搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对氯苯腈的双色共振双光子电离和质量分辨阈值电离光谱

赵岩 李娜 党思远 杨国全 李昌勇

引用本文:
Citation:

对氯苯腈的双色共振双光子电离和质量分辨阈值电离光谱

赵岩, 李娜, 党思远, 杨国全, 李昌勇

Two-color resonance enhanced two-photon ionization and mass analyzed threshold ionization spectroscopy of p-chlorobenzonitrile

Zhao Yan, Li Na, Dang Si-Yuan, Yang Guo-Quan, Li Chang-Yong
PDF
HTML
导出引用
  • 本文利用双色共振双光子电离和质量分辨阈值电离光谱技术, 研究了对氯苯腈分子第一电子激发态S1和离子基态D0的振动特征, 确定了对氯苯腈分子S1 ← S0电子跃迁的激发能为35818 ± 2 cm–1, 精确的绝热电离能为76846 ± 5 cm–1. 对氯苯腈分子35Cl和37Cl两种同位素有相同的激发能和电离能以及相似的振动特征. 采用高精度密度泛函方法, 计算了对氯苯腈分子在中性基态S0、第一电子激发态S1、离子基态D0的结构参数和振动频率, 分析了电子激发和电离过程中对氯苯腈分子结构和振动频率的变化, 并对激发态和离子基态的振动光谱进行了归属, 振动光谱上的活性振动大多数是苯环平面内的弯曲振动. 通过比较对氯苯酚、对氯苯胺、对氯苯甲醚、对氯苯腈与苯酚、苯胺、苯甲醚、苯腈分子的跃迁能, 分析了取代基Cl原子与苯环之间的相互作用及其对分子跃迁能的影响.
    The vibrational features of p-chlorobenzonitrile in its first electronically excited state S1 and cationic ground state D0 have been investigated by two-color resonance enhanced two-photon ionization and mass analyzed threshold ionization spectroscopy. The excitation energy of S1 ← S0 and the ionization energy of 35Cl and 37Cl isotopomers of p-chlorobenzonitrile are determined to be 35818 ± 2, and 76846 ± 5 cm–1, respectively. These two isotopomers have similar vibrational features. Most of the active vibrations in the S1 and D0 states are related to the motions of the in-plane ring deformation. The stable structures and vibrational frequencies of p-chlorobenzonitrile are also calculated by the B3LYP/aug-cc-pVDZ method for the S0 and D0 states, and TD-B3LYP/aug-cc-pVDZ method for the S1 state. The changes in the molecular geometry are discussed in the S1 ← S0 photoexcitation process and the D0 ← S1 photoionization process. The comparisons between the transition energy of p-chlorophenol, p-chloroaniline, p-chloroanisole, and p-chlorobenzonitrile with those of phenol, anisole, aniline, and benzonitrile provide an insight into the substitution effect of Cl atom.
      通信作者: 赵岩, zhaoy@jzxy.edu.cn ; 李昌勇, lichyong@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFA0304203)、国家自然科学基金重点项目(批准号: 61835007)、国家自然科学基金(批准号: 11904215, 61575115)、教育部长江学者和创新团队发展计划(批准号: IRT_17R70)、高等学校学科创新引智计划(批准号: D18001)、山西省高等学校科技创新计划(批准号: 2020L0582, 2020L0599)、山西省基础研究计划(批准号: 20210302124542)、博士科研启动费(批准号: 2019012)和山西省“1331工程”重点学科建设计划资助的课题
      Corresponding author: Zhao Yan, zhaoy@jzxy.edu.cn ; Li Chang-Yong, lichyong@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the Key Program of the National Natural Science Foundation of China (Grant No. 61835007), the National Natural Science Foundation of China (Grants Nos. 11904215, 61575115), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_17R70), the 111 Project (Grant No. D18001), the Shanxi Provincial Higher Education Science and Technology Innovation Program, China (Grants Nos. 2020L0582, 2020L0599), the Shanxi Provincial Research Foundation for Basic Research, China (Grant No. 20210302124542), the Scientific Research Starting Foundation for Doctor, China (Grant No. 2019012), and the Fund for Shanxi ‘‘1331 Project” Key Subjects Construction, China.
    [1]

    Lee J K, Fujiwara T, Kofron W G, Zgierski M Z, Lim E C 2008 J. Chem. Phys. 128 164512Google Scholar

    [2]

