搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化硅衬底上外延双层石墨烯的电输运性质

胡聚罡 贾振宇 李绍春

引用本文:
Citation:

碳化硅衬底上外延双层石墨烯的电输运性质

胡聚罡, 贾振宇, 李绍春

Electron transport property of epitaixial bilayer graphene on SiC substrate

Hu Ju-Gang, Jia Zhen-Yu, Li Shao-Chun
PDF
HTML
导出引用
  • 石墨烯是低维材料领域研究的热点, 在这一体系中研究发现了诸多新奇的量子现象, 深入理解石墨烯的电输运性质对于其在未来电子学器件中的应用具有重要的意义. 本文通过热分解的方法在SiC单晶衬底上获得外延的双层石墨烯, 并系统研究了其电输运性质. 在小磁场范围内观测到弱局域化效应, 并在较大的磁场区间发现了不饱和线性磁阻. 通过角度依赖的磁阻测量, 发现该线性磁阻现象符合二维体系的磁输运特征. 还在平行场下观测到了负磁阻效应, 可能是由双层石墨烯的转角莫尔条纹导致的局部晶格起伏导致的. 本文工作加深了对于外延生长的层间具有一定转角的双层石墨烯的电输运性质的认识.
    Graphene can find great potential applications in the future electronic devices. In bilayer graphene, the relative rotation angle between graphene layers can modulate the interlayer interaction and hence induces rich physical phenomena. We systematically study the temperature dependent magnetoresistance (MR) properties in the epitaxial bilayer graphene (BLG) grown on the SiC substrate. High quality BLG is synthesized by molecular beam epitaxy in ultra-high vacuum. We observe the negative MR under a small magnetic field applied perpendicularly at temperature < 80 K, which is attributed to a weak localization effect. The weak localization effect in our epitaxial BLG is stronger than previously reported ones in epitaxial monolayer and multilayer graphene system, which is possibly because of the enhanced interlayer electron transition and thus the enhanced valley scattering in the BLG. As the magnetic field increases, the MR exhibits a classical Lorentz MR behavior. Moreover, we observe a linear magnetoresistance behavior in a large field, which shows no saturation for the magnetic field of up to 9 T. In order to further investigate the negative and linear magnetoresistance, we conduct angle-dependent magnetoresistance measurements, which indicates the two-dimensional magnetotransport phenomenon. We also find that the negative MR phenomenon occurs under a parallel magnetic field, which may correspond to the moiré pattern induced local lattice fluctuation as demonstrated by scanning tunneling microscopy measurement on an atomic scale. Our work paves the way for investigating the intrinsic properties of epitaxial BLG under various conditions.
      通信作者: 贾振宇, jiazhenyu2014@163.com ; 李绍春, scli@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774149, 11790311, 92165205)和国家重点研发计划(批准号: 2021YFA1400403)资助的课题.
      Corresponding author: Jia Zhen-Yu, jiazhenyu2014@163.com ; Li Shao-Chun, scli@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774149, 11790311, 92165205) and the National Key R&D Program of China (Grant No. 2021YFA1400403).
    [1]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nature Nanotechnol. 3 491Google Scholar

    [2]

    Miller D L, Kubista K D, Rutter G M, Ruan M, De Heer W A, First P N, Stroscio J A 2009 Science 324 924Google Scholar

    [3]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [4]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [5]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [6]

    Sevak Singh R, Wang X, Chen W, Ariando, Wee A T S 2012 Appl. Phys. Lett. 101 183105Google Scholar

    [7]

    Freitas P P, Ferreira R, Cardoso S, Cardoso F 2007 J. Phys.: Condensed Matter 19 165221Google Scholar

    [8]

    Chuang C, Yang Y, Elmquist R E, Liang C T 2016 Mater. Lett. 174 118Google Scholar

    [9]

    Willke P, Amani J A, Sinterhauf A, Thakur S, Kotzott T, Druga T, Weikert S, Maiti K, Hofsass H, Wenderoth M 2015 Nano Lett. 15 5110Google Scholar

    [10]

    McCann E, Kechedzhi K, Fal'ko V I, Suzuura H, Ando T, Altshuler B L 2006 Phys. Rev. Lett. 97 146805Google Scholar

    [11]

    Parish M M, Littlewood P B 2005 Phys. Rev. B 72 094417Google Scholar

    [12]

    Demokritov S O, Serga A A, Demidov V E, Hillebrands B, Kostylev M P, Kalinikos B A 2003 Nature 426 159Google Scholar

    [13]

    Abrikosov A A 1998 Phys. Rev. B 58 2788Google Scholar

    [14]

