搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高真空构筑新型二维材料及其异质结构

李更 郭辉 高鸿钧

引用本文:
Citation:

超高真空构筑新型二维材料及其异质结构

李更, 郭辉, 高鸿钧

Novel two-dimensional materials and their heterostructures constructed in ultra-high vacuum

Li Geng, Guo Hui, Gao Hong-Jun
PDF
HTML
导出引用
  • 由于量子受限效应, 二维材料表现出很多三维材料所不具备的优异电学、光学、热学以及力学性能, 为研究人员所关注. 材料的优异物性离不开高质量材料的制备, 超高真空环境可以减少杂质分子的污染与影响, 提高二维材料的质量与性能. 本文介绍基于超高真空环境的新型二维原子晶体材料的原位制备方法, 包括利用分子束外延构筑新型二维材料、利用石墨烯插层构筑新型二维原子晶体材料异质结构以及利用扫描探针原位操纵构筑二维材料异质结构三大类. 文章回顾利用这三类方法构筑的二维材料及其物理化学性质, 比较三种方法各自的优势与局限性, 对未来二维材料制备提供一定的指引.
    Compared with the three-dimensional bulk materials, two-dimensional (2D) materials exhibit superior electronic, optical, thermal, and mechanical properties due to the reduced dimensionality. The quantum confinement effect of 2D materials gives rise to exotic physical properties, and receives extensive attention of the scientists. Lots of routes to fabricate the 2D materials have been proposed by the material scientists, including the traditional mechanical exfoliation, chemical vapor deposition, molecular beam epitaxy under ultra-high vacuum (UHV), and so on. Among them, fabricating materials under ultra-high vacuum has the advantages of constructing large-scale and high-quality samples, and is therefore widely adopted in the 2D material growth. In this paper, we review three different strategies of growing 2D materials under UHV conditions, including molecular beam epitaxy, graphene intercalation and manual manipulation by nano probes. We compare the advantages and drawbacks among those methods in creating 2D materials, and try to provide some guidance to the community, especially those who are new to the field.
      通信作者: 高鸿钧, hjgao@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2019YFA0308500, 2018YFA0305700)、国家自然科学基金(批准号: 61888102, 51991340, 52072401)和中国科学院(批准号: YSBR-003)资助的课题.
      Corresponding author: Gao Hong-Jun, hjgao@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2019YFA0308500, 2018YFA0305700), the National Natural Science Foundation of China (Grant Nos. 61888102, 51991340, 52072401), and the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Zhang X D, Xie Y 2013 Chem. Soc. Rev. 42 8187Google Scholar

    [4]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar

    [5]

    Li G, Zhang Y Y, Guo H, Huang L, Lu H L, Lin X, Wang Y L, Du S X, Gao H J 2018 Chem. Soc. Rev. 47 6073Google Scholar

    [6]

    Takeda K, Shiraishi K 1994 Phys. Rev. B 50 14916Google Scholar

    [7]

    Guzman-Verri G G, Voon L C L Y 2007 Phys. Rev. B 76 075131Google Scholar

    [8]

    Liu C C, Jiang H, Yao Y G 2011 Phys. Rev. B 84 195430Google Scholar

    [9]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [10]

    Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B 2010 Appl. Phys. Lett. 97 223109Google Scholar

    [11]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [12]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano Lett. 12 3507Google Scholar

    [13]

    Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N, Kawai M 2012 Appl. Phys. Express 5 045802Google Scholar

    [14]

    Onoda J, Yabuoshi K, Miyazaki H, Sugimoto Y 2017 Phys. Rev. B 96 241302Google Scholar

    [15]

    Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, Takagi N 2013 Phys. Rev. Lett. 110 076801Google Scholar

    [16]

    Feng Y, Liu D F, Feng B J, Liu X, Zhao L, Xie Z J, Liu Y, Liang A J, Hu C, Hu Y, He S L, Liu G D, Zhang J, Chen C T, Xu Z Y, Chen L, Wu K H, Liu Y T, Lin H, Huang Z Q, Hsu C H, Chuang F C, Bansil A, Zhou X J 2016 Proc. Natl. Acad. Sci. U. S. A. 113 14656Google Scholar

    [17]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501Google Scholar

    [18]

    Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [19]

    Huang L, Zhang Y F, Zhang Y Y, Xu W Y, Que Y D, Li E, Pan J B, Wang Y L, Liu Y Q, Du S X, Pantelides S T, Gao H J 2017 Nano Lett. 17 1161Google Scholar

    [20]

    Brumfiel G 2013 Nature 495 152Google Scholar

    [21]

    De Padova P, Ottaviani C, Quaresima C, Olivieri B, Imperatori P, Salomon E, Angot T, Quagliano L, Romano C, Vona A, Muniz-Miranda M, Generosi A, Paci B, Le Lay G 2014 2 D Mater. 1 021003

    [22]

    Du Y, Zhuang J C, Wang J O, Li Z, Liu H, Zhao J, Xu X, Feng H, Chen L, Wu K, Wang X, Dou S X 2016 Sci. Adv. 2 e1600067Google Scholar

    [23]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227Google Scholar

    [24]

    Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X, Gao H J 2014 Adv. Mater. 26 4820Google Scholar

    [25]

    Qin Z H, Pan J B, Lu S Z, Yan S, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046Google Scholar

    [26]

    Acun A, Zhang L, Bampoulis P, Farmanbar M, van Houselt A, Rudenko A N, Lingenfelder M, Brocks G, Poelsema B, Katsnelson M I, Zandvliet H J W 2015 J. Phys. Condens. Matter 27 442001

    [27]

    Davila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002Google Scholar

    [28]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510Google Scholar

    [29]

    Zhang L, Bampoulis P, Rudenko A N, Yao Q, van Houselt A, Poelsema B, Katsnelson M I, Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804Google Scholar

    [30]

    Lin C H, Huang A, Pai W W, Chen W C, Chen T Y, Chang T R, Yukawa R, Cheng C M, Mou C Y, Matsuda I, Chiang T C, Jeng H T, Tang S J 2018 Phys. Rev. Mater. 2 024003Google Scholar

    [31]

    Chou B H, Huang Z Q, Hsu C H, Chuang F C, Liu Y T, Lin H, Bansil A 2014 New J. Phys. 16 115008Google Scholar

    [32]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [33]

    Xu C Z, Chan Y H, Chen P, Wang X X, Flototto D, Hlevyack J A, Bian G, Mo S K, Chou M Y, Chiang T C 2018 Phys. Rev. B 97 035122Google Scholar

    [34]

    Zang Y Y, Jiang T, Gong Y, Guan Z Y, Liu C, Liao M H, Zhu K J, Li Z, Wang L L, Li W, Song C L, Zhang D, Xu Y, He K, Ma X C, Zhang S C, Xue Q K 2018 Adv. Funct. Mater. 28 1802723Google Scholar

    [35]

    Xu C Z, Chan Y H, Chen Y G, Chen P, Wang X X, Dejoie C, Wong M H, Hlevyack J A, Ryu H J, Kee H Y, Tamura N, Chou M Y, Hussain Z, Mo S K, Chiang T C 2017 Phys. Rev. Lett. 118 146402Google Scholar

    [36]

    Zheng X H, Zhang J F, Tong B, Du R R 2020 2 D Mater. 7 011001

    [37]

    Deng J L, Xia B Y, Ma X C, Chen H Q, Shan H, Zhai X F, Li B, Zhao A D, Xu Y, Duan W H, Zhang S C, Wang B, Hou J G 2018 Nat. Mater. 17 1081Google Scholar

    [38]

    Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, Xian L D, Rubio A, Le Lay G 2018 2 D Mater. 5 025002

    [39]

    Yuhara J, Le Lay G 2020 Jpn. J. Appl. Phys. 59 SN0801Google Scholar

    [40]

    Dong X, Zhang L Z, Yoon M N, Zhang P P 2021 2 D Mater. 8 045003

    [41]

    Yu X L, Huang L, Wu J S 2017 Phys. Rev. B 95 125113Google Scholar

    [42]

    Huang Z Q, Hsu C H, Chuang F C, Liu Y T, Lin H, Su W S, Ozolins V, Bansil A 2014 New J. Phys. 16 105018Google Scholar