    Perveaux A, Castro P J, Lauvergnat D, Reguero M, Lasorne B 2015 J. Phys. Chem. Lett. 6 1316Google Scholar

    [3]

    Livingstone R A, Thompson J O, Iljina M, Donaldson R J, Sussman B J, Paterson M J, Townsend D 2012 J. Chem. Phys. 137 184304Google Scholar

    [4]

    King G A, Devine A L, Nix M G, Kelly D E, Ashfold M N 2008 Phys. Chem. Chem. Phys. 10 6417Google Scholar

    [5]

    Miyazaki M, Sakata Y, Schutz M, Dopfer O, Fujii M 2016 Phys. Chem. Chem. Phys. 18 24746Google Scholar

    [6]

    Aschaffenburg D J, Moog R S 2009 J. Phys. Chem. B 113 12736Google Scholar

    [7]

    Chang C, Lu Y, Wang T, Diau E W 2004 J. Am. Chem. Soc. 126 10109Google Scholar

    [8]

    Hertel I V, Radloff W 2006 Rep. Prog. Phys. 69 1897Google Scholar

    [9]

    Schneider M, Wilke M, Hebestreit M L, Ruiz-Santoyo J A, Alvarez-Valtierra L, Yi J T, Meerts W L, Pratt D W, Schmitt M 2017 Phys. Chem. Chem. Phys. 19 21364Google Scholar

    [10]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 093301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 093301Google Scholar

    [11]

    Zhao Y, Jin Y H, Li C Y, Jia S T 2019 J. Mol. Spectrosc. 363 111182Google Scholar

    [12]

    Corrales M E, Shternin P S, Rubio L L, De N R, Vasyutinskii O S, Bañares L 2016 J. Phys. Chem. Lett. 7 4458Google Scholar

    [13]

    Tzeng S Y, Shivatare V S, Tzeng W B 2019 J. Phys. Chem. A 123 5969Google Scholar

    [14]

    Findley A M, Bernstorff S, Köhler A M, Saile V, Findley G L 1987 Phys. Scr. 35 633Google Scholar

    [15]

    Onda M, Saegusa N, Yamaguchi I 1986 J. Mol. Struct. 145 185Google Scholar

    [16]

    Rocha I M, Galvão T L, Ribeiro da Silva M D, Ribeiro da Silva M A 2014 J. Phys. Chem. A 118 1502Google Scholar

    [17]

    Trivedi M K, Branton A, Trivedi D, Nayak G, Singh R, Jana S 2015 J. Chem. Sci. 3 84Google Scholar

    [18]

    Zhao Y, Jin Y H, Hao J Y, Yang Y G, Wang L R, Li C Y, Jia S T 2019 Spectrochim. Acta, Part A 207 328Google Scholar

    [19]

    段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 053301Google Scholar

    Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 053301Google Scholar

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Wallingford CT: Gaussian Inc.)

    [21]

    Merrick J P, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683Google Scholar

    [22]

    Maiti A K, Sarkar S K, Kastha G S 1985 Proc. Indian Acad. Sci. (Chem. Sci.) 95 409Google Scholar

    [23]

    Lin J L, Tzeng W B 2000 J. Chem. Phys. 113 4109Google Scholar

    [24]

    Huang J H, Huang K L, Liu S Q, Luo Q, Tzeng W B 2008 J. Photochem. Photobiol. , A 193 245Google Scholar

    [25]

    Lin J L, Li C Y, Tzeng W B 2004 J. Chem. Phys. 120 10513Google Scholar

    [26]

    Yu D, Dong C W, Cheng M, Hu L L, Du Y K, Zhu Q H, Zhang C H 2011 J. Mol. Spectrosc. 265 86Google Scholar

    [27]

    Wilson E B 1934 Phys. Rev. 45 706Google Scholar

    [28]

    Varsanyi G 1974 Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Wiley) pp185–190

    [29]

    Tzeng S Y, Takahashi K, Tzeng W B 2019 Chem. Phys. Lett. 731 136626Google Scholar

    [30]

    Huang J, Lin J L, Tzeng W B 2006 Chem. Phys. Lett. 422 271Google Scholar

    [31]

    Desiraju G R, Harlow R L 1989 J. Am. Chem. Soc. 111 6757Google Scholar

    [32]

    Zhao Y, Jin Y H, Hao J Y, Yang Y, Li C Y, Jia S T 2018 Chem. Phys. Lett. 711 127Google Scholar

