搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaCl:Cu烧结剂量片在X/γ辐照下的光释光特性

李哲旭 李新换 贺三军 周芷千 刘丽艳 于万瑭 赵修良

引用本文:
Citation:

NaCl:Cu烧结剂量片在X/γ辐照下的光释光特性

李哲旭, 李新换, 贺三军, 周芷千, 刘丽艳, 于万瑭, 赵修良

Photoluminescence characteristics of NaCl: Cu sintered dose tablets under X/γ irradiation

Li Zhe-Xu, Li Xin-Huan, He San-Jun, Zhou Zhi-Qian, Liu Li-Yan, Yu Wan-Tang, Zhao Xiu-Liang
PDF
HTML
导出引用
  • 本文以纯NaCl和CuCl粉末为原料, 采用烧结法制备了尺寸为Φ5×1.8 mm的NaCl:Cu圆形剂量片, 将剂量片置入四元件外壳中并用塑料薄膜密封以克服材料的吸湿性, 使用InLight 200型光释光自动测量系统研究其光释光特性. 结果发现, 对于X/γ射线, NaCl∶Cu剂量片对于能量较低射线的光释光响应高于能量较高的同种射线. 光释光曲线具有典型的指数衰减特征, 剂量片的偏转角度对测量值影响最大为13.5%. 原料粒径的均匀度对剂量片光释光响应数据的分布一致性具有较大影响. 重复性测试实验的变异系数CV = 2.28%, 重复测量数据的一致性较好. 在1—1000 mGy剂量范围内随着辐照剂量的增加, NaCl∶Cu烧结剂量片的光释光强度逐渐增加, 且呈现良好的线性关系, 较未掺杂的纯氯化钠光释光响应高2—4倍. 通过烧结法制备的NaCl∶Cu剂量片可用于个人或环境剂量监测用剂量计.
    In this paper, NaCl: Cu circular dose tablets with a size of 5×1.8mm are prepared by sintering pure NaCl and CuCl powder as raw materials. They are placed in a four-element shell and sealed with plastic film to overcome the moisture absorption of the material. Their photoluminescence characteristics are studied by using an Inlight 200 automatic photoluminescence measurement system. The results show that the X-ray characteristic peaks of NaCl: Cu sintered at 650 ℃ and 400 ℃ appear at 27°, 32°, 45°, 56°, 66°, 75° and 84° respectively. Compared with the data given by XRD standard card of pure NaCl crystal (pdf-#88-2300), those peaks of the sample sintered at 650 ℃ are more consistent with the data given by the standard card. In the scanning electron microscope image, it can be seen that the grains are wholly welded and closely connected, and the characteristic grains in the sintering process have good welding effect. After Cu+ ion doping, the lattice structure of NaCl is slightly deformed. After high-temperature sintering, the mass transfer of Cu+ ions occurs at an atomic level in NaCl, and the particles are combined into a coherent solid structure. For X/γ-rays, the photoluminescence response of NaCl:Cu dose sheet to low-energy rays is higher than that of the same kind of rays with high energy. When using NaCl:Cu dose sheet to calculate the cumulative photoluminescence dose, it is necessary to consider the ray category and ray energy of the radiation source at the radiation site. The photoluminescence curve of NaCl:Cu dose sheet has typical exponential attenuation characteristics. The deflection angle of dose sheet has influence on the measured value: the greatest influence extent is 13.5%. With the increase of deflection angle of dose sheet, the area irradiated by γ-ray decreases, and the response of internal lattices to γ-ray decreases slightly. The uniformity of NaCl: Cu raw material particle sizes has a great influence on the distribution consistency of photoluminescence response of dose tablets. The decrease of sample particle size during tablet pressing can improve the contact surface area between NaCl and CuCl. The increase of contact surface area can improve the diffusion and transfer efficiency of Cu+ ions, increase the number of dose traps in the crystal, and make the overall count higher. When the particle sizes are more uniform, the Cu+ ion transferefficiencies and quantities of different dose tablets are close, the difference in the number of dose traps is reduced, and the photoluminescence sensitivities are closer. The coefficient of variation of the repeatability test experiment is 2.28%. The consistency of the repeated measurement data is good. The lattice structure and lattice defects of the material are not changed in the process of photoluminescence measurement and photoannealing. In a dose range of 1-1000mgy, with the increase of irradiation dose, the photoluminescence response of NaCl: Cu and NaCl dose tablets gradually increase and show a good linear relationship. The photoluminescence response of NaCl: Cu is 2-to-4 times higher than that of NaCl dose tablets. The NaCl: Cu dose tablets prepared by the sintering method can be used as dosimeters for monitoring personal or environmental dose.
      通信作者: 赵修良, zhaoxiul@163.com
    • 基金项目: 国家自然科学基金(批准号: 12005098)、湖南省教育厅科学研究项目(批准号: 19A431)和湖南省教育厅研究生科研创新项目(批准号: CX20210945)资助的课题.
      Corresponding author: Zhao Xiu-Liang, zhaoxiul@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.12005098 ), the Scientific Research Project of Hunan Provincial Department of Education (Grant No.19A431 ), and the Graduate Scientific Research Innovation Project of Hunan Provincial Department of Education (Grant No.CX20210945 ).
    [1]

