搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeSe/SrTiO3高温超导体中的电子条纹相

袁永浩 薛其坤 李渭

引用本文:
Citation:

FeSe/SrTiO3高温超导体中的电子条纹相

袁永浩, 薛其坤, 李渭

Stripe phase in high-Tc superconductor FeSe/SrTiO3

Yuan Yong-Hao, Xue Qi-Kun, Li Wei
PDF
HTML
导出引用
  • 单层FeSe/SrTiO3中的界面超导增强是近年来高温超导领域的重要发现. 该体系中SrTiO3衬底对FeSe的超导增强机制已被广泛研究, 其调控作用主要表现为两个方面: 电荷掺杂和界面电声耦合. 然而, 关于FeSe薄膜本身的电子特性研究还不够充分. 本文介绍该体系超导增强机制的新进展: FeSe薄膜中的电子条纹相及其与超导的关联. 通过扫描隧道显微镜结合分子束外延生长技术, 对不同厚度的FeSe薄膜进行了系统研究. 我们发现FeSe薄膜中电子倾向于排成条纹状结构, 并观测到该条纹相随层厚变化显现出从短程到长程的演化. 条纹相是一种电子液晶态, 它源于薄层FeSe中被增强的电子关联作用. 表面电子掺杂一方面会减弱FeSe薄膜中的电子关联作用, 逐渐抑制条纹相; 另一方面会诱导超导相变, 而剩余的条纹相涨落会对超导电性带来额外增强. 我们的结果加深了对低维界面超导体系的认识, 也揭示了FeSe薄膜本征的特异性, 完善了对FeSe/SrTiO3超导增强机制的理解.
    The enhancement of superconductivity in one unit-cell FeSe grown on SrTiO3 is an important discovery in high-temperature superconductivity. In this system, the crucial role of the SrTiO3 substrate has been extensively studied. Its contribution mainly manifests in two aspects: charge transfer and interfacial electron-phonon coupling. However, study of the intrinsic properties of the FeSe thin film itself is still insufficient. In this article, we review the latest research progress of the mechanism of the enhancement of superconductivity in FeSe/SrTiO3, covering the newly discovered stripe phase and its relationship with superconductivity. By using scanning tunneling microscope and molecular beam epitaxy growth method, we find that the electrons in FeSe thin film tend to form stripe patterns, and show a thickness-dependent evolution of short-range to long-range stripe phase. The stripe phase, a kind of electronic liquid crystal state (smectic), originates from the enhanced electronic correlation in FeSe thin film. Surface doping can weaken the electronic correlation and gradually suppress the stripe phase, which can induce superconductivity as well. More importantly, the remaining smectic fluctuation provides an additional enhancement to the superconductivity in FeSe film. Our results not only deepen the understanding of the interfacial superconductivity, but also reveal the intrinsic uniqueness of the FeSe films, which further refines the mechanism of superconductivity enhancement in FeSe/SrTiO3.
      通信作者: 薛其坤, qkxue@mail.tsinghua.edu.cn ; 李渭, weili83@tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0301002)和国家自然科学基金(批准号: 11674191)资助的课题.
      Corresponding author: Xue Qi-Kun, qkxue@mail.tsinghua.edu.cn ; Li Wei, weili83@tsinghua.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301002) and the National Natural Science Foundation of China (Grant No. 11674191).
    [1]

    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128 10012Google Scholar

    [2]

    Wang QY, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [3]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262Google Scholar

    [4]

    Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X C, Xue Q K 2011 Phys. Rev. B 84 020503(RGoogle Scholar

    [5]

    Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F, Hung H H, Wu C, Ma X, Chen X, Xue Q K 2011 Science 332 1410Google Scholar

    [6]

    Deng L Z, Lv B, Wu Z, Xue Y Y, Zhang W H, Li F S, Wang L L, Ma X C, Xue Q K, Chu C W 2014 Phys. Rev. B 90 214513Google Scholar

    [7]