    [43]

    Yu X L, Wu J S 2018 Phys. Chem. Chem. Phys. 20 2296Google Scholar

    [44]

    Rivero P, Yan J A, Garcia-Suarez V M, Ferrer J, Barraza-Lopez S 2014 Phys. Rev. B 90 241408(R)

    [45]

    Kim J, Qin S Y, Yao W, Niu Q, Chou M Y, Shih C K 2010 Proc. Natl. Acad. Sci. U. A. S. 107 12761Google Scholar

    [46]

    Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L L, Ma X C, Chen X, Wang Y Y, Liu Y, Lin H Q, Jia J F, Xue Q K 2010 Nat. Phys. 6 104Google Scholar

    [47]

    Brun C, Cren T, Cherkez V, Debontridder F, Pons S, Fokin D, Tringides M C, Bozhko S, Ioffe L B, Altshuler B L, Roditchev D 2014 Nat. Phys. 10 444Google Scholar

    [48]

    Roditchev D, Brun C, Serrier-Garcia L, Cuevas J C, Bessa V H L, Milosevic M V, Debontridder F, Stolyarov V, Cren T 2015 Nat. Phys. 11 332Google Scholar

    [49]

    Yuhara J, He B J, Matsunami N, Nakatake M, Le Lay G 2019 Adv. Mater. 31 1901017Google Scholar

    [50]

    Bihlmayer G, Sassmannshausen J, Kubetzka A, Blugel S, von Bergmann K, Wiesendanger R 2020 Phys. Rev. Lett. 124 126401Google Scholar

    [51]

    Liu H S, Gao J F, Zhao J J 2013 Sci. Rep. 3 3238Google Scholar

    [52]

    Liu Y Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Ed. 52 3156Google Scholar

    [53]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [54]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 564

    [55]

    Chen C Y, Lü H F, Zhang P, Zhuo Z W, Wang Y, Ma C, Li W B, Wang X G, Feng B J, Cheng P, Wu X J, Wu K H, Chen L 2021 Nat. Chem. 14 25

    [56]

    Liu X L, Li Q C, Ruan Q Y, Rahn M S, Yakobson B I, Hersam M C 2021 Nat. Mater. 21 35

    [57]

    Xia F N, Wang H, Jia Y C 2014 Nat. Commun. 5 4458Google Scholar

    [58]

    Carvalho A, Wang M, Zhu X, Rodin A S, Su H B, Neto A H C 2016 Nat. Rev. Mater. 1 16061Google Scholar

    [59]

    Akhtar M, Anderson G, Zhao R, Alruqi A, Mroczkowska J E, Sumanasekera G, Jasinski J B 2017 NPJ 2D Mater. Appl. 1 5Google Scholar

    [60]

    Zhang J L, Zhao S T, Han C, Wang Z Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Di Yuan K, Li Z Y, Chen W 2016 Nano Lett. 16 4903Google Scholar

    [61]

    Zhu Z, Tomanek D 2014 Phys. Rev. Lett. 112 176802Google Scholar

    [62]

    Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, Gao H J 2017 Adv. Mater. 29 1605407Google Scholar

    [63]

    Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S X, Gao H J 2019 Nano Lett. 19 6323Google Scholar

    [64]

    Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L, Gao H J 2018 Nano Lett. 18 2133Google Scholar

    [65]

    Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J, Claessen R 2017 Science 357 287Google Scholar

    [66]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [67]

    Gao H J, Gao L 2010 Prog. Surf. Sci. 85 28Google Scholar

    [68]

    Gao H J, Xue Z Q, Wang K Z, Wu Q D, Pang S 1996 Appl. Phys. Lett. 68 2192Google Scholar

    [69]

    Gao H J, Sohlberg K, Xue Z Q, Chen H Y, Hou S M, Ma L P, Fang X W, Pang S J, Pennycook S J 2000 Phys. Rev. Lett. 84 1780Google Scholar

    [70]

    Feng M, Guo X F, Lin X, He X B, Ji W, Du S X, Zhang D Q, Zhu D B, Gao H J 2005 J. Am. Chem. Soc. 127 15338Google Scholar

    [71]

    Feng M, Gao L, Deng Z T, Ji W, Guo X F, Du S X, Shi D X, Zhang D Q, Zhu D B, Gao H J 2007 J. Am. Chem. Soc. 129 2204Google Scholar

    [72]

    Du S X, Gao H J, Seidel C, Tsetseris L, Ji W, Kopf H, Chi L F, Fuchs H, Pennycook S J, Pantelides S T 2006 Phys. Rev. Lett. 97 156105Google Scholar

    [73]

    Shi D, Ji W, Lin X, He X, Lian J, Gao L, Cai J, Lin H, Du S, Lin F, Seidel C, Chi L, Hofer W, Fuchs H, Gao H J 2006 Phys. Rev. Lett. 96 226101Google Scholar

    [74]

    Zhang S, Song Y, Li H, Li J M, Qian K, Liu C, Wang J O, Qian T, Zhang Y Y, Lu J C, Ding H, Lin X, Pan J B, Du S X, Gao H J 2020 Chin. Phys. Lett. 37 068103Google Scholar

    [75]

    Zheng C, Zhao D P, Cai X Q, Huang W T, Meng F Q, Zhang Q H, Tang L, Hu X P, Gu L, Ji S H, Chen X 2020 Chin. Phys. Lett. 37 087401Google Scholar

    [76]

    王兴悦, 张辉, 阮子林, 郝振亮, 杨孝天, 蔡金明, 卢建臣 2020 物理学报 69 118101Google Scholar

    Wang X Y, Zhang H, Ruan Z L, Hao Z L, Yang X T, Cai J M, Lu J C 2020 Acta Phys. Sin. 69 118101Google Scholar

    [77]

    Lu J C, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X, Gao H J 2017 ACS Nano 11 1689Google Scholar

    [78]

    Lu J C, Niu G F, Ren X, Bao D L, Chen H, Yang H T, Lin X, Du S X, Gao H J 2021 Nanoscale 13 19165Google Scholar

    [79]

    Kezilebieke S, Huda N, Vano V, Aapro M, Ganguli S C, Silveira O J, Glodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424Google Scholar

    [80]

    Li E, Zhang R Z, Li H, Liu C, Li G, Wang J O, Qian T, Ding H, Zhang Y Y, Du S X, Lin X, Gao H J 2018 Chin. Phys. B 27 086804Google Scholar

    [81]

    Ugeda M M, Bradley A J, Shi S F, da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091Google Scholar

    [82]

    Li E, Wang D F, Fan P, Zhang R Z, Zhang Y Y, Li G, Mao J H, Wang Y L, Lin X, Du S X, Gao H J 2018 Nano Res. 11 5858Google Scholar

    [83]

    Fan P, Zhang R Z, Qi J, Li E, Qian G J, Chen H, Wang D F, Zheng Q, Wang Q, Lin X, Zhang Y Y, Du S X, Hofer W A, Gao H J 2020 Chin. Phys. B 29 098102Google Scholar

    [84]

    Fan P, Qian G J, Wang D F, Li E, Wang Q, Chen H, Lin X, Gao H J 2021 Chin. Phys. B 30 018105Google Scholar

    [85]

    Wang Y L, Li L F, Yao W, Song S R, Sun J T, Pan J B, Ren X, Li C, Okunishi E, Wang Y Q, Wang E Y, Shao Y, Zhang Y Y, Yang H T, Schwier E F, Iwasawa H, Shimada K, Taniguchi M, Cheng Z H, Zhou S Y, Du S X, Pennycook S J, Pantelides S T, Gao H J 2015 Nano Lett. 15 4013Google Scholar

    [86]

    Wang Y Q, Wu X, Wang Y L, Shao Y, Lei T, Wang J O, Zhu S Y, Guo H M, Zhao L X, Chen G F, Nie S M, Weng H M, Ibrahim K, Dai X, Fang Z, Gao H J 2016 Adv. Mater. 28 5013Google Scholar

    [87]