    张纯祥, 林理彬, 梁宝鎏, 唐强, 李德卉, 罗达玲 2004 物理学报 01 291Google Scholar

    Zhang C X, Lin L B, Liang B L, Tang Q, Li D H, Luo D L 2004 Acta Phys. Sin. 01 291Google Scholar

    [2]

    杨新波, 李红军, 徐军, 程艳, 苏良碧, 唐强 2008 物理学报 57 7900Google Scholar

    Yang X B, Li H J, Cheng Y, Su L B, Tang Q 2008 Acta Phys. Sin. 57 7900Google Scholar

    [3]

    胡克艳, 李红军, 徐军, 杨秋红, 苏良碧, 唐强 2012 物理学报 61 482Google Scholar

    Hu K Y, Li H J, Xu J, Yang Q H, Su L B, Tang Q 2012 Acta Phys. Sin. 61 482Google Scholar

    [4]

    吴丽, 王倩, 李国栋, 窦巧娅, 吉旭 2016 物理学报 65 306Google Scholar

    Wu L, Wang Q, Li G D, Dou Q Y, Ji X 2016 Acta Phys. Sin. 65 306Google Scholar

    [5]

    Elashmawy M, 2018 Nucl. Instrum. Meth. B. 423 49Google Scholar

    [6]

    Hernández J A, Camarillo E G,  Muñoz G, Flores C J, Cabrera E B,  Jaque F,  Romero J J, Garcı́a S J,  Murrieta H S 2001 Opt. Mater. 17 491Google Scholar

    [7]

    Cruz-Zaragoza E, Barboza-Flores M, Chernov V, Meléndrez R, Ramos B S, Negrón-Mendoza A, Hernández J M, Murrieta H 2006 Radiat. Prot. Dosim. 119 102Google Scholar

    [8]

    Cruz-Zaragoza E,  Ortiz A,  Furetta C,  Flores J C,   Hernández A J,  Murrieta S H 2011 Appl. Radiat. Isot. 69 334Google Scholar

    [9]

    Bhujbal P M, Dhoble S J 2012 J. Biomed. Mater. Res. B 100 2148

    [10]

    Nagaoka Y, Adachi S 2014 J. Lumin. 145 797Google Scholar

    [11]

    Bernal R, Cruz-Vázquez C,  Brown F, Tostado-García W, Pérez-Salas R, Castaño V M 2014 Electron. Mater. Lett. 10 863Google Scholar

    [12]

    Gaikwad S U, Patil R R, Kulkarni M S, Bhatt B C, Moharil S V 2016 Am. J. Phys. 84 020510Google Scholar

    [13]

    Gaikwad S U,  Patil R R,  Kulkarni M S,  Dudhe C M,  Moharil S V 2020 Radiat. Prot. Dosim. 192 1Google Scholar

    [14]

    McKeever S W S 1985 Nucl, Instrum. Meth. A. 241 620Google Scholar

    [15]

    李燕飞, 陈建新, 周迎春 2006 个人与环境监测用X, γ辐射热释光剂量测量装置检定规程 (北京: 中国质检出版社) 第12页

    Li Y F, Chen J X, Zhou Y C 2003 Verification Regulation of X/γ-ray Thermoluminescence Dosimeter for Personal and Environmental Monitoring (Beijing: China Quality Inspection press) p12 (in Chinese)

    [16]

