Amplitude of solitary waves with respect to
$ {\mu _{{\text{i}} + }} $ ,$ {\mu _{{\text{i}} - }} $ ,$ {\mu _{\text{b}}} $ ,$ \kappa $ at Sagdeev potential$ V\left( \phi \right) = 0 $ .$ {\mu _{{\text{i + }}}} $ 振幅 $ {\mu _{{\text{i}} - }} $ 振幅 $ {\mu _{\text{b}}} $ 振幅 $ \kappa $ 振幅 $ 0.4 $ $ 0.96 $ 0.10 $ 0.59 $ $ 0.3 $ $ 1.02 $ $ 2 $ $ 0.96 $ $ 0.6 $ 0.80 $ 0.15 $ $ 0.65 $ $ 0.5 $ $ 0.91 $ $ 4 $ $ 1.70 $ $ 0.9 $ $ 0.68 $ 0.20 $ 0.72 $ $ 0.9 $ $ 0.78 $ $ 6 $ $ 1.93 $ -
[1] Guio P, Pécseli H I 2020 Phys. Rev. E 101 043210Google Scholar
[2] Saleem H, Shan S A 2021 CASS. 366 41Google Scholar
[3] 惠小霞, 尤斌兴 2012 四川兵工学报 33 127Google Scholar
Hui X X, You B X 2012 J. Sichuan Ordnance Engineering 33 127Google Scholar
[4] Cheng X W, Zhang Z G, Yang H W 2020 Chin. Phys. B. 29 124501Google Scholar
[5] Araghi F, Miraboutalebi S, Dorranian D 2020 Indian J. Phys. 94 547Google Scholar
[6] Anguma1 S K, Habumugisha I, Nazziwa L, Jurua E, Noreen N 2017 J. Mod. Phys. 8 892Google Scholar
[7] EI-Taibany W F, EI-Labany S K, Bebery E E, Abdelghany A M 2019 EUR Phys. J. Plus. 134 457Google Scholar
[8] Moinuddin A S M, Alam M S, Talukder M R 2020 Contrib. Plasma Phys. 60 e201900124Google Scholar
[9] Prasad P K, Saha A 2021 Adv. Space Res. 68 4155Google Scholar
[10] Hameed G, Zakir U, Haque Q, Rehan M, Hadi F 2021 Chinese J. Phys. 71 466Google Scholar
[11] Kocharovsky V V, Kocharovsky V V, Nechaev A A 2021 Dokl. Phys. 66 9Google Scholar
[12] Eyelade A V, Stepanova M, Espinoza C M, Moya P S 2021 The Astrophys. J. Suppl. Ser. 253 34Google Scholar
[13] Gravanis E, Akyias E, Livad, iotis G 2021 J. Stat. Mech. 2021 053201Google Scholar
[14] Summers D, Thorne R M 1992 J. Geophys. 97 16827Google Scholar
[15] Alam M S, Talukder M R 2020 Chin. Phys. B. 29 065202Google Scholar
[16] Abbasi M M, Masood W, M Khan, Ahmad A 2020 Contrib. Plasma Phys. 60 e202000050Google Scholar
[17] Guo S M, Mei L Q, Shi W J 2013 Mod. Phys. Lett. 337 2118Google Scholar
[18] 林麦麦, 龚雪, 段文山, 杜海粟 2019 西北师范大学学报 (自然科学版) 55 44Google Scholar
Lin M M, Gong X, Duan W S, Du H S 2019 J. Northwest Normal University (Natural Science) 55 44Google Scholar
[19] Tolba R E, MoslemW M, El-Bedwehy N A, El-Labany S K 2015 Phys. Plasmas. 22 043707Google Scholar
[20] 林麦麦, 文惠珊, 于腾萱, 宋秋影 2019 西北师范大学 (自然科学版) 55 33Google Scholar
Lin M M, Wen H S, Yu T X, Song Q Y 2019 J. Northwest Normal University (Natural Science) 55 33Google Scholar
[21] Wang L 2018 M. S. Thesis (Tianjin: Tianjin University) (in Chinese)
[22] Chen H 2014 Ph. D. Dissertation (Jiangxi: Nanchang University) (in Chinese)
计量
- 文章访问数: 3619
- PDF下载量: 38
- 被引次数: 0