    Lin X, Lu J C, Shao Y, Zhang Y Y, Wu X, Pan J B, Gao L, Zhu S Y, Qian K, Zhang Y F, Bao D L, Li L F, Wang Y Q, Liu Z L, Sun J T, Lei T, Liu C, Wang J O, Ibrahim K, Leonard D N, Zhou W, Guo H M, Wang Y L, Du S X, Pantelides S T, Gao H J 2017 Nat. Mater. 16 717Google Scholar

    [88]

    Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S, Gao H J 2018 Adv. Mater. 30 1707055Google Scholar

    [89]

    Dong L, Wang A W, Li E, Wang Q, Li G, Huan Q, Gao H J 2019 Chin. Phys. Lett. 36 028102Google Scholar

    [90]

    Wang A W, Liu Z Y, Pan J B, Li Q C, Li G, Huan Q, Du S X, Gao H J 2020 Chin. Phys. B 29 078102Google Scholar

    [91]

    Qian K, Gao L, Chen X Y, Li H, Zhang S, Zhang X L, Zhu S Y, Yan J H, Bao D L, Cao L, Shi J A, Lu J C, Liu C, Wang J, Qian T, Ding H, Gu L, Zhou W, Zhang Y Y, Lin X, Du S X, Ouyang M, Pantelides S T, Gao H J 2020 Adv. Mater. 32 1908314Google Scholar

    [92]

    Li S H, Gu G X, Liu E K, Cheng P, Feng B J, Li Y Q, Chen L, Wu K H 2020 ACS Appl. Electron. Mater. 2 126Google Scholar

    [93]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [94]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [95]

    Chang K, Deng P, Zhang T, Lin H C, Zhao K, Ji S H, Wang L L, He K, Ma X C, Chen X, Xue Q K 2015 EPL 109 28003Google Scholar

    [96]

    Sakoda M, Iida K, Naito M 2018 Supercond. Sci. Technol. 31 093001Google Scholar

    [97]

    Li Z, Sang L N, Liu P, Yue Z J, Fuhrer M S, Xue Q K, Wang X L 2021 Small 17 1904788Google Scholar

    [98]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [99]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [100]

    Loffler D, Uhlrich J J, Baron M, Yang B, Yu X, Lichtenstein L, Heinke L, Buchner C, Heyde M, Shaikhutdinov S, Freund H J, Wlodarczyk R, Sierka M, Sauer J 2010 Phys. Rev. Lett. 105 146104Google Scholar

    [101]

    Liang Y, Chen Y J, Sun Y W, Xu S P, Wu J X, Tan C W, Xu X F, Yuan H T, Yang L X, Chen Y L, Gao P, Guo J D, Peng H L 2019 Adv. Mater. 31 1901964Google Scholar

    [102]

    Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Castro Neto A H, Gao H J 2012 Appl. Phys. Lett. 100 093101Google Scholar

    [103]

    Li L F, Wang Y L, Meng L, Wu R T, Gao H J 2013 Appl. Phys. Lett. 102 093106Google Scholar

    [104]

    Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X, Gao H J 2011 Appl. Phys. Lett. 99 163107Google Scholar

    [105]

    Li G, Zhou H T, Pan L D, Zhang Y, Huang L, Xu W Y, Du S X, Ouyang M, Ferrari A C, Gao H J 2015 J. Am. Chem. Soc. 137 7099Google Scholar

    [106]

    Que Y D, Zhang Y, Wang Y L, Huang L, Xu W Y, Tao J, Wu L J, Zhu Y M, Kim K, Weinl M, Schreck M, Shen C M, Du S X, Liu Y Q, Gao H J 2015 Adv. Mater. Interfaces 2 1400543Google Scholar

    [107]

    Li G, Zhang L Z, Xu W Y, Pan J B, Song S R, Zhang Y, Zhou H T, Wang Y L, Bao L H, Zhang Y Y, Du S X, Ouyang M, Pantelides S T, Gao H J 2018 Adv. Mater. 30 1804650Google Scholar

    [108]

    Guo H, Wang X Y, Huang L, Jin X, Yang Z Z, Zhou Z, Hu H, Zhang Y Y, Lu H L, Zhang Q H, Shen C M, Lin X, Gu L, Dai Q, Bao L H, Du S X, Hofer W, Pantelides S T, Gao H J 2020 Nano Lett. 20 8584Google Scholar

    [109]

    Enderlein C, Kim Y S, Bostwick A, Rotenberg E, Horn K 2010 New J. Phys. 12 033014Google Scholar

    [110]

    Riedl C, Coletti C, Iwasaki T, Zakharov A A, Starke U 2009 Phys. Rev. Lett. 103 246804Google Scholar

    [111]

    Jin L, Fu Q, Mu R T, Tan D L, Bao X H 2011 Phys. Chem. Chem. Phys. 13 16655Google Scholar

    [112]

    Feng X F, Maier S, Salmeron M 2012 J. Am. Chem. Soc. 134 5662Google Scholar

    [113]

    Lu J, Neto A H C, Loh K P 2012 Nat. Commun. 3 823Google Scholar

    [114]

    Mu R T, Fu Q, Jin L, Yu L, Fang G Z, Tan D L, Bao X H 2012 Angew. Chem. Int. Ed. 51 4856Google Scholar

    [115]

    Sicot M, Leicht P, Zusan A, Bouvron S, Zander O, Weser M, Dedkov Y S, Horn K, Fonin M 2012 ACS Nano 6 151Google Scholar

    [116]

    Decker R, Brede J, Atodiresei N, Caciuc V, Blugel S, Wiesendanger R 2013 Phys. Rev. B 87 041403

    [117]

    Petrovic M, Rakic I S, Runte S, Busse C, Sadowski J T, Lazic P, Pletikosic I, Pan Z H, Milun M, Pervan P, Atodiresei N, Brako R, Sokcevic D, Valla T, Michely T, Kralj M 2013 Nat. Commun. 4 2772Google Scholar

    [118]

    Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X Y, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [119]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175Google Scholar

    [120]

    Xia C, Watcharinyanon S, Zakharov A A, Yakimova R, Hultman L, Johansson L I, Virojanadara C 2012 Phys. Rev. B 85 045418Google Scholar

    [121]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. 16 3151Google Scholar

    [122]

    Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777Google Scholar

    [123]

    Cui Y, Gao J F, Jin L, Zhao J J, Tan D L, Fu Q, Bao X H 2012 Nano Res. 5 352Google Scholar

    [124]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [125]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [126]

    Andrei E Y, MacDonald A H 2020 Nat. Mater. 19 1265Google Scholar

    [127]

    Castro E V, Novoselov K S, Morozov S V, Peres N M R, Dos Santos J M B L, Nilsson J, Guinea F, Geim A K, Castro Neto A H 2007 Phys. Rev. Lett. 99 216802Google Scholar

    [128]

    Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [129]

    Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151Google Scholar

    [130]

    Mak K F, Lui C H, Shan J, Heinz T F 2009 Phys. Rev. Lett. 102 256405Google Scholar

    [131]

    Choi S M, Jhi S H, Son Y W 2010 Nano Lett. 10 3486Google Scholar

    [132]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951Google Scholar

    [133]

    Samuels A J, Carey J D 2013 ACS Nano 7 2790Google Scholar

    [134]

    Zhang W J, Lin C T, Liu K K, Tite T, Su C Y, Chang C H, Lee Y H, Chu C W, Wei K H, Kuo J L, Li L J 2011 ACS Nano 5 7517Google Scholar

    [135]

    Tian X Q, Xu J B, Wang X M 2010 J. Phys. Chem. B 114 11377Google Scholar

    [136]

    Wang Y Y, Ni Z Y, Liu Q H, Quhe R G, Zheng J X, Ye M, Yu D P, Shi J J, Yang J B, Li J, Lu J 2015 Adv. Funct. Mater. 25 68Google Scholar

    [137]

    Guo H, Wang X Y, Lu H L, Bao L H, Peng H, Qian K, Ma J J, Li G, Huang L, Lin X, Zhang Y Y, Du S X, Pantelides S T, Gao H J 2019 2 D Mater. 6 045044

    [138]

    Guo H, Zhang R Z, Li H, Wang X Y, Lu H L, Qian K, Li G, Huang L, Lin X, Zhang Y Y, Ding H, Du S X, Pantelides S T, Gao H J 2020 Nano Lett. 20 2674Google Scholar

    [139]

    Dahal A, Batzill M 2015 Sci. Rep. 5 11378Google Scholar

    [140]

    Picone A, Giannotti D, Finazzi M, Duo L, Ciccacci F, Brambilla A 2017 J. Phys. Chem. C 121 16803Google Scholar

    [141]

    Wang X Y, Guo H, Lu J C, Lu H L, Lin X, Shen C M, Bao L H, Du S X, Gao H J 2021 Chin. Phys. B 30 048102Google Scholar

    [142]

    Chen H, Zhang X L, Zhang Y Y, Wang D F, Bao D L, Que Y D, Xiao W D, Du S X, Ouyang M, Pantelides S T, Gao H J 2019 Science 365 1036Google Scholar

  • 图 1  不同基底表面硅烯的分子束外延生长 硅烯在Ag(111)[11] (a) ZrB2(0001)[17] (b) Ir(111)[18] (c) 和Ru(0001)[19] (d)表面生长的STM图像

    Fig. 1.  Molecular beam epitaxial growth of silicene monolayers on different substrates: STM images of silicene monolayer on Ag(111)[11] (a) ZrB2(0001)[17] (b) Ir(111)[18] (c) and Ru(0001)[19] (d), respectively.