    郭志军, 王川, 曾进忠 2014 个人和环境监测用热释光剂量测量系统 (北京: 中国标准出版社) 第21页

    Guo Z J, Wang C, Zeng J Z 2014 Thermoluminescence Dosimetry System for Personal and Environmental Monitoring (Beijing: China Standards Press) p21 (in Chinese)

    [17]

    Krishnakumar D N, Perumal R N 2020 J. Mater. Sci-mater. El. 5 4294Google Scholar

    [18]

    韩斌, 冯天成, 陈伟, 李德红, 吴迪, 寿金翔 2017 核电子学与探测技术 37 1253

    Han B, Feng T D, Chen W, Li D H, Wu D, Shou J X 2017 Nucl. Electron. Detect. Technol. 37 1253 (in Chinese)

    [19]

    赵修良, 陈斌, 何淑雅, 刘丽艳, 孙娜, 贺三军 2018 核电子学与探测技术 38 521Google Scholar

    Zhao X L, Chen B, He S Y, Liu L Y, Su N, He S J 2018 Nucl. Electron. Detect. Technol. 38 521Google Scholar

    [20]

    Mehrabi M, Zahedifar M, Saeidi-Sogh Z,  Ramazani-Moghaddam-Arani A, Sadeghi E, Harooni S 2017 Nucl. Instrum. Meth. A 846 87Google Scholar

  • 图 1  不同烧结温度的NaCl:Cu(2 h, 0.5%)粉末的XRD图样

    Fig. 1.  XRD patterns of NaCl: Cu (2 h, 0.5%) powder at different sintering temperatures.

    图 2  (a) 15 kV高压, 放大880倍条件下NaCl:Cu样品的SEM图像; (b) 30 kV高压, 放大38800倍条件下NaCl:Cu样品的SEM图像

    Fig. 2.  (a) SEM image of NaCl: Cu sample under 15 kV high voltage and 880 magnification; (b) SEM image of NaCl: Cu sample at 30 kV high voltage and 38800 magnification.

    图 3  (a) 未过筛NaCl:Cu粉末烧结的剂量片光释光响应; (b) 100目过筛NaCl:Cu粉末烧结的剂量片光释光响应

    Fig. 3.  (a) The OSL response of sintered dose tablets of unfiltered NaCl: Cu powder; (b) OSL response of sintered dose tablets of 100 mesh screened NaCl: Cu powder.

    图 4  (a) NaCl:Cu剂量片光释光本底测试; (b) NaCl:Cu剂量片光释光衰退特性测试

    Fig. 4.  (a) OSL background test of NaCl: Cu dose tablets; (b) measurement of OSL decay characteristics of NaCl: Cu dose tablets.

    图 5  NaCl:Cu剂量片光释光能量响应测试

    Fig. 5.  Measurement of OSL energy response of NaCl: Cu dose tablets.

    图 6  剂量元件角度响应

    Fig. 6.  Angular response of dose element.

    图 7  NaCl:Cu剂量片及NaCl剂量片光释光剂量线性响应

    Fig. 7.  Linear response of OSL dose of NaCl: Cu dose tablets and NaCl dose tablets.

    表 1  重复性实验测量数据

    Table 1.  Measurement data of repeatability experiment.

    测量次数1组响应2组响应3组响应4组响应平均响应
    11914517132153971726917235.75
    21866715736173541904117699.5
    31639518879174371897517921.5
    41757618664174851853118064
    51811118978190091780218475
    下载: 导出CSV
  • [1]

    张纯祥, 林理彬, 梁宝鎏, 唐强, 李德卉, 罗达玲 2004 物理学报 01 291Google Scholar

    Zhang C X, Lin L B, Liang B L, Tang Q, Li D H, Luo D L 2004 Acta Phys. Sin. 01 291Google Scholar

    [2]

    杨新波, 李红军, 徐军, 程艳, 苏良碧, 唐强 2008 物理学报 57 7900Google Scholar

    Yang X B, Li H J, Cheng Y, Su L B, Tang Q 2008 Acta Phys. Sin. 57 7900Google Scholar

    [3]

    胡克艳, 李红军, 徐军, 杨秋红, 苏良碧, 唐强 2012 物理学报 61 482Google Scholar

    Hu K Y, Li H J, Xu J, Yang Q H, Su L B, Tang Q 2012 Acta Phys. Sin. 61 482Google Scholar

    [4]

    吴丽, 王倩, 李国栋, 窦巧娅, 吉旭 2016 物理学报 65 306Google Scholar

    Wu L, Wang Q, Li G D, Dou Q Y, Ji X 2016 Acta Phys. Sin. 65 306Google Scholar

    [5]