    [33]

    Dopfer O, Müller-Dethlefs K 1994 J. Chem. Phys. 101 8508Google Scholar

    [34]

    Pradhan M, Li C Y, Lin J L, Tzeng W B 2005 Chem. Phys. Lett. 407 100Google Scholar

    [35]

    Lin J L, Tzeng W B 2001 J. Chem. Phys. 115 743Google Scholar

    [36]

    Araki M, Sato S, Kimura K 1996 J. Phys. Chem. 100 10542Google Scholar

    [37]

    Suzuki K, Ishiuchi S, Sakai M, Fujii M 2005 J. Electron Spectrosc. Relat. Phenom. 142 215Google Scholar

    [38]

    Huang L C, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449Google Scholar

    [39]

    Zhang B, Li C, Su H, Lin J L, Tzeng W B 2004 Chem. Phys. Lett. 390 65Google Scholar

  • 图 1  对氯苯腈分子的飞行时间质谱图

    Fig. 1.  TOF mass spectrum of p-chlorobenzonitrile.

    图 2  对氯苯腈分子35Cl同位素(a)和37Cl 同位素(b)的2C-R2PI光谱, 横坐标是相对$ 0_0^0 $带能量的偏移值

    Fig. 2.  2C-R2PI spectra of the 35Cl (a) and 37Cl (b) isotopomers of p-chlorobenzonitrile. The spectrum is shifted by 35818 cm-1 (the origin of the S1 ← S0 transition).

    图 3  经过对氯苯腈分子35Cl同位素中间态S100 (a)和37Cl 同位素中间态S100 (b)的MATI光谱, 横坐标是相对对氯苯腈分子电离能的偏移值

    Fig. 3.  MATI spectra of the 35Cl (a) and 37Cl (b) isotopomers of p-chlorobenzonitrile via the S100 intermediate state

    图 4  经过对氯苯腈分子35Cl同位素中间态S16b1 (a) 和37Cl 同位素中间态S16b1 (b) 的MATI光谱, 横坐标是相对对氯苯腈分子电离能的偏移值

    Fig. 4.  MATI spectra of the 35Cl (a) and 37Cl (b) isotopomers of p-chlorobenzonitrile via the S16b1 intermediate state.

    表 1  对氯苯腈分子35Cl和37Cl 同位素激发态S1的振动频率及光谱归属(单位: cm–1)

    Table 1.  The measured vibrational frequencies and assignments for the S1 state of 35Cl and 37Cl isotopomers of p-chlorobenzonitrile (unit: cm–1).

    35Cl37Cl光谱归属b
    实验值a理论值a实验值a理论值a
    00$ 0_0^0 $
    139141139141$ 15_0^1 $, β(C—CN)
    292291292291$ 9{\text{b}}_0^1 $, β(C—Cl)
    310300309300$ 7{\text{a}}_0^1 $, β(CCC),
    ν (C—Cl)
    457454457454$ 16{\text{b}}_0^1 $, γ(CCC)
    504495504495$ 6{\text{b}}_0^1 $, β(CCC)
    552567552567$ 12_0^1 $, β(CCC)
    592597590597β(C—CN)
    739747739746$ 6{\text{a}}_0^1 $, β(CCC)
    816818$ 6{\text{b}}_0^17{\text{a}}_0^1 $
    859859$ 12_0^17{\text{a}}_0^1 $
    867867$ 6{\text{a}}_0^115_0^1 $
    962970962970$ 18{\text{a}}_0^1 $, β(CH)
    10021002$ 6{\text{b}}_0^2 $
    10541054$ 6{\text{a}}_0^17{\text{a}}_0^1 $
    1067105510661055$ 1_0^1 $, breathing
    1149114711491147$ 9{\text{a}}_0^1 $, β(CH)
    1176118711761187$ 13_0^1 $, ν(C—CN)
    a 实验值是相对于对氯苯腈分子激发能(35818 cm–1)的偏移, 理论值是TD-B3LYP/aug-cc-pVDZ方法计算的振动频率(校正因子0.984)
    b ν, 伸缩振动; β, 苯环平面内的弯曲振动; γ, 垂直于苯环平面的弯曲振动
    下载: 导出CSV

    表 2  对氯苯腈分子35Cl和37Cl 同位素离子基态D0的振动频率及光谱归属a(单位: cm–1)

    Table 2.  The measured vibrational frequencies and assignments in the MATI spectra for the D0 state of 35Cl and 37Cl isotopomers of p-chlorobenzonitrilea (unit: cm–1).