    图 2  (a), (b) 单层锗烯在Pt(111)表面外延生长的STM图像(a)和原子模型示意图(b)[24]; (c), (d) 双层锗烯在Cu(111)表面外延生长的STM图像(c)和原子模型示意图(d)[25]

    Fig. 2.  (a), (b) STM image (a) and atomic model (b) of germanene monolayer on Pt(111)[24]; (c), (d) STM image (c) and atomic model (d) of germanene bilayer on Cu(111)[25].

    图 3  锡烯在不同衬底上的分子束外延生长 (a) 单层锡烯在Bi2Te3(111)表面外延生长的STM图像[32]; (b) InSb(111)表面外延生长锡烯和钾掺杂锡烯在Г点附近的能带结构[33]; (c), (d) Cu(111)表面外延生长纯平锡烯的大面积STM图像(c)和原子分辨图像(d)[37]; (e) Ir(111)上外延氮化硼表面生长锡烯的STM图像[40]

    Fig. 3.  Molecular beam epitaxial growth of stanene monolayers on different substrates: (a) STM image of buckled stanene on Bi2Te3(111)[32]; (b) band structure of as-grown and K doped stanene on InSb(111)[33]; (c), (d) large-scale (c) and atomically-resolved (d) STM images of flat stanene on Cu(111)[37]; (e) STM image of stanene on BN/Ir(111)[40].

    图 4  铅烯在不同衬底上的分子束外延生长 (a), (b) 单层铅烯在Pd(111)表面外延生长的大面积(a)和原子分辨(b) STM图像[49]; (c), (d) 单层铅烯在Fe/Ir(111)表面外延生长的原子分辨STM图像(c)和原子结构模型(d)[50]; (e) 单层铅烯在Fe/Ir(111)表面外延生长的大面积STM图像[50]

    Fig. 4.  Molecular beam epitaxial growth of plumbene monolayers on different substrates: (a), (b) Large-scale (a) and atomically-resolved (b) STM image of planar plumbene on Pd(111)[49];(c), (d) atomically-resolved STM image (c) and atomic model of plumbene on monolayer Fe on Ir(111)[50]; (e) large-scale STM image of planar plumbene on monolayer Fe on Ir(111)[50].

    图 5  单层和双层硼烯的分子束外延生长 (a)—(d) 单层硼烯在Ag(111)表面外延生长的STM图像[53,54]; (e), (f) 双层硼烯在Cu(111)表面外延生长的STM图像[55]; (g), (h) 双层硼烯在Ag(111)表面外延生长的STM图像[56]

    Fig. 5.  Molecular beam epitaxial growth of borophene monolayers and bilayers: (a)–(d) STM images of monolayer borophene on Ag(111)[53,54]; (e), (f) STM images of bilayer borophene on Cu(111)[55]; (g), (h) STM images of bilayer borophene on Ag(111)[56].

    图 6  (a), (b) 单层蓝磷在Au(111)表面外延生长的STM图像(a)和原子模型示意图(b)[60]; (c), (d)单层锑烯在PdTe2表面外延生长的STM图像(c)和原子模型示意图(d)[62]; (e) 锑烯单层岛在Cu(111)表面外延生长的STM图像; (f) 跨过锑烯单层岛的扫描隧道谱[63]; (g), (h) 单层铋烯在SiC表面外延生长的STM图像(g)和原子模型示意图(h)[65]

    Fig. 6.  (a), (b) STM image (a) and atomic model (b) of monolayer blue phosphorus on Au(111)[60]; (c), (d) STM image (c) and atomic model (d) of monolayer antimonene on PdTe2[62]; (e) STM image of monolayer antimonene on Cu(111); (f) Waterfall-like dI/dV spectra along the arrow in Fig. (e)[63]; (g), (h) STM image (g) and atomic model (h) of monolayer bismuthene on SiC[65].

    图 7  (a) Ir(111)表面大面积单层铪的STM图像; (b) 原子分辨的单层铪STM图像; (c) 铪烯的STM图像、STM模拟图像以及原子结构示意图[66]

    Fig. 7.  (a) Large-scale STM image of monolayer Hf on Ir(111); (b) Atomically-resolved STM image of monolayer Hf on Ir(111); (c) The STM image, simulated STM image, and atomic model of a Hafnene monolayer on Ir(111), showing honeycomb Hf lattice[66].

    图 8  (a) Au(111)表面单层MoSe2岛的STM图像; (b) MoSe2岛的原子分辨STM图像; (c), (d) 大面积(c)和原子分辨(d)的Mo边界STM图像; (e) MoSe2上不同区域的dI/dV谱线; (f) MoSe2岛边界上不同位置的dI/dV谱线[77]

    Fig. 8.  (a) STM image of monolayer MoSe2 islands on Au(111) substrate; (b) atomic-resolved STM image of single-layer MoSe2 with hexagonal lattice; (c), (d) large-scale (c) and atomically resolved (d) STM image of Mo edge; (e) normalized dI/dV curves obtained on the three different domains of MoSe2 on Au(111); (f) Six normalized dI/dV curves taken on the six edges of one MoSe2 island[77].

    图 9  (a) 双层石墨烯/碳化硅衬底上生长的大面积多层PdTe2[80]; (b) 双层石墨烯/碳化硅衬底上生长的单层MoSe2[81]; (c) 石墨烯化碳化硅衬底上生长的PdSe2; (d) 在跨过单层和双层石墨烯/碳化硅衬底上连续生长的双层PdSe2上测得的扫描隧道谱[82]; (e) 石墨烯化碳化硅衬底上生长的Pd2Se3[83]; (f) 跨过单层和双层Pd2Se3台阶测得的扫描隧道谱[84]

    Fig. 9.  (a) Multi-layer PdTe2 on bilayer graphene on SiC substrate[80]; (b) monolayer MoSe2 on bilayer graphene on SiC substrate[81]; (c) bilayer PdSe2 on bilayer graphene on SiC substrate; (d) dI/dV spectra taken on bilayer PdSe2 on top of mono- and bi- layer graphene substrate[82]; (e) Pd2Se3 on bilayer graphene on SiC substrate[83]; (d) dI/dV spectra taken across mono- and bi- layer Pd2Se3[84]

    图 10  (a), (b) 1T/1H相的PtSe2三角图案的结构示意图与STM图像[87]; (c), (d) Cu(111)表面CuSe的周期性三角孔洞结构[87]; (e)—(g) CuSe的扫描透射电镜图像、电镜模拟图像以及原子结构示意图[87]

    Fig. 10.  (a), (b) The schematic and STM image of the triangular pattern of 1T/1H phase PtSe2 on Pt(111)[87]; (c), (d) large-scale and zoom-in STM images of the periodic triangle holes in CuSe monolayer[87]; (e)–(g) scanning transmission electron microscopy image, the simulated image and atomic model of monolayer CuSe on Cu(111)[87].