    Zhang Z, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D, Wang Y 2015 Sci. Bull. 60 1301Google Scholar

    [8]

    Sun Y, Zhang W, Xing Y, Li F, Zhao Y, Xia Z, Wang L, Ma X, Xue Q K, Wang J 2014 Sci. Rep. 4 6040Google Scholar

    [9]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nat. Commun. 3 931Google Scholar

    [10]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Matter. 12 605Google Scholar

    [11]

    Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B, Feng D 2013 Nat. Matter. 12 634Google Scholar

    [12]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245Google Scholar

    [13]

    Ye Z, Zhang C, Ning H, Li W, Chen L, Jia T, Hashimoto M, Lu D, Shen Z X, Zhang Y 2015 arXiv:1512.02526 [cond-mat.supr-con]

    [14]

    Song C L, Zhang H M, Zhong Y, Hu X P, Ji S H, Wang L, He K, Ma X C, Xue Q K 2016 Phys. Rev. Lett. 116 157001Google Scholar

    [15]

    Ying T P, Wang M X, Wu X X, Zhao Z Y, Zhang Z Z, Song B Q, Li Y C, Lei B, Li Q, Yu Y, Cheng E J, An Z H, Zhang Y, Jia X Y, Yang W, Chen X H, Li S Y 2018 Phys. Rev. Lett. 121 207003Google Scholar

    [16]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401Google Scholar

    [17]

    Huang D, Song C L, Webb T A, Fang S, Chang C Z, Moodera J S, Kaxiras E, Hoffman J E 2015 Phys. Rev. Lett. 115 017002Google Scholar

    [18]

    Shimojima T, Suzuki Y, Sonobe T, Nakamura A, Sakano M, Omachi J, Yoshioka K, Kuwata Gonokami M, Ono K, Kumigashira H, Böhmer A E, Hardy F, Wolf T, Meingast C, Löhneysen H v, Ikeda H, Ishizaka K 2014 Phys. Rev. B 90 121111Google Scholar

    [19]

    Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001Google Scholar

    [20]

    Watson M D, Kim T K, Haghighirad A A, Davies N R, McCollam A, Narayanan A, Blake S F, Chen Y L, Ghannadzadeh S, Schofield A J, Hoesch M, Meingast C, Wolf T, Coldea A I 2015 Phys. Rev. B 91 155106Google Scholar

    [21]

    Zhang P, Qian T, Richard P, Wang X P, Miao H, Lv B Q, Fu B B, Wolf T, Meingast C, Wu X X, Wang Z Q, Hu J P, Ding H 2015 Phys. Rev. B 91 214503Google Scholar

    [22]

    Yi M, Pfau H, Zhang Y, He Y, Wu H, Chen T, Ye Z R, Hashimoto M, Yu R, Si Q, Lee D H, Dai P, Shen Z X, Lu D H, Birgeneau R J 2019 Phys. Rev. X 9 041049Google Scholar

    [23]

    Singh D J, Du M H 2008 Phys. Rev. Lett. 100 237003Google Scholar

    [24]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003Google Scholar

    [25]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004Google Scholar

    [26]

    Graser S, Maier T A, Hirschfeld P J, Scalapino D J 2009 New J. Phys. 11 025016Google Scholar

    [27]

    Wang F, Zhai H, Ran Y, Vishwanath A, Lee D H 2009 Phys. Rev. Lett. 102 047005Google Scholar

    [28]

    Zhang H, Zhang D, Lu X, Liu C, Zhou G, Ma X, Wang L, Jiang P, Xue Q K, Bao X 2017 Nat. Commun. 8 214Google Scholar

    [29]

    Zhao W, Li M, Chang C Z, Jiang J, Wu L, Liu C, Moodera J S, Zhu Y, Chan M H W 2018 Sci. Adv. 4 eaao2682Google Scholar

    [30]

    Zhang S, Guan J, Jia X, Liu B, Wang W, Li F, Wang L, Ma X, Xue Q, Zhang J, Plummer E W, Zhu X, Guo J 2016 Phys. Rev. B 94 081116Google Scholar