    35Cl37Cl光谱归属b
    S1中间态理论值aS1中间态理论值a
    S100S16b1S100S16b1
    0
    3463473433447a1, β(CCC) , ν (C—Cl)
    5175285145296b1, β(CCC)
    5875846b1111
    601598121, β(CCC)
    6916936816877a2
    71973171573441, γ(C—CN)
    7787727787756a1, β(CCC)
    8608576b17a1
    9479477a1121
    10326b2
    10351040103110317a3
    10637a141
    111010931116109611, breathing
    1127111811186b1121
    120511916b17a2
    1223122312271228131, ν(C—CN)
    12366b141
    129212926b16a1
    138813908b1, ν(CC)
    154915456b17a3
    15721577156915707a1131
    16081614161216218a1, ν(CC)
    164116316b111
    a实验值是相对于对氯苯腈分子电离能(76846 cm–1)的偏移, 理论值是B3LYP/aug-cc-pVDZ方法计算的振动频率(校正因子0.981)
    b ν, 伸缩振动; β, 苯环平面内的弯曲振动; γ, 垂直于苯环平面的弯曲振动
    下载: 导出CSV

    表 3  对氯苯腈分子在电子基态、激发态和离子基态的基本结构参数

    Table 3.  Geometrical parameters of p-chlorobenzonitrile in its electronic ground, first excited and cationic ground states.

    结构
    参数
    Exp.aS0bS1cD0bΔ(S1-S0)Δ(D0-S1)
    键长/Å
    C1-C21.3971.4061.4321.4330.0260.008
    C2-C31.3841.3931.4291.3730.036–0.056
    C3-C41.3871.3971.4181.4290.0210.011
    C4-C51.3801.3971.4181.4290.0210.011
    C5-C61.3821.3931.4291.3730.036–0.056
    C6-C11.3861.4061.4321.4330.0260.001
    C4-Cl71.7451.7551.7331.695–0.022–0.038
    C1-C81.4541.4361.4141.413–0.023–0.001
    C8-N91.1101.1631.1711.1700.008–0.001
    键角/°
    C1C2C3119.1120.2119.5119.6–0.70.1
    C2C3C4119.4119.2118.7118.9–0.50.2
    C3C4C5121.7121.4122.7121.91.3–0.8
    C4C5C6118.8119.2118.7118.9–0.50.2
    C5C6C1120.2120.2119.5119.6–0.70.1
    C6C1C2120.6119.8120.8121.01.00.2
    a对氯苯腈分子的晶体结构参数[31]
    bB3LYP/aug-cc-pVDZ方法理论计算的结构参数
    cTD-B3LYP/aug-cc-pVDZ方法理论计算的结构参数
    下载: 导出CSV

    表 4  苯酚、苯甲醚、苯胺、苯腈及其衍生物分子的跃迁能(单位: cm–1) a

    Table 4.  The transition energies (cm–1) of phenol, anisole, aniline, benzonitrile and their derivatives.a

    MoleculeE1(S1 ← S0)ΔE1E2(D0 ← S1)ΔE2IEΔIE
    苯酚[33]36, 349032, 276068, 6250
    对氯苯酚[30]34, 813–153733, 291101568, 104–521
    苯甲醚[34]36, 383030, 016066, 3990
    对氯苯甲醚[29]34, 859–152431, 253123766, 112–287
    苯胺[35]34, 029028, 242062, 2710
    对氯苯胺[23]32, 573–145629, 837159362, 410139
    苯腈[36]36, 518041, 972078, 4900
    对氯苯腈35, 818–70041, 028–94476, 846–1644
    对甲基苯腈[37]36, 222–29638, 933–303975, 155–2845
    对氨基苯腈[38]33, 481–303733, 012–896066, 493–11997
    aΔE1, ΔE2, 和ΔIE 是衍生物分子E1, E2跃迁能和IE电离能相对苯酚、苯甲醚、苯胺、苯腈E1, E2, IE能量的差值
    下载: 导出CSV
  • [1]

    Lee J K, Fujiwara T, Kofron W G, Zgierski M Z, Lim E C 2008 J. Chem. Phys. 128 164512Google Scholar

    [2]