    图 11  (a) 插层硅烯纳米片段的STM图像[107]; (b) 插层单层硅烯的STM图像[107]; (c) 石墨烯/硅烯异质结构的电子局域函数计算[107]; (d) 石墨烯/硅烯异质结构的整流效应[107]

    Fig. 11.  (a) STM image of the intercalated silicene nano flakes[107]; (b) STM image of the intercalated silicene monolayer[107]; (c) electron localization function calculation of the graphene/silicene heterostructure[107]; (d) rectifying effect of the graphene/silicene heterostructure[107].

    图 12  (a), (b) Ru(0001)表面双层石墨烯/硅烯异质结构筑示意图[138]; (c), (d) 分别是硅烯插层前后的LEED图像[138]; (e), (f) 分别是硅烯插层前后的STM图像[138]; (g) Ru(0001)表面硅烯插层前后的单层石墨烯及双层石墨烯的Raman光谱对比[138]; (h) 硅烯插层后双层石墨烯的2D特征峰的分析拟合[138]

    Fig. 12.  (a), (b) Schematic of the fabrication process of BLG/silicene heterostructure on Ru(0001)[138]; (c), (d) LEED patterns of BLG/Ru and BLG/silicene/Ru, respectively[138]; (e), (f) corresponding STM images for BLG/Ru and BLG/silicene/Ru, respectively[138]; (g) comparison of Raman spectra of SLG/Ru (black), SLG/silicene/Ru (green), BLG/Ru (red) and BLG/silicene/Ru (blue) [138]; (h) 2D band of BLG/silicene/Ru well fitted with four narrow Lorentzian components[138].

    图 13  (a) 硅烯插层之后的双层石墨烯的ARPES谱[138]; (b) 优化后的起伏双层石墨烯/硅烯/Ru的原子结构模型[138]; (c) 基于图(b)中结构模型计算的能带结构, 红点组成了投影到双层石墨烯上的能带结构[138]; (d) 仅考虑来自硅烯/Ru衬底的掺杂效应时双层石墨烯的能带结构[138]; (e) 仅考虑双层石墨烯起伏/应力情况下的能带结构[138]; (f) 同时考虑掺杂和起伏/应力时双层石墨烯的能带结构[138]

    Fig. 13.  (a) ARPES intensity map of the BLG after silicene intercalation[138]; (b) an optimized structure model of rippled BLG on Ru(0001) after silicene intercalation[138]; (c) calculated band structure based on the structure model in (b). The red dots are the band projected on the BLG[138]; (d) a structure model of flat BLG on silicene/Ru and the corresponding calculated band structure[138]; (e) a structure model of rippled BLG and the corresponding calculated band structure[138]; (f) a structure model of Li-doped rippled BLG and the calculated band structure[138].

    图 14  Ru(0001)表面外延大面积、高质量石墨烯的SiO2插层及原位器件的制备 (a)—(d) SiO2插层过程及原位器件构筑示意图[108]; (e)—(g) 不同制备阶段样品的LEED表征[108]; (h) 石墨烯Hall器件的Raman mapping[108]

    Fig. 14.  Synthesis of insulating SiO2 between graphene and a Ru(0001) substrate enabling electronic-device fabrication: (a)–(d) Schematic of the SiO2 intercalation and finally device fabrication processes[108]; (e)–(g) LEED patterns and corresponding structure models for sample in preparation stages (a)–(c), respectively[108]; (h) graphene G-peak intensity mapping, showing the skeleton of the graphene Hall-bar device in Fig. (d)[108].

    图 15  (a) 薄层晶态二氧化硅插层样品的大面积截面STEM图像[108]; (b) 高分辨STEM图像显示晶态二氧化硅的双层结构[108]; (c) 界面处的EELS谱[108]; (d) 晶态二氧化硅表面石墨烯的STM图像[108]; (e) 晶态二氧化硅插层之后石墨烯的Raman光谱[108]

    Fig. 15.  (a) Large-scale aberration-corrected bright-field STEM image of the bilayer-silica intercalated sample[108]; (b) high resolution STEM image taken at the red box in Fig. (a) clearly shows the atomic structure of the interfacial silica[108]; (c) EELS of Si-L2, 3 edge taken at the intercalation layer[108]; (d) atomic-resolution STM image of the graphene overlayer[108]; (e) Raman spectra of the graphene after intercalation of the crystalline SiO2[108].

    图 16  (a) 厚层二氧化硅插层样品的界面STEM图像, 显示界面处厚层二氧化硅的厚度达到1.8 nm, 具有非晶态结构[108]; (b) X射线光电子能谱[108]; (c) 低偏压(< 10 mV)下, 对不同厚度二氧化硅插层的样品在垂直方向输运性质测试[108]; (d) 不同温度下的SdH振荡[108]; (e) 2 K下磁阻Rxx以及霍尔电阻Rxy随磁场的变化[108]; (f) 不同温度下纵向电导率在低场范围的变化规律, 与石墨烯的弱反局域理论很好的拟合[108]

    Fig. 16.  (a) STEM image showing an amorphous SiO2 film with thickness of 1.8 nm between graphene and Ru substrate[108]; (b) XPS of the Si 2p and O 1s core levels; (c) vertical transport measurements at small bias (< 10 mV) for Gr/Ru, Gr/1.1 nm-silica/Ru and Gr/1.8 nm-silica/Ru samples[108]; (d) SdH oscillations at different temperatures[108]; (e) magnetoresistance Rxx and Hall resistance Rxy measured at 2 K[108]; (f) corrections of low field conductivity (△σxx) at different temperatures, showing good agreement with the weak antilocalization theory of graphene[108].

    图 17  石墨烯“折纸术”的示意图以及STM图像[142]. 利用扫描探针显微镜针尖, 可以对石墨烯纳米岛进行折叠[142]. 利用纳米岛中的一维晶界, 可以构筑具有手性异质结构的一维碳纳米管结构[142]

    Fig. 17.  Schematic and STM images of the graphene origami[142]. The graphene nanoislands can be folded by STM tip[142]. By taking advantage of the natural 1D domain boundaries in the nanoislands, heterostructure of 1D carbon nanotubes with different chirality can be constructed[142].

    图 18  三种二维材料构筑方式的比较.

    Fig. 18.  Comparison among the three construction methods of 2D materials.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Zhang X D, Xie Y 2013 Chem. Soc. Rev. 42 8187Google Scholar

    [4]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar

    [5]

    Li G, Zhang Y Y, Guo H, Huang L, Lu H L, Lin X, Wang Y L, Du S X, Gao H J 2018 Chem. Soc. Rev. 47 6073Google Scholar

    [6]

    Takeda K, Shiraishi K 1994 Phys. Rev. B 50 14916Google Scholar

    [7]

    Guzman-Verri G G, Voon L C L Y 2007 Phys. Rev. B 76 075131Google Scholar

    [8]

    Liu C C, Jiang H, Yao Y G 2011 Phys. Rev. B 84 195430Google Scholar

    [9]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [10]

    Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B 2010 Appl. Phys. Lett. 97 223109Google Scholar

    [11]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [12]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano Lett. 12 3507Google Scholar

    [13]

    Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N, Kawai M 2012 Appl. Phys. Express 5 045802Google Scholar

    [14]

    Onoda J, Yabuoshi K, Miyazaki H, Sugimoto Y 2017 Phys. Rev. B 96 241302Google Scholar

    [15]

    Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, Takagi N 2013 Phys. Rev. Lett. 110 076801Google Scholar

    [16]

    Feng Y, Liu D F, Feng B J, Liu X, Zhao L, Xie Z J, Liu Y, Liang A J, Hu C, Hu Y, He S L, Liu G D, Zhang J, Chen C T, Xu Z Y, Chen L, Wu K H, Liu Y T, Lin H, Huang Z Q, Hsu C H, Chuang F C, Bansil A, Zhou X J 2016 Proc. Natl. Acad. Sci. U. S. A. 113 14656Google Scholar

    [17]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501Google Scholar

    [18]

    Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [19]

    Huang L, Zhang Y F, Zhang Y Y, Xu W Y, Que Y D, Li E, Pan J B, Wang Y L, Liu Y Q, Du S X, Pantelides S T, Gao H J 2017 Nano Lett. 17 1161Google Scholar

    [20]

    Brumfiel G 2013 Nature 495 152Google Scholar

    [21]