    Zhou Y B, Wu H C, Yu D P, Liao Z M 2013 Appl. Phys. Lett. 102 093116Google Scholar

    [15]

    Wang W J, Gao K H, Li Z Q, Lin T, Li J, Yu C, Feng Z H 2014 Appl. Phys. Lett. 105 182102Google Scholar

    [16]

    Butz B, Dolle C, Niekiel F, Weber K, Waldmann D, Weber H B, Meyer B, Spiecker E 2014 Nature 505 533Google Scholar

    [17]

    Kisslinger F, Ott C, Heide C, Kampert E, Butz B, Spiecker E, Shallcross S, Weber H B 2015 Nat. Phys. 11 650Google Scholar

    [18]

    Rein M, Richter N, Parvez K, Feng X L, Sachdev H, Kläui M, Müllen K 2015 ACS Nano 9 1360Google Scholar

    [19]

    Creeth G L, Strudwick A J, Sadowski J T, Marrows C H 2011 Phys. Rev. B 83 195440Google Scholar

    [20]

    Gopinadhan K, Jun Shin Y, Yang H 2012 Appl. Phys. Lett. 101 223111Google Scholar

    [21]

    Brzhezinskaya M, Kononenko O, Matveev V, Zotov A, Khodos, II, Levashov V, Volkov V, Bozhko S I, Chekmazov S V, Roshchupkin D 2021 ACS Nano 15 12358Google Scholar

    [22]

    Baker A M R, Alexander-Webber J A, Altebaeumer T, Janssen T J B M, Tzalenchuk A, Lara-Avila S, Kubatkin S, Yakimova R, Lin C T, Li L J, Nicholas R J 2012 Phys. Rev. B 86 235441Google Scholar

    [23]

    Meng L, Chu Z D, Zhang Y, Yang J Y, Dou R F, Nie J C, He L 2012 Phys. Rev. B 85 235453Google Scholar

    [24]

    Liao Z M, Zhou Y B, Wu H C, Han B H, Yu D P 2011 Europhys. Lett. 94 57004Google Scholar

    [25]

    Brar V W, Zhang Y, Yayon Y, Ohta T, McChesney J L, Bostwick A, Rotenberg E, Horn K, Crommie M F 2007 Appl. Phys. Lett. 91 122102Google Scholar

    [26]

    Zhang X, Xue Q Z, Zhu D D 2004 Phys. Lett. A 320 471Google Scholar

    [27]

    Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H Z, Xing D, Wang B, Wan X, Miao F 2016 Nat. Commun. 7 13142Google Scholar

    [28]

    Cai C Y, Chen J H 2018 Chin. Phys. B 27 067304Google Scholar

    [29]

    Wakabayashi J, Sano K 2011 J. Phys. Soc. Jpn. 81 013702Google Scholar

    [30]

    Lundeberg M B, Folk J A 2010 Phys. Rev. Lett. 105 146804Google Scholar

    [31]

    Hong S J, Rodríguez-Manzo J A, Kim K H, Park M, Baek S J, Kholin D I, Lee M, Choi E S, Jeong D H, Bonnell D A, Mele E J, Drndić M, Johnson A T C, Park Y W 2016 Synth. Met. 216 65Google Scholar

    [32]

    Finney J, Sharpe A L, Fox E J, Hsueh C L, Parker D E, Yankowitz M, Chen S W, Watanabe K, Taniguchi T, Dean C R, Vishwanath A, Kastner M, Goldhaber-Gordon D 2021 PNAS 119 e2118482119Google Scholar

  • 图 1  (a) 在6H-SiC(0001)表面外延双层石墨烯的结构示意图; (b)生长过程在BLG/SiC表面监测获得的RHEED图案; (c)在BLG/SiC表面获得的STM形貌图, 尺寸为200 nm × 200 nm, U = 1.50 V, It = 50 pA; (d)在BLG/SiC表面获得的原子分辨STM形貌图, 尺寸为10 nm × 10 nm, U = 0.90 V, It = 100 pA. 图中可以看到莫尔周期调制

    Fig. 1.  (a) Structure diagram in bilayer graphene grown on 6H-SiC(0001). (b) RHEED patterns obtained by monitoring the BLG/SiC surface during growth. (c) STM morphology on BLG/SiC surface. Size: 200 nm × 200 nm, U = 1.50 V, It = 50 pA. (d) Atomic-resolved STM morphology obtained on BLG/SiC surface. Size: 10 nm × 10 nm, U = 0.90 V, It = 100 pA. Moiré period modulation can be seen in the figure

    图 2  在无外加磁场下测量的BLG/SiC(0001)表面电阻-温度曲线, 其中插图显示为磁电阻测量的结构示意图

    Fig. 2.  Temperature-resistance curve measured on BLG/SiC (0001) surface without an applied magnetic field. The illustration shows a schematic diagram of the structure of magnetoresistance measurement.