    Perveaux A, Castro P J, Lauvergnat D, Reguero M, Lasorne B 2015 J. Phys. Chem. Lett. 6 1316Google Scholar

    [3]

    Livingstone R A, Thompson J O, Iljina M, Donaldson R J, Sussman B J, Paterson M J, Townsend D 2012 J. Chem. Phys. 137 184304Google Scholar

    [4]

    King G A, Devine A L, Nix M G, Kelly D E, Ashfold M N 2008 Phys. Chem. Chem. Phys. 10 6417Google Scholar

    [5]

    Miyazaki M, Sakata Y, Schutz M, Dopfer O, Fujii M 2016 Phys. Chem. Chem. Phys. 18 24746Google Scholar

    [6]

    Aschaffenburg D J, Moog R S 2009 J. Phys. Chem. B 113 12736Google Scholar

    [7]

    Chang C, Lu Y, Wang T, Diau E W 2004 J. Am. Chem. Soc. 126 10109Google Scholar

    [8]

    Hertel I V, Radloff W 2006 Rep. Prog. Phys. 69 1897Google Scholar

    [9]

    Schneider M, Wilke M, Hebestreit M L, Ruiz-Santoyo J A, Alvarez-Valtierra L, Yi J T, Meerts W L, Pratt D W, Schmitt M 2017 Phys. Chem. Chem. Phys. 19 21364Google Scholar

    [10]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 093301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 093301Google Scholar

    [11]

    Zhao Y, Jin Y H, Li C Y, Jia S T 2019 J. Mol. Spectrosc. 363 111182Google Scholar

    [12]

    Corrales M E, Shternin P S, Rubio L L, De N R, Vasyutinskii O S, Bañares L 2016 J. Phys. Chem. Lett. 7 4458Google Scholar

    [13]

    Tzeng S Y, Shivatare V S, Tzeng W B 2019 J. Phys. Chem. A 123 5969Google Scholar

    [14]

    Findley A M, Bernstorff S, Köhler A M, Saile V, Findley G L 1987 Phys. Scr. 35 633Google Scholar

    [15]

    Onda M, Saegusa N, Yamaguchi I 1986 J. Mol. Struct. 145 185Google Scholar

    [16]

    Rocha I M, Galvão T L, Ribeiro da Silva M D, Ribeiro da Silva M A 2014 J. Phys. Chem. A 118 1502Google Scholar

    [17]

    Trivedi M K, Branton A, Trivedi D, Nayak G, Singh R, Jana S 2015 J. Chem. Sci. 3 84Google Scholar

    [18]

    Zhao Y, Jin Y H, Hao J Y, Yang Y G, Wang L R, Li C Y, Jia S T 2019 Spectrochim. Acta, Part A 207 328Google Scholar

    [19]

    段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 053301Google Scholar

    Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 053301Google Scholar

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Wallingford CT: Gaussian Inc.)

    [21]

    Merrick J P, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683Google Scholar

    [22]

    Maiti A K, Sarkar S K, Kastha G S 1985 Proc. Indian Acad. Sci. (Chem. Sci.) 95 409Google Scholar

    [23]

    Lin J L, Tzeng W B 2000 J. Chem. Phys. 113 4109Google Scholar

    [24]

    Huang J H, Huang K L, Liu S Q, Luo Q, Tzeng W B 2008 J. Photochem. Photobiol. , A 193 245Google Scholar

    [25]

    Lin J L, Li C Y, Tzeng W B 2004 J. Chem. Phys. 120 10513Google Scholar

    [26]

    Yu D, Dong C W, Cheng M, Hu L L, Du Y K, Zhu Q H, Zhang C H 2011 J. Mol. Spectrosc. 265 86Google Scholar

    [27]

    Wilson E B 1934 Phys. Rev. 45 706Google Scholar

    [28]

    Varsanyi G 1974 Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Wiley) pp185–190

    [29]

    Tzeng S Y, Takahashi K, Tzeng W B 2019 Chem. Phys. Lett. 731 136626Google Scholar

    [30]

    Huang J, Lin J L, Tzeng W B 2006 Chem. Phys. Lett. 422 271Google Scholar

    [31]

    Desiraju G R, Harlow R L 1989 J. Am. Chem. Soc. 111 6757Google Scholar

    [32]

    Zhao Y, Jin Y H, Hao J Y, Yang Y, Li C Y, Jia S T 2018 Chem. Phys. Lett. 711 127Google Scholar