    Elashmawy M, 2018 Nucl. Instrum. Meth. B. 423 49Google Scholar

    [6]

    Hernández J A, Camarillo E G,  Muñoz G, Flores C J, Cabrera E B,  Jaque F,  Romero J J, Garcı́a S J,  Murrieta H S 2001 Opt. Mater. 17 491Google Scholar

    [7]

    Cruz-Zaragoza E, Barboza-Flores M, Chernov V, Meléndrez R, Ramos B S, Negrón-Mendoza A, Hernández J M, Murrieta H 2006 Radiat. Prot. Dosim. 119 102Google Scholar

    [8]

    Cruz-Zaragoza E,  Ortiz A,  Furetta C,  Flores J C,   Hernández A J,  Murrieta S H 2011 Appl. Radiat. Isot. 69 334Google Scholar

    [9]

    Bhujbal P M, Dhoble S J 2012 J. Biomed. Mater. Res. B 100 2148

    [10]

    Nagaoka Y, Adachi S 2014 J. Lumin. 145 797Google Scholar

    [11]

    Bernal R, Cruz-Vázquez C,  Brown F, Tostado-García W, Pérez-Salas R, Castaño V M 2014 Electron. Mater. Lett. 10 863Google Scholar

    [12]

    Gaikwad S U, Patil R R, Kulkarni M S, Bhatt B C, Moharil S V 2016 Am. J. Phys. 84 020510Google Scholar

    [13]

    Gaikwad S U,  Patil R R,  Kulkarni M S,  Dudhe C M,  Moharil S V 2020 Radiat. Prot. Dosim. 192 1Google Scholar

    [14]

    McKeever S W S 1985 Nucl, Instrum. Meth. A. 241 620Google Scholar

    [15]

    李燕飞, 陈建新, 周迎春 2006 个人与环境监测用X, γ辐射热释光剂量测量装置检定规程 (北京: 中国质检出版社) 第12页

    Li Y F, Chen J X, Zhou Y C 2003 Verification Regulation of X/γ-ray Thermoluminescence Dosimeter for Personal and Environmental Monitoring (Beijing: China Quality Inspection press) p12 (in Chinese)

    [16]

    郭志军, 王川, 曾进忠 2014 个人和环境监测用热释光剂量测量系统 (北京: 中国标准出版社) 第21页

    Guo Z J, Wang C, Zeng J Z 2014 Thermoluminescence Dosimetry System for Personal and Environmental Monitoring (Beijing: China Standards Press) p21 (in Chinese)

    [17]

    Krishnakumar D N, Perumal R N 2020 J. Mater. Sci-mater. El. 5 4294Google Scholar

    [18]

    韩斌, 冯天成, 陈伟, 李德红, 吴迪, 寿金翔 2017 核电子学与探测技术 37 1253

    Han B, Feng T D, Chen W, Li D H, Wu D, Shou J X 2017 Nucl. Electron. Detect. Technol. 37 1253 (in Chinese)

    [19]

    赵修良, 陈斌, 何淑雅, 刘丽艳, 孙娜, 贺三军 2018 核电子学与探测技术 38 521Google Scholar

    Zhao X L, Chen B, He S Y, Liu L Y, Su N, He S J 2018 Nucl. Electron. Detect. Technol. 38 521Google Scholar

    [20]

    Mehrabi M, Zahedifar M, Saeidi-Sogh Z,  Ramazani-Moghaddam-Arani A, Sadeghi E, Harooni S 2017 Nucl. Instrum. Meth. A 846 87Google Scholar