    图 3  (a)垂直磁场条件下在–9—9 T范围内不同温度条件的MR vs. B图; (b)垂直磁场条件下小磁场区域MR vs. B图; (c)垂直磁场条件下中等磁场区域MR vs. B图; (d)垂直磁场条件下较大磁场区域MR vs. B图; (e)不同温度条件下的霍尔测试

    Fig. 3.  (a) MR vs. B diagram at different temperatures in the range of –9–9 T under vertical magnetic field; (b) MR vs. B diagram of small magnetic field under vertical magnetic field; (c) MR vs. B diagram of medium magnetic field under vertical magnetic field; (d) MR vs. B diagram of large magnetic field under vertical magnetic field; (e) Hall test at different temperatures.

    图 4  (a) 2 K条件下, 旋转样品以改变磁场与样品夹角时的MR vs. B图, 其中θ = 0°代表磁场与样品垂直情况; (b) 图(a)中小磁场范围局部放大图; (c) 由图4(a)拟合的结果, 其中$ \theta $是磁场与竖直方向的夹角, 横坐标代表外加磁场的竖直分量; (d) 水平磁场条件下(θ = 90°)不同温度的MR vs. B

    Fig. 4.  (a) MR vs. B diagram by rotating sample and hence varing the magnetic field B direction θ, where θ = 0° represents the perpendicular condition of magnetic field and sample; (b) local enlargement of panel (a) at small and medium magnetic field range; (c) diagram according to the fitting results in Fig. 4(a), where θ is the angle between the magnetic field and the vertical direction, and the abscissa represents the vertical component of the external magnetic field; (d) MR vs. B plots at different temperatures under horizontal magnetic field (θ = 90°).

  • [1]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nature Nanotechnol. 3 491Google Scholar

    [2]

    Miller D L, Kubista K D, Rutter G M, Ruan M, De Heer W A, First P N, Stroscio J A 2009 Science 324 924Google Scholar

    [3]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [4]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [5]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [6]

    Sevak Singh R, Wang X, Chen W, Ariando, Wee A T S 2012 Appl. Phys. Lett. 101 183105Google Scholar

    [7]

    Freitas P P, Ferreira R, Cardoso S, Cardoso F 2007 J. Phys.: Condensed Matter 19 165221Google Scholar

    [8]

    Chuang C, Yang Y, Elmquist R E, Liang C T 2016 Mater. Lett. 174 118Google Scholar

    [9]

    Willke P, Amani J A, Sinterhauf A, Thakur S, Kotzott T, Druga T, Weikert S, Maiti K, Hofsass H, Wenderoth M 2015 Nano Lett. 15 5110Google Scholar

    [10]

    McCann E, Kechedzhi K, Fal'ko V I, Suzuura H, Ando T, Altshuler B L 2006 Phys. Rev. Lett. 97 146805Google Scholar

    [11]

    Parish M M, Littlewood P B 2005 Phys. Rev. B 72 094417Google Scholar

    [12]

    Demokritov S O, Serga A A, Demidov V E, Hillebrands B, Kostylev M P, Kalinikos B A 2003 Nature 426 159Google Scholar

    [13]

    Abrikosov A A 1998 Phys. Rev. B 58 2788Google Scholar

    [14]

    Zhou Y B, Wu H C, Yu D P, Liao Z M 2013 Appl. Phys. Lett. 102 093116Google Scholar

    [15]

    Wang W J, Gao K H, Li Z Q, Lin T, Li J, Yu C, Feng Z H 2014 Appl. Phys. Lett. 105 182102Google Scholar

    [16]

    Butz B, Dolle C, Niekiel F, Weber K, Waldmann D, Weber H B, Meyer B, Spiecker E 2014 Nature 505 533Google Scholar

    [17]

    Kisslinger F, Ott C, Heide C, Kampert E, Butz B, Spiecker E, Shallcross S, Weber H B 2015 Nat. Phys. 11 650Google Scholar

    [18]

    Rein M, Richter N, Parvez K, Feng X L, Sachdev H, Kläui M, Müllen K 2015 ACS Nano 9 1360Google Scholar

    [19]

    Creeth G L, Strudwick A J, Sadowski J T, Marrows C H 2011 Phys. Rev. B 83 195440Google Scholar

    [20]