    De Padova P, Ottaviani C, Quaresima C, Olivieri B, Imperatori P, Salomon E, Angot T, Quagliano L, Romano C, Vona A, Muniz-Miranda M, Generosi A, Paci B, Le Lay G 2014 2 D Mater. 1 021003

    [22]

    Du Y, Zhuang J C, Wang J O, Li Z, Liu H, Zhao J, Xu X, Feng H, Chen L, Wu K, Wang X, Dou S X 2016 Sci. Adv. 2 e1600067Google Scholar

    [23]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227Google Scholar

    [24]

    Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X, Gao H J 2014 Adv. Mater. 26 4820Google Scholar

    [25]

    Qin Z H, Pan J B, Lu S Z, Yan S, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046Google Scholar

    [26]

    Acun A, Zhang L, Bampoulis P, Farmanbar M, van Houselt A, Rudenko A N, Lingenfelder M, Brocks G, Poelsema B, Katsnelson M I, Zandvliet H J W 2015 J. Phys. Condens. Matter 27 442001

    [27]

    Davila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002Google Scholar

    [28]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510Google Scholar

    [29]

    Zhang L, Bampoulis P, Rudenko A N, Yao Q, van Houselt A, Poelsema B, Katsnelson M I, Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804Google Scholar

    [30]

    Lin C H, Huang A, Pai W W, Chen W C, Chen T Y, Chang T R, Yukawa R, Cheng C M, Mou C Y, Matsuda I, Chiang T C, Jeng H T, Tang S J 2018 Phys. Rev. Mater. 2 024003Google Scholar

    [31]

    Chou B H, Huang Z Q, Hsu C H, Chuang F C, Liu Y T, Lin H, Bansil A 2014 New J. Phys. 16 115008Google Scholar

    [32]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [33]

    Xu C Z, Chan Y H, Chen P, Wang X X, Flototto D, Hlevyack J A, Bian G, Mo S K, Chou M Y, Chiang T C 2018 Phys. Rev. B 97 035122Google Scholar

    [34]

    Zang Y Y, Jiang T, Gong Y, Guan Z Y, Liu C, Liao M H, Zhu K J, Li Z, Wang L L, Li W, Song C L, Zhang D, Xu Y, He K, Ma X C, Zhang S C, Xue Q K 2018 Adv. Funct. Mater. 28 1802723Google Scholar

    [35]

    Xu C Z, Chan Y H, Chen Y G, Chen P, Wang X X, Dejoie C, Wong M H, Hlevyack J A, Ryu H J, Kee H Y, Tamura N, Chou M Y, Hussain Z, Mo S K, Chiang T C 2017 Phys. Rev. Lett. 118 146402Google Scholar

    [36]

    Zheng X H, Zhang J F, Tong B, Du R R 2020 2 D Mater. 7 011001

    [37]

    Deng J L, Xia B Y, Ma X C, Chen H Q, Shan H, Zhai X F, Li B, Zhao A D, Xu Y, Duan W H, Zhang S C, Wang B, Hou J G 2018 Nat. Mater. 17 1081Google Scholar

    [38]

    Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, Xian L D, Rubio A, Le Lay G 2018 2 D Mater. 5 025002

    [39]

    Yuhara J, Le Lay G 2020 Jpn. J. Appl. Phys. 59 SN0801Google Scholar

    [40]

    Dong X, Zhang L Z, Yoon M N, Zhang P P 2021 2 D Mater. 8 045003

    [41]

    Yu X L, Huang L, Wu J S 2017 Phys. Rev. B 95 125113Google Scholar

    [42]

    Huang Z Q, Hsu C H, Chuang F C, Liu Y T, Lin H, Su W S, Ozolins V, Bansil A 2014 New J. Phys. 16 105018Google Scholar

    [43]

    Yu X L, Wu J S 2018 Phys. Chem. Chem. Phys. 20 2296Google Scholar

    [44]

    Rivero P, Yan J A, Garcia-Suarez V M, Ferrer J, Barraza-Lopez S 2014 Phys. Rev. B 90 241408(R)

    [45]

    Kim J, Qin S Y, Yao W, Niu Q, Chou M Y, Shih C K 2010 Proc. Natl. Acad. Sci. U. A. S. 107 12761Google Scholar

    [46]

    Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L L, Ma X C, Chen X, Wang Y Y, Liu Y, Lin H Q, Jia J F, Xue Q K 2010 Nat. Phys. 6 104Google Scholar

    [47]

    Brun C, Cren T, Cherkez V, Debontridder F, Pons S, Fokin D, Tringides M C, Bozhko S, Ioffe L B, Altshuler B L, Roditchev D 2014 Nat. Phys. 10 444Google Scholar

    [48]

    Roditchev D, Brun C, Serrier-Garcia L, Cuevas J C, Bessa V H L, Milosevic M V, Debontridder F, Stolyarov V, Cren T 2015 Nat. Phys. 11 332Google Scholar

    [49]

    Yuhara J, He B J, Matsunami N, Nakatake M, Le Lay G 2019 Adv. Mater. 31 1901017Google Scholar

    [50]

    Bihlmayer G, Sassmannshausen J, Kubetzka A, Blugel S, von Bergmann K, Wiesendanger R 2020 Phys. Rev. Lett. 124 126401Google Scholar

    [51]

    Liu H S, Gao J F, Zhao J J 2013 Sci. Rep. 3 3238Google Scholar

    [52]

    Liu Y Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Ed. 52 3156Google Scholar

    [53]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [54]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 564

    [55]

    Chen C Y, Lü H F, Zhang P, Zhuo Z W, Wang Y, Ma C, Li W B, Wang X G, Feng B J, Cheng P, Wu X J, Wu K H, Chen L 2021 Nat. Chem. 14 25

    [56]

    Liu X L, Li Q C, Ruan Q Y, Rahn M S, Yakobson B I, Hersam M C 2021 Nat. Mater. 21 35

    [57]

    Xia F N, Wang H, Jia Y C 2014 Nat. Commun. 5 4458Google Scholar

    [58]

    Carvalho A, Wang M, Zhu X, Rodin A S, Su H B, Neto A H C 2016 Nat. Rev. Mater. 1 16061Google Scholar

    [59]

    Akhtar M, Anderson G, Zhao R, Alruqi A, Mroczkowska J E, Sumanasekera G, Jasinski J B 2017 NPJ 2D Mater. Appl. 1 5Google Scholar

    [60]

    Zhang J L, Zhao S T, Han C, Wang Z Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Di Yuan K, Li Z Y, Chen W 2016 Nano Lett. 16 4903Google Scholar

    [61]

    Zhu Z, Tomanek D 2014 Phys. Rev. Lett. 112 176802Google Scholar

    [62]

    Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, Gao H J 2017 Adv. Mater. 29 1605407Google Scholar

    [63]

    Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S X, Gao H J 2019 Nano Lett. 19 6323Google Scholar

    [64]

    Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L, Gao H J 2018 Nano Lett. 18 2133Google Scholar

    [65]

    Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J, Claessen R 2017 Science 357 287Google Scholar

    [66]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [67]

    Gao H J, Gao L 2010 Prog. Surf. Sci. 85 28Google Scholar

    [68]

    Gao H J, Xue Z Q, Wang K Z, Wu Q D, Pang S 1996 Appl. Phys. Lett. 68 2192Google Scholar

    [69]

    Gao H J, Sohlberg K, Xue Z Q, Chen H Y, Hou S M, Ma L P, Fang X W, Pang S J, Pennycook S J 2000 Phys. Rev. Lett. 84 1780Google Scholar

    [70]

    Feng M, Guo X F, Lin X, He X B, Ji W, Du S X, Zhang D Q, Zhu D B, Gao H J 2005 J. Am. Chem. Soc. 127 15338Google Scholar

    [71]

    Feng M, Gao L, Deng Z T, Ji W, Guo X F, Du S X, Shi D X, Zhang D Q, Zhu D B, Gao H J 2007 J. Am. Chem. Soc. 129 2204Google Scholar

    [72]

    Du S X, Gao H J, Seidel C, Tsetseris L, Ji W, Kopf H, Chi L F, Fuchs H, Pennycook S J, Pantelides S T 2006 Phys. Rev. Lett. 97 156105Google Scholar