    [31]

    Zhang S, Wei T, Guan J, Zhu Q, Qin W, Wang W, Zhang J, Plummer E W, Zhu X, Zhang Z, Guo J 2019 Phys. Rev. Lett. 122 066802Google Scholar

    [32]

    Rebec S N, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R G, Shen Z X 2017 Phys. Rev. Lett. 118 067002Google Scholar

    [33]

    Zhang C, Liu Z, Chen Z, Xie Y, He R, Tang S, He J, Li W, Jia T, Rebec S N, Ma E Y, Yan H, Hashimoto M, Lu D, Mo S K, Hikita Y, Moore R G, Hwang H Y, Lee D, Shen Z 2017 Nat. Commun. 8 14468Google Scholar

    [34]

    Song Q, Yu T L, Lou X, Xie B P, Xu H C, Wen C H P, Yao Q, Zhang S Y, Zhu X T, Guo J D, Peng R, Feng D L 2019 Nat. Commun. 10 758Google Scholar

    [35]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nat. Commun. 5 5044Google Scholar

    [36]

    Zhou G, Zhang Q, Zheng F, Zhang D, Liu C, Wang X, Song C L, He K, Ma X C, Gu L, Zhang P, Wang L, Xue Q K 2018 Sci. Bull. 63 747Google Scholar

    [37]

    Yang H, Zhou G, Zhu Y, Gong G M, Zhang Q, Liao M, Li Z, Ding C, Meng F, Rafique M, Wang H, Gu L, Zhang D, Wang L, Xue Q K 2019 Sci. Bull. 64 490Google Scholar

    [38]

    Song Y, Chen Z, Zhang Q, Xu H, Lou X, Chen X, Xu X, Zhu X, Tao R, Yu T, Ru H, Wang Y, Zhang T, Guo J, Gu L, Xie Y, Peng R, Feng D 2021 Nat. Commun. 12 5926Google Scholar

    [39]

    Liu C, Shin H, Doll A, Kung H H, Day R P, Davidson B A, Dreiser J, Levy G, Damascelli A, Piamonteze C, Zou K 2021 NPJ Quantum Mater. 6 85Google Scholar

    [40]

    Li W, Zhang Y, Deng P, Xu Z, Mo S K, Yi M, Ding H, Hashimoto M, Moore R G, Lu D H, Chen X, Shen Z X, Xue Q K 2017 Nat. Phys. 13 957Google Scholar

    [41]

    Yuan Y, Fan X, Wang X, He K, Zhang Y, Xue Q K, Li W 2021 Nature Commun. 12 2196Google Scholar

    [42]

    Wang X, Yuan Y, Xue Q K, Li W 2019 J. Phys. Condens. Matter. 32 013002Google Scholar

    [43]

    Kivelson S A, Fradkin E, Emery V J 1998 Nature 393 550Google Scholar

    [44]

    Fradkin E, Kivelson S A, Lawler M J, Eisenstein J P, Mackenzie A P 2010 Annu. Rev. Condens. Matter. Phys. 1 153Google Scholar

    [45]

    Xu S Y, Ma Q, Gao Y, Kogar A, Zong A, Mier Valdivia A M, Dinh T H, Huang S M, Singh B, Hsu C H, Chang T R, Ruff J P C, Watanabe K, Taniguchi T, Lin H, Karapetrov G, Xiao D, Jarillo Herrero P, Gedik N 2020 Nature 578 545Google Scholar

    [46]

    Ishioka J, Liu Y H, Shimatake K, Kurosawa T, Ichimura K, Toda Y, Oda M, Tanda S 2010 Phys. Rev. Lett. 105 176401Google Scholar

    [47]

    Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y, Uchida S 1995 Nature 375 561Google Scholar

    [48]

    Ando Y, Segawa K, Komiya S, Lavrov A N 2002 Phys. Rev. Lett. 88 137005Google Scholar

    [49]