    [33]

    Dopfer O, Müller-Dethlefs K 1994 J. Chem. Phys. 101 8508Google Scholar

    [34]

    Pradhan M, Li C Y, Lin J L, Tzeng W B 2005 Chem. Phys. Lett. 407 100Google Scholar

    [35]

    Lin J L, Tzeng W B 2001 J. Chem. Phys. 115 743Google Scholar

    [36]

    Araki M, Sato S, Kimura K 1996 J. Phys. Chem. 100 10542Google Scholar

    [37]

    Suzuki K, Ishiuchi S, Sakai M, Fujii M 2005 J. Electron Spectrosc. Relat. Phenom. 142 215Google Scholar

    [38]

    Huang L C, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449Google Scholar

    [39]

    Zhang B, Li C, Su H, Lin J L, Tzeng W B 2004 Chem. Phys. Lett. 390 65Google Scholar

  • [1] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS电子基态及激发态势能曲线和振动能级的理论研究. 物理学报, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [2] 李娜, 李淑贤, 王林, 王慧慧, 杨勇刚, 赵建明, 李昌勇. 邻羟基苯腈的双色共振增强多光子电离光谱及Franck-Condon模拟. 物理学报, 2022, 71(2): 023301. doi: 10.7498/aps.71.20211659
    [3] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS 电子基态及激发态的势能曲线和振动能级的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211441
    [4] 马堃, 陈展斌, 黄时中. 等离子体屏蔽效应对Ar16+基态和激发态能级的影响. 物理学报, 2019, 68(2): 023102. doi: 10.7498/aps.68.20181915
    [5] 张计才, 孙金锋, 施德恒, 朱遵略. BeC分子基态和低激发态光谱性质和解析势能函数. 物理学报, 2019, 68(5): 053102. doi: 10.7498/aps.68.20181695
    [6] 罗华锋, 万明杰, 黄多辉. BH+离子基态及激发态的势能曲线和跃迁性质的研究. 物理学报, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [7] 周锐, 李传亮, 和小虎, 邱选兵, 孟慧艳, 李亚超, 赖云忠, 魏计林, 邓伦华. 基于ab initio计算的CF-离子低激发态光谱性质研究. 物理学报, 2017, 66(2): 023101. doi: 10.7498/aps.66.023101
    [8] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [9] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [10] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [11] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究. 物理学报, 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [12] 朱遵略, 郎建华, 乔浩. AsCl自由基的基态及激发态的势能函数与光谱常数的研究. 物理学报, 2013, 62(11): 113103. doi: 10.7498/aps.62.113103
    [13] 于坤, 张晓美, 刘玉芳. 从头计算研究BCl+基态和激发态的势能曲线和光谱性质. 物理学报, 2013, 62(6): 063301. doi: 10.7498/aps.62.063301
    [14] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究. 物理学报, 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [15] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质. 物理学报, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [16] 马金龙, 徐开俊, 李哲, 金飚兵, 傅荣, 张彩虹, 吉争鸣, 张仓, 陈兆旭, 陈健, 吴培亨. D-,L-和DL-奥硝唑随温度变化的太赫兹光谱. 物理学报, 2009, 58(9): 6101-6107. doi: 10.7498/aps.58.6101
    [17] 魏 群, 杨子元, 王参军, 许启明. 轴对称晶场中d3离子激发态对4A2基态自旋哈密顿参量的影响. 物理学报, 2007, 56(1): 507-511. doi: 10.7498/aps.56.507
    [18] 徐 灿, 曹 娟, 高晨阳. 第一性原理研究一维SiO2纳米材料的结构和性质. 物理学报, 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [19] 刘德胜, 赵俊卿, 魏建华, 解士杰, 梅良模. 聚对苯乙炔的基态、极化子与双极化子激发态及其稳定性. 物理学报, 1999, 48(7): 1327-1333. doi: 10.7498/aps.48.1327
    [20] 解士杰, 梅良模, 孙鑫. 聚对苯撑[poly(p-phenylene)]的基态、极化子和双极化子激发态. 物理学报, 1989, 38(9): 1506-1509. doi: 10.7498/aps.38.1506
计量
  • 文章访问数:  3028
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 修回日期:  2022-01-28
  • 上网日期:  2022-02-15
  • 刊出日期:  2022-05-20

/

返回文章
返回