    [73]

    Shi D, Ji W, Lin X, He X, Lian J, Gao L, Cai J, Lin H, Du S, Lin F, Seidel C, Chi L, Hofer W, Fuchs H, Gao H J 2006 Phys. Rev. Lett. 96 226101Google Scholar

    [74]

    Zhang S, Song Y, Li H, Li J M, Qian K, Liu C, Wang J O, Qian T, Zhang Y Y, Lu J C, Ding H, Lin X, Pan J B, Du S X, Gao H J 2020 Chin. Phys. Lett. 37 068103Google Scholar

    [75]

    Zheng C, Zhao D P, Cai X Q, Huang W T, Meng F Q, Zhang Q H, Tang L, Hu X P, Gu L, Ji S H, Chen X 2020 Chin. Phys. Lett. 37 087401Google Scholar

    [76]

    王兴悦, 张辉, 阮子林, 郝振亮, 杨孝天, 蔡金明, 卢建臣 2020 物理学报 69 118101Google Scholar

    Wang X Y, Zhang H, Ruan Z L, Hao Z L, Yang X T, Cai J M, Lu J C 2020 Acta Phys. Sin. 69 118101Google Scholar

    [77]

    Lu J C, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X, Gao H J 2017 ACS Nano 11 1689Google Scholar

    [78]

    Lu J C, Niu G F, Ren X, Bao D L, Chen H, Yang H T, Lin X, Du S X, Gao H J 2021 Nanoscale 13 19165Google Scholar

    [79]

    Kezilebieke S, Huda N, Vano V, Aapro M, Ganguli S C, Silveira O J, Glodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424Google Scholar

    [80]

    Li E, Zhang R Z, Li H, Liu C, Li G, Wang J O, Qian T, Ding H, Zhang Y Y, Du S X, Lin X, Gao H J 2018 Chin. Phys. B 27 086804Google Scholar

    [81]

    Ugeda M M, Bradley A J, Shi S F, da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091Google Scholar

    [82]

    Li E, Wang D F, Fan P, Zhang R Z, Zhang Y Y, Li G, Mao J H, Wang Y L, Lin X, Du S X, Gao H J 2018 Nano Res. 11 5858Google Scholar

    [83]

    Fan P, Zhang R Z, Qi J, Li E, Qian G J, Chen H, Wang D F, Zheng Q, Wang Q, Lin X, Zhang Y Y, Du S X, Hofer W A, Gao H J 2020 Chin. Phys. B 29 098102Google Scholar

    [84]

    Fan P, Qian G J, Wang D F, Li E, Wang Q, Chen H, Lin X, Gao H J 2021 Chin. Phys. B 30 018105Google Scholar

    [85]

    Wang Y L, Li L F, Yao W, Song S R, Sun J T, Pan J B, Ren X, Li C, Okunishi E, Wang Y Q, Wang E Y, Shao Y, Zhang Y Y, Yang H T, Schwier E F, Iwasawa H, Shimada K, Taniguchi M, Cheng Z H, Zhou S Y, Du S X, Pennycook S J, Pantelides S T, Gao H J 2015 Nano Lett. 15 4013Google Scholar

    [86]

    Wang Y Q, Wu X, Wang Y L, Shao Y, Lei T, Wang J O, Zhu S Y, Guo H M, Zhao L X, Chen G F, Nie S M, Weng H M, Ibrahim K, Dai X, Fang Z, Gao H J 2016 Adv. Mater. 28 5013Google Scholar

    [87]

    Lin X, Lu J C, Shao Y, Zhang Y Y, Wu X, Pan J B, Gao L, Zhu S Y, Qian K, Zhang Y F, Bao D L, Li L F, Wang Y Q, Liu Z L, Sun J T, Lei T, Liu C, Wang J O, Ibrahim K, Leonard D N, Zhou W, Guo H M, Wang Y L, Du S X, Pantelides S T, Gao H J 2017 Nat. Mater. 16 717Google Scholar

    [88]

    Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S, Gao H J 2018 Adv. Mater. 30 1707055Google Scholar

    [89]

    Dong L, Wang A W, Li E, Wang Q, Li G, Huan Q, Gao H J 2019 Chin. Phys. Lett. 36 028102Google Scholar

    [90]

    Wang A W, Liu Z Y, Pan J B, Li Q C, Li G, Huan Q, Du S X, Gao H J 2020 Chin. Phys. B 29 078102Google Scholar

    [91]

    Qian K, Gao L, Chen X Y, Li H, Zhang S, Zhang X L, Zhu S Y, Yan J H, Bao D L, Cao L, Shi J A, Lu J C, Liu C, Wang J, Qian T, Ding H, Gu L, Zhou W, Zhang Y Y, Lin X, Du S X, Ouyang M, Pantelides S T, Gao H J 2020 Adv. Mater. 32 1908314Google Scholar

    [92]

    Li S H, Gu G X, Liu E K, Cheng P, Feng B J, Li Y Q, Chen L, Wu K H 2020 ACS Appl. Electron. Mater. 2 126Google Scholar

    [93]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [94]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [95]

    Chang K, Deng P, Zhang T, Lin H C, Zhao K, Ji S H, Wang L L, He K, Ma X C, Chen X, Xue Q K 2015 EPL 109 28003Google Scholar

    [96]

    Sakoda M, Iida K, Naito M 2018 Supercond. Sci. Technol. 31 093001Google Scholar

    [97]

    Li Z, Sang L N, Liu P, Yue Z J, Fuhrer M S, Xue Q K, Wang X L 2021 Small 17 1904788Google Scholar

    [98]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [99]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [100]

    Loffler D, Uhlrich J J, Baron M, Yang B, Yu X, Lichtenstein L, Heinke L, Buchner C, Heyde M, Shaikhutdinov S, Freund H J, Wlodarczyk R, Sierka M, Sauer J 2010 Phys. Rev. Lett. 105 146104Google Scholar

    [101]

    Liang Y, Chen Y J, Sun Y W, Xu S P, Wu J X, Tan C W, Xu X F, Yuan H T, Yang L X, Chen Y L, Gao P, Guo J D, Peng H L 2019 Adv. Mater. 31 1901964Google Scholar

    [102]

    Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Castro Neto A H, Gao H J 2012 Appl. Phys. Lett. 100 093101Google Scholar

    [103]

    Li L F, Wang Y L, Meng L, Wu R T, Gao H J 2013 Appl. Phys. Lett. 102 093106Google Scholar

    [104]

    Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X, Gao H J 2011 Appl. Phys. Lett. 99 163107Google Scholar

    [105]

    Li G, Zhou H T, Pan L D, Zhang Y, Huang L, Xu W Y, Du S X, Ouyang M, Ferrari A C, Gao H J 2015 J. Am. Chem. Soc. 137 7099Google Scholar

    [106]

    Que Y D, Zhang Y, Wang Y L, Huang L, Xu W Y, Tao J, Wu L J, Zhu Y M, Kim K, Weinl M, Schreck M, Shen C M, Du S X, Liu Y Q, Gao H J 2015 Adv. Mater. Interfaces 2 1400543Google Scholar

    [107]

    Li G, Zhang L Z, Xu W Y, Pan J B, Song S R, Zhang Y, Zhou H T, Wang Y L, Bao L H, Zhang Y Y, Du S X, Ouyang M, Pantelides S T, Gao H J 2018 Adv. Mater. 30 1804650Google Scholar

    [108]

    Guo H, Wang X Y, Huang L, Jin X, Yang Z Z, Zhou Z, Hu H, Zhang Y Y, Lu H L, Zhang Q H, Shen C M, Lin X, Gu L, Dai Q, Bao L H, Du S X, Hofer W, Pantelides S T, Gao H J 2020 Nano Lett. 20 8584Google Scholar

    [109]

    Enderlein C, Kim Y S, Bostwick A, Rotenberg E, Horn K 2010 New J. Phys. 12 033014Google Scholar

    [110]

    Riedl C, Coletti C, Iwasaki T, Zakharov A A, Starke U 2009 Phys. Rev. Lett. 103 246804Google Scholar

    [111]