    Hoffman J E, Hudson E W, Lang K M, Madhavan V, Eisaki H, Uchida S, Davis J C 2002 Science 295 466Google Scholar

    [50]

    Hanaguri T, Lupien C, Kohsaka Y, Lee D H, Azuma M, Takano M, Takagi H, Davis J C 2004 Nature 430 1001Google Scholar

    [51]

    Tranquada J M, Woo H, Perring T G, Goka H, Gu G D, Xu G, Fujita M, Yamada K 2004 Nature 429 534Google Scholar

    [52]

    Kohsaka Y, Taylor C, Fujita K, Schmidt A, Lupien C, Hanaguri T, Azuma M, Takano M, Eisaki H, Takagi H, Uchida S, Davis J C 2007 Science 315 1380Google Scholar

    [53]

    Hinkov V, Haug D, Fauqué B, Bourges P, Sidis Y, Ivanov A, Bernhard C, Lin C T, Keimer B 2008 Science 319 597Google Scholar

    [54]

    Parker C V, Aynajian P, da Silva Neto E H, Pushp A, Ono S, Wen J, Xu Z, Gu G, Yazdani A 2010 Nature 468 677Google Scholar

    [55]

    Blanco-Canosa S, Frano A, Schierle E, Porras J, Loew T, Minola M, Bluschke M, Weschke E, Keimer B, Le Tacon M 2014 Phys. Rev. B 90 054513Google Scholar

    [56]

    Cai P, Ruan W, Peng Y, Ye C, Li X, Hao Z, Zhou X, Lee D H, Wang Y 2016 Nat. Phys. 12 1047Google Scholar

    [57]

    Sato Y, Kasahara S, Murayama H, Kasahara Y, Moon E G, Nishizaki T, Loew T, Porras J, Keimer B, Shibauchi T, Matsuda Y 2017 Nat. Phys. 13 1074Google Scholar

    [58]

    Zhao H, Ren Z, Rachmilowitz B, Schneeloch J, Zhong R, Gu G, Wang Z, Zeljkovic I 2019 Nat. Matter. 18 103Google Scholar

    [59]

    Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, Maeno Y 2017 Nat. Phys. 13 123Google Scholar

    [60]

    Yin J X, Zhang S S, Li H, Jiang K, Chang G, Zhang B, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z, Jia S, Wang W, Hasan M Z 2018 Nature 562 91Google Scholar

    [61]

    Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D, Hasan M Z 2021 Nat. Matter. 20 1353Google Scholar

    [62]

    Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, Zeljkovic I 2021 Nature 599 216Google Scholar

    [63]

    Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, Pasupathy A N 2019 Nature 572 95Google Scholar

    [64]

    Chichinadze D V, Classen L, Chubukov A V 2020 Phys. Rev. B 101 224513Google Scholar

    [65]

    Rubio-Verdú C, Turkel S, Song Y, Klebl L, Samajdar R, Scheurer M S, Venderbos J W F, Watanabe K, Taniguchi T, Ochoa H, Xian L, Kennes D M, Fernandes R M, Rubio Á, Pasupathy A N 2022 Nat. Phys. 18 196Google Scholar

    [66]

    Nomura T, Wng Kim S, Kamihara Y, Hirano M, V. Sushko P, Kato K, Takata M, L. Shluger A, Hosono H 2008 J. Phys. Soc. Japan 77 32Google Scholar

    [67]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002Google Scholar

    [68]

    de la Cruz C, Huang Q, Lynn J W, Li J, Ii W R, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P 2008 Nature 453 899Google Scholar

    [69]

    Zhao J, Huang Q, de la Cruz C, Li S, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L, Dai P 2008 Nat. Matter. 7 953Google Scholar

    [70]

    Wang Q, Shen Y, Pan B, Hao Y, Ma M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H, Zhao J 2016 Nat. Matter. 15 159Google Scholar

    [71]

    Wang Q, Shen Y, Pan B, Zhang X, Ikeuchi K, Iida K, Christianson A D, Walker H C, Adroja D T, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Zhao J 2016 Nature Commun. 7 12182Google Scholar