    Gopinadhan K, Jun Shin Y, Yang H 2012 Appl. Phys. Lett. 101 223111Google Scholar

    [21]

    Brzhezinskaya M, Kononenko O, Matveev V, Zotov A, Khodos, II, Levashov V, Volkov V, Bozhko S I, Chekmazov S V, Roshchupkin D 2021 ACS Nano 15 12358Google Scholar

    [22]

    Baker A M R, Alexander-Webber J A, Altebaeumer T, Janssen T J B M, Tzalenchuk A, Lara-Avila S, Kubatkin S, Yakimova R, Lin C T, Li L J, Nicholas R J 2012 Phys. Rev. B 86 235441Google Scholar

    [23]

    Meng L, Chu Z D, Zhang Y, Yang J Y, Dou R F, Nie J C, He L 2012 Phys. Rev. B 85 235453Google Scholar

    [24]

    Liao Z M, Zhou Y B, Wu H C, Han B H, Yu D P 2011 Europhys. Lett. 94 57004Google Scholar

    [25]

    Brar V W, Zhang Y, Yayon Y, Ohta T, McChesney J L, Bostwick A, Rotenberg E, Horn K, Crommie M F 2007 Appl. Phys. Lett. 91 122102Google Scholar

    [26]

    Zhang X, Xue Q Z, Zhu D D 2004 Phys. Lett. A 320 471Google Scholar

    [27]

    Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H Z, Xing D, Wang B, Wan X, Miao F 2016 Nat. Commun. 7 13142Google Scholar

    [28]

    Cai C Y, Chen J H 2018 Chin. Phys. B 27 067304Google Scholar

    [29]

    Wakabayashi J, Sano K 2011 J. Phys. Soc. Jpn. 81 013702Google Scholar

    [30]

    Lundeberg M B, Folk J A 2010 Phys. Rev. Lett. 105 146804Google Scholar

    [31]

    Hong S J, Rodríguez-Manzo J A, Kim K H, Park M, Baek S J, Kholin D I, Lee M, Choi E S, Jeong D H, Bonnell D A, Mele E J, Drndić M, Johnson A T C, Park Y W 2016 Synth. Met. 216 65Google Scholar

    [32]

    Finney J, Sharpe A L, Fox E J, Hsueh C L, Parker D E, Yankowitz M, Chen S W, Watanabe K, Taniguchi T, Dean C R, Vishwanath A, Kastner M, Goldhaber-Gordon D 2021 PNAS 119 e2118482119Google Scholar

  • [1] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器. 物理学报, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [2] 张艺玮, 宋恒博, 李小燕, 孙丽, 刘晓莹, 寇朝霞, 张栋, 费红阳, 赵志斌, 翟亚. 不同厚度Cr中间层对Gd/FeCo薄膜磁电阻效应转变的影响. 物理学报, 2022, 71(21): 217501. doi: 10.7498/aps.71.20220472
    [3] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [4] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [5] 包黎红, 陶如玉, 特古斯, 黄颖楷, 冷华倩, Anne de Visser. 单晶CeB6发射性能及磁电阻各向异性研究. 物理学报, 2017, 66(18): 186102. doi: 10.7498/aps.66.186102
    [6] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [7] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [8] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [9] 王威, 周文政, 韦尚江, 李小娟, 常志刚, 林铁, 商丽燕, 韩奎, 段俊熙, 唐宁, 沈波, 褚君浩. GaN/AlxGa1-xN异质结二维电子气的磁电阻研究. 物理学报, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [10] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [11] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [12] 江阔. Co掺杂对铁磁金属La0.8Sr0.2MnO3磁电阻影响机理. 物理学报, 2010, 59(4): 2801-2807. doi: 10.7498/aps.59.2801
    [13] 任俊峰, 王玉梅, 原晓波, 胡贵超. 有机自旋阀的磁电阻性质研究. 物理学报, 2010, 59(9): 6580-6584. doi: 10.7498/aps.59.6580
    [14] 秦伟, 张玉滨, 解士杰. 有机Co/Alq3/La1-xSrxMnO3(LSMO)器件磁电阻的温度效应研究. 物理学报, 2010, 59(5): 3494-3498. doi: 10.7498/aps.59.3494
    [15] 许小勇, 钱丽洁, 胡经国. 铁磁多层膜中的力致磁电阻效应. 物理学报, 2009, 58(3): 2023-2029. doi: 10.7498/aps.58.2023
    [16] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [17] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [18] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [19] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  5380
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-01-26
  • 上网日期:  2022-02-28
  • 刊出日期:  2022-06-20

/

返回文章
返回