    Jin L, Fu Q, Mu R T, Tan D L, Bao X H 2011 Phys. Chem. Chem. Phys. 13 16655Google Scholar

    [112]

    Feng X F, Maier S, Salmeron M 2012 J. Am. Chem. Soc. 134 5662Google Scholar

    [113]

    Lu J, Neto A H C, Loh K P 2012 Nat. Commun. 3 823Google Scholar

    [114]

    Mu R T, Fu Q, Jin L, Yu L, Fang G Z, Tan D L, Bao X H 2012 Angew. Chem. Int. Ed. 51 4856Google Scholar

    [115]

    Sicot M, Leicht P, Zusan A, Bouvron S, Zander O, Weser M, Dedkov Y S, Horn K, Fonin M 2012 ACS Nano 6 151Google Scholar

    [116]

    Decker R, Brede J, Atodiresei N, Caciuc V, Blugel S, Wiesendanger R 2013 Phys. Rev. B 87 041403

    [117]

    Petrovic M, Rakic I S, Runte S, Busse C, Sadowski J T, Lazic P, Pletikosic I, Pan Z H, Milun M, Pervan P, Atodiresei N, Brako R, Sokcevic D, Valla T, Michely T, Kralj M 2013 Nat. Commun. 4 2772Google Scholar

    [118]

    Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X Y, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [119]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175Google Scholar

    [120]

    Xia C, Watcharinyanon S, Zakharov A A, Yakimova R, Hultman L, Johansson L I, Virojanadara C 2012 Phys. Rev. B 85 045418Google Scholar

    [121]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. 16 3151Google Scholar

    [122]

    Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777Google Scholar

    [123]

    Cui Y, Gao J F, Jin L, Zhao J J, Tan D L, Fu Q, Bao X H 2012 Nano Res. 5 352Google Scholar

    [124]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [125]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [126]

    Andrei E Y, MacDonald A H 2020 Nat. Mater. 19 1265Google Scholar

    [127]

    Castro E V, Novoselov K S, Morozov S V, Peres N M R, Dos Santos J M B L, Nilsson J, Guinea F, Geim A K, Castro Neto A H 2007 Phys. Rev. Lett. 99 216802Google Scholar

    [128]

    Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [129]

    Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151Google Scholar

    [130]

    Mak K F, Lui C H, Shan J, Heinz T F 2009 Phys. Rev. Lett. 102 256405Google Scholar

    [131]

    Choi S M, Jhi S H, Son Y W 2010 Nano Lett. 10 3486Google Scholar

    [132]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951Google Scholar

    [133]

    Samuels A J, Carey J D 2013 ACS Nano 7 2790Google Scholar

    [134]

    Zhang W J, Lin C T, Liu K K, Tite T, Su C Y, Chang C H, Lee Y H, Chu C W, Wei K H, Kuo J L, Li L J 2011 ACS Nano 5 7517Google Scholar

    [135]

    Tian X Q, Xu J B, Wang X M 2010 J. Phys. Chem. B 114 11377Google Scholar

    [136]

    Wang Y Y, Ni Z Y, Liu Q H, Quhe R G, Zheng J X, Ye M, Yu D P, Shi J J, Yang J B, Li J, Lu J 2015 Adv. Funct. Mater. 25 68Google Scholar

    [137]

    Guo H, Wang X Y, Lu H L, Bao L H, Peng H, Qian K, Ma J J, Li G, Huang L, Lin X, Zhang Y Y, Du S X, Pantelides S T, Gao H J 2019 2 D Mater. 6 045044

    [138]

    Guo H, Zhang R Z, Li H, Wang X Y, Lu H L, Qian K, Li G, Huang L, Lin X, Zhang Y Y, Ding H, Du S X, Pantelides S T, Gao H J 2020 Nano Lett. 20 2674Google Scholar

    [139]

    Dahal A, Batzill M 2015 Sci. Rep. 5 11378Google Scholar

    [140]

    Picone A, Giannotti D, Finazzi M, Duo L, Ciccacci F, Brambilla A 2017 J. Phys. Chem. C 121 16803Google Scholar

    [141]

    Wang X Y, Guo H, Lu J C, Lu H L, Lin X, Shen C M, Bao L H, Du S X, Gao H J 2021 Chin. Phys. B 30 048102Google Scholar

    [142]

    Chen H, Zhang X L, Zhang Y Y, Wang D F, Bao D L, Que Y D, Xiao W D, Du S X, Ouyang M, Pantelides S T, Gao H J 2019 Science 365 1036Google Scholar

  • [1] 尤明慧, 李雪, 李士军, 刘国军. 晶格匹配InAs/AlSb超晶格材料的分子束外延生长研究. 物理学报, 2023, 72(1): 014203. doi: 10.7498/aps.72.20221383
    [2] 郑晓虎, 张建峰, 杜瑞瑞. InSb(111)衬底上外延生长二维拓扑绝缘体锡烯/铋烯的差异性研究. 物理学报, 2022, 71(18): 186401. doi: 10.7498/aps.71.20221024
    [3] 李培根, 张济海, 陶野, 钟定永. 二维磁性过渡金属卤化物的分子束外延制备及物性调控. 物理学报, 2022, 71(12): 127505. doi: 10.7498/aps.71.20220727
    [4] 郭秦敏, 秦志辉. 气相沉积技术在原子制造领域的发展与应用. 物理学报, 2021, 70(2): 028101. doi: 10.7498/aps.70.20201436
    [5] 王兴悦, 张辉, 阮子林, 郝振亮, 杨孝天, 蔡金明, 卢建臣. 超高真空条件下分子束外延生长的单层二维原子晶体材料的研究进展. 物理学报, 2020, 69(11): 118101. doi: 10.7498/aps.69.20200174
    [6] 黄立, 李更, 张余洋, 鲍丽宏, 郇庆, 林晓, 王业亮, 郭海明, 申承民, 杜世萱, 高鸿钧. 低维原子/分子晶体材料的可控生长、物性调控和原理性应用. 物理学报, 2018, 67(12): 126801. doi: 10.7498/aps.67.20180846
    [7] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [8] 张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋. SrTiO3(001)衬底上多层FeSe薄膜的分子束外延生长. 物理学报, 2016, 65(12): 127401. doi: 10.7498/aps.65.127401
    [9] 刘珂, 马文全, 黄建亮, 张艳华, 曹玉莲, 黄文军, 赵成城. 含有AlGaAs插入层的InAs/GaAs三色量子点红外探测器. 物理学报, 2016, 65(10): 108502. doi: 10.7498/aps.65.108502
    [10] 杨文献, 季莲, 代盼, 谭明, 吴渊渊, 卢建娅, 李宝吉, 顾俊, 陆书龙, 马忠权. 基于分子束外延生长的1.05 eV InGaAsP的超快光学特性研究. 物理学报, 2015, 64(17): 177802. doi: 10.7498/aps.64.177802
    [11] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长. 物理学报, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [12] 李竟成, 赵爱迪, 王兵. Au(111)表面吸附单个八乙基钴卟啉分子的电子态和输运性质调控. 物理学报, 2015, 64(7): 076803. doi: 10.7498/aps.64.076803
    [13] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长. 物理学报, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [14] 韩文鹏, 史衍猛, 李晓莉, 罗师强, 鲁妍, 谭平恒. 石墨烯等二维原子晶体薄片样品的光学衬度计算及其层数表征. 物理学报, 2013, 62(11): 110702. doi: 10.7498/aps.62.110702
    [15] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜. 物理学报, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [16] 周勋, 杨再荣, 罗子江, 贺业全, 何浩, 韦俊, 邓朝勇, 丁召. 反射式高能电子衍射实时监控的分子束外延生长GaAs晶体衬底温度校准及表面相变的研究. 物理学报, 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [17] 赵明海, 孙静静, 王丹, 邹志强, 梁齐. C60分子在Si(111)-7×7表面分子束外延生长的STM研究. 物理学报, 2010, 59(1): 636-642. doi: 10.7498/aps.59.636
    [18] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜. 物理学报, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [19] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚. 太赫兹量子级联激光器材料生长及表征. 物理学报, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
    [20] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置. 物理学报, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
计量
  • 文章访问数:  8368
  • PDF下载量:  479
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-01-22
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-05-20

/

返回文章
返回