    [72]

    Chuang T M, Allan M P, Lee J, Xie Y, Ni N, Bud’ko S L, Boebinger G S, Canfield P C, Davis J C 2010 Science 327 181Google Scholar

    [73]

    Allan M P, Chuang T M, Massee F, Xie Y, Ni N, Bud’ko S L, Boebinger G S, Wang Q, Dessau D S, Canfield P C, Golden M S, Davis J C 2013 Nat. Phys. 9 220Google Scholar

    [74]

    Rosenthal E P, Andrade E F, Arguello C J, Fernandes R M, Xing L Y, Wang X C, Jin C Q, Millis A J, Pasupathy A N 2014 Nat. Phys. 10 225Google Scholar

    [75]

    Yim C M, Trainer C, Aluru R, Chi S, Hardy W N, Liang R, Bonn D, Wahl P 2018 Nat. Commun. 9 2602Google Scholar

    [76]

    Chu J H, Analytis J G, Greve K D, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824Google Scholar

    [77]

    Tanatar M A, Böhmer A E, Timmons E I, Schütt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud’ko S L, Canfield P C, Fernandes R M, Prozorov R 2016 Phys. Rev. Lett. 117 127001Google Scholar

    [78]

    Ying J J, Wang X F, Wu T, Xiang Z J, Liu R H, Yan Y J, Wang A F, Zhang M, Ye G J, Cheng P, Hu J P, Chen X H 2011 Phys. Rev. Lett. 107 067001Google Scholar

    [79]

    Chu J H, Kuo H H, Analytis J G, Fisher I R 2012 Science 337 710Google Scholar

    [80]

    Kasahara S, Shi H J, Hashimoto K, Tonegawa S, Mizukami Y, Shibauchi T, Sugimoto K, Fukuda T, Terashima T, Nevidomskyy A H, Matsuda Y 2012 Nature 486 382Google Scholar

    [81]

    Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R, Shen Z X 2011 Proc. Natl. Acad. Sci. USA. 108 6878Google Scholar

    [82]

    Fu M, Torchetti D A, Imai T, Ning F L, Yan J Q, Sefat A S 2012 Phys. Rev. Lett. 109 247001Google Scholar

    [83]

    Baek S H, Efremov D V, Ok J M, Kim J S, van den Brink J, Büchner B 2015 Nat. Matter. 14 210Google Scholar

    [84]

    Böhmer A E, Arai T, Hardy F, Hattori T, Iye T, Wolf T, Löhneysen H v, Ishida K, Meingast C 2015 Phys. Rev. Lett. 114 027001Google Scholar

    [85]

    Li J, Lei B, Zhao D, Nie L P, Song D W, Zheng L X, Li S J, Kang B L, Luo X G, Wu T, Chen X H 2020 Phys. Rev. X 10 011034Google Scholar

    [86]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97Google Scholar

    [87]

    Lederer S, Schattner Y, Berg E, Kivelson S A 2015 Phys. Rev. Lett. 114 097001Google Scholar

    [88]

    Kuo H H, Chu J H, Palmstrom J C, Kivelson S A, Fisher I R 2016 Science 352 958Google Scholar

    [89]

    Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A, Khasanov R 2010 Phys. Rev. Lett. 104 087003Google Scholar

    [90]

    Bendele M, Ichsanow A, Pashkevich Y, Keller L, Strässle T, Gusev A, Pomjakushina E, Conder K, Khasanov R, Keller H 2012 Phys. Rev. B 85 064517Google Scholar

    [91]

    Wang P S, Sun S S, Cui Y, Song W H, Li T R, Yu R, Lei H, Yu W 2016 Phys. Rev. Lett. 117 237001Google Scholar

    [92]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146Google Scholar

    [93]

    Kothapalli K, Böhmer A E, Jayasekara W T, Ueland B G, Das P, Sapkota A, Taufour V, Xiao Y, Alp E, Bud’ko S L, Canfield P C, Kreyssig A, Goldman A I 2016 Nat. Commun. 7 12728Google Scholar