  • [1] 杨俊, 赵修良, 陈瑞达, 侯佳斌, 侯玉苗, 贺三军, 周超, 刘丽艳. NaCl, NaCl:Al与NaCl:Ca热释光峰值温度偏移特性. 物理学报, 2024, 73(13): 137801. doi: 10.7498/aps.73.20240231
    [2] 肖俊儒, 刘仲武, 楼华山, 詹慧雄. 利用Pr70Cu30晶界扩散改善烧结钕铁硼废料矫顽力的研究. 物理学报, 2018, 67(6): 067502. doi: 10.7498/aps.67.20172551
    [3] 郭竞渊, 唐强, 唐桦明, 张纯祥, 罗达玲, 刘小伟. LiMgPO4:Tm,Tb的热释光和光释光陷阱参数. 物理学报, 2017, 66(10): 107802. doi: 10.7498/aps.66.107802
    [4] 吴丽, 王倩, 李国栋, 窦巧娅, 吉旭. 不同退火温度的Al2O3:C薄膜热释光和光释光性能. 物理学报, 2016, 65(3): 037802. doi: 10.7498/aps.65.037802
    [5] 罗达玲, 唐强, 郭竞渊, 张纯祥. MSO4:Eu2+(M =Mg, Ca, Sr, Ba)的等电子陷阱与热释光特性. 物理学报, 2015, 64(8): 087805. doi: 10.7498/aps.64.087805
    [6] 吴芳, 王伟. 高压烧结法制备Bi2Te3纳米晶块体热电性能的研究. 物理学报, 2015, 64(4): 047201. doi: 10.7498/aps.64.047201
    [7] 刘晓波, 施宏宇, 陈博, 蒋延生, 徐卓, 张安学. 折射率梯度表面机理的研究. 物理学报, 2014, 63(21): 214201. doi: 10.7498/aps.63.214201
    [8] 胡克艳, 李红军, 徐军, 杨秋红, 苏良碧, 唐强. 不同粒径-Al2O3:C晶态粉体热释光和光释光特性. 物理学报, 2012, 61(15): 157802. doi: 10.7498/aps.61.157802
    [9] 牟中飞, 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴. Y3Al5O12∶Ce3+的余辉和热释光特性. 物理学报, 2011, 60(1): 013201. doi: 10.7498/aps.60.013201
    [10] 弭光宝, 李培杰, Охапкин А В, Константинова Н Ю, Сабирзянов А А, Попель П С. 液态结构与性质关系Ⅰ——Mg熔体的运动黏度及与熔体微观结构的关系. 物理学报, 2011, 60(4): 046601. doi: 10.7498/aps.60.046601
    [11] 张斌, 张浩佳, 杨秋红, 陆神洲. α-Al2O3透明陶瓷的发光及热释光特性. 物理学报, 2010, 59(2): 1333-1337. doi: 10.7498/aps.59.1333
    [12] 杨新波, 李红军, 徐 军, 程 艳, 苏良碧, 唐 强. α-Al2O3:C晶体的热释光和光释光特性. 物理学报, 2008, 57(12): 7900-7905. doi: 10.7498/aps.57.7900
    [13] 唐 强, 张纯祥, 梁宝鎏, 李德卉, 罗达玲. SrSO4:Eu磷光体的光释光特性. 物理学报, 2005, 54(1): 64-69. doi: 10.7498/aps.54.64
    [14] 张纯祥, 林理彬, 梁宝鎏, 唐强, 李德卉, 罗达玲. α-Al2O3单晶的热释光和光释光特性. 物理学报, 2004, 53(1): 291-295. doi: 10.7498/aps.53.291
    [15] 张纯祥, 唐强, 罗达玲. CaSO4∶Eu磷光体的热释光特性研究. 物理学报, 2002, 51(12): 2881-2886. doi: 10.7498/aps.51.2881
    [16] 刘波, 施朝淑, 周东方, 戚泽明, 胡关钦, 汤洪高. 掺Gd3+,Y3+对PbWO_4低温热释光的影响. 物理学报, 2001, 50(8): 1627-1631. doi: 10.7498/aps.50.1627
    [17] 徐克西, 周世平, 鲍家善. YBa2Cu3O7-δ外延膜中的非线性光响应. 物理学报, 1998, 47(2): 307-315. doi: 10.7498/aps.47.307
    [18] 杨淼, 司金海, 王玉晓, 李淳飞. 基于激发态非线性折射效应的全光开关与光限幅. 物理学报, 1995, 44(3): 419-426. doi: 10.7498/aps.44.419
    [19] 杨光参. q振子光场模型的光与物质相互作用的非线性理论. 物理学报, 1994, 43(4): 521-529. doi: 10.7498/aps.43.521
    [20] 新材料室. 液相烧结SmCo5永磁体磁滞回线与温度的关系. 物理学报, 1976, 25(6): 536-540. doi: 10.7498/aps.25.536
计量
  • 文章访问数:  5212
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 修回日期:  2022-02-09
  • 上网日期:  2022-06-22
  • 刊出日期:  2022-07-05

/

返回文章
返回