    [94]

    Matsuura K, Mizukami Y, Arai Y, Sugimura Y, Maejima N, Machida A, Watanuki T, Fukuda T, Yajima T, Hiroi Z, Yip K Y, Chan Y C, Niu Q, Hosoi S, Ishida K, Mukasa K, Kasahara S, Cheng J G, Goh S K, Matsuda Y, Uwatoko Y, Shibauchi T 2017 Nat. Commun. 8 1143Google Scholar

    [95]

    Yu R, Si Q 2015 Phys. Rev. Lett. 115 116401Google Scholar

    [96]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valentí R 2015 Nat. Phys. 11 953Google Scholar

    [97]

    Wang F, Kivelson S A, Lee D H 2015 Nat. Phys. 11 959Google Scholar

    [98]

    Tam Y T, Yao D X, Ku W 2015 Phys. Rev. Lett. 115 117001Google Scholar

    [99]

    Zhang Y, Yi M, Liu Z K, Li W, Lee J J, Moore R G, Hashimoto M, Nakajima M, Eisaki H, Mo S K, Hussain Z, Devereaux T P, Shen Z X, Lu D H 2016 Phys. Rev. B 94 115153Google Scholar

    [100]

    Fang C, Yao H, Tsai W F, Hu J, Kivelson S A 2008 Phys. Rev. B 77 224509Google Scholar

    [101]

    Tang C, Liu C, Zhou G, Li F, Ding H, Li Z, Zhang D, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q K 2016 Phys. Rev. B 93 020507Google Scholar

    [102]

    Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett 16 1969Google Scholar

    [103]

    Wu M K, Hsu F C, Yeh K W, Huang T W, Luo J Y, Wang M J, Chang H H, Chen T K, Rao S M, Mok B H, Chen C L, Huang Y L, Ke C T, Wu P M, Chang A M, Wu C T, Perng T P 2009 Physica C Supercond. 469 340Google Scholar

    [104]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nat. Matter. 14 775Google Scholar

    [105]

    Wen C H P, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nat. Commun. 7 10840Google Scholar

    [106]

    Fan Q, Zhang W H, Liu X, Yan Y J, Ren M Q, Peng R, Xu H C, Xie B P, Hu J P, Zhang T, Feng D L 2015 Nat. Phys. 11 946Google Scholar

    [107]

    Agterberg D F, Shishidou T, O’Halloran J, Brydon P M R, Weinert M 2017 Phys. Rev. Lett. 119 267001Google Scholar

    [108]

    Liu C, Mao J, Ding H, Wu R, Tang C, Li F, He K, Li W, Song C L, Ma X C, Liu Z, Wang L, Xue Q K 2018 Phys. Rev. B 97 024502Google Scholar

    [109]

    Liu C, Wang Z, Gao Y, Liu X, Liu Y, Wang Q H, Wang J 2019 Phys. Rev. Lett. 123 036801Google Scholar

    [110]

    Zhang H, Ge Z, Weinert M, Li L 2020 Commun. Phys. 3 75Google Scholar

    [111]

    Zhou Y, Miao L, Wang P, Zhu F F, Jiang W X, Jiang S W, Zhang Y, Lei B, Chen X H, Ding H F, Zheng H, Zhang W T, Jia J F, Qian D, Wu D 2018 Phys. Rev. Lett. 120 097001Google Scholar

  • 图 1  FeSe的晶格结构及形貌表征[40] (a) FeSe晶格结构示意图; (b) 30层FeSe薄膜的STM形貌图, 图中迷宫状纹路即向列畴界; (c) FeSe薄膜畴界附近的形貌图; (d) 缺陷附近短程条纹态的形貌图

    Fig. 1.  Lattice structure of FeSe and its topographic images[40]: (a) Lattice structure of FeSe; (b) STM topographic image of FeSe thin film, the maze-like patterns are the nematic domain walls; (c) topographic image near nematic domain wall; (d) short-range stripes near defects.

    图 2  条纹态与准粒子干涉[40] (a) 两个缺陷附近的形貌图; (b)—(p)不同能量下的微分电导图像, 从中可以观察到不随偏压改变的条纹态以及随偏压变化的准粒子干涉

    Fig. 2.  Stripes and quasiparticle interference[40]: (a) STM topographic image of two impurities; (b)–(p) dI/dV maps under different energies, in which energy independent stripes and energy dependent quasiparticle interference patterns are observed.

    图 3  向列性与短程条纹态随温度的演化[40] (a)—(d) 向列畴界随温度的演化; (e)—(h) 短程条纹相随温度的演化; (i)向列相与短程条纹相的相图

    Fig. 3.  Temperature evolution of nematicity and short-range stripe phase[40]: (a)–(d) Temperature evolution of nematic domain walls; (e)–(h) temperature evolution of short-range stripes; (i) phase diagram of nematic phase and short-range stripe phase.

    图 4  缺陷与短程条纹相之间的相互作用[40] (a), (b) 短程条纹相存在时, 缺陷态存在大于10º转角; (c) 77 K的缺陷态, 此时由于没有短程条纹相, 缺陷态也没有转角; (d) 缺陷态转角的示意图

    Fig. 4.  Interaction between defects and short-range stripes[40]: (a), (b) The off-axis impurity state with the appearance of short-range stripes; (c) impurity state at 77 K, the off-axis effect is absent due to the lack of short-range stripes; (d) schematic of the off-axis impurities.

    图 5  双层FeSe的长程条纹相[41] (a) 微分电导图像中的长程条纹相; (b) 单畴形貌图中的长程条纹态以及对应的傅里叶变换; (c) 条纹态周期对能量依赖的分析结果

    Fig. 5.  Long-range stripe phase in 2 unit-cell (UC) FeSe[41]: (a) Long-range stripe phase in a dI/dV map; (b) topographic image of long-range stripes in a single domain and the corresponding Fourier transformation result; (c) energy dependence analysis to the periodicity of stripes.

    图 6  条纹相的层厚依赖[41] (a) 单层及双层FeSe台阶附近的形貌图及它们对应的扫描隧道谱; (b)—(d) 该台阶附近不同能量的微分电导图像; (e) 二层及三层FeSe台阶附近的形貌图及它们对应的扫描隧道谱; (f)—(h) 该台阶附近不同能量的微分电导图像

    Fig. 6.  Thickness dependence of long-range stripe phase[41]: (a) STM topographic image on a step edge between 1 UC and 2 UC FeSe and the corresponding dI/dV spectra; (b)–(d) dI/dV maps taken on this step edge with different energies; (e) STM topographic image on a step edge between 1 UC and 2 UC FeSe and the corresponding dI/dV spectra. (f)–(h) dI/dV maps taken on this step edge with different energies.

    图 7  不同层厚FeSe薄膜电子结构的示意图[41]

    Fig. 7.  Electronic structures of FeSe thin films with different thickness[41].

    图 8  表面Rb原子掺杂对条纹相的抑制[41] (a)—(e) 不同掺杂浓度下, 双层FeSe的表面形貌图; (f) 条纹相面积占比随掺杂浓度的变化关系.

    Fig. 8.  Suppression of stripe phase by surface Rb doping[41]: (a)–(e) STM topographic images taken on 2 UC FeSe at different doping concentrations; (f) the stripe area ratio at different doping concentrations.

    图 9  双层、三层FeSe中由表面Rb原子掺杂引入的超导相[41] (a), (b) 双层FeSe上不同掺杂浓度下“好超导”与“坏超导”组的平均谱; (c), (d) 三层FeSe上不同掺杂浓度下“好超导”与“坏超导”组的平均谱; (e) 好超导比率随Rb掺杂浓度的演化; (f) 图(a)与(c)中超导最均匀对应的掺杂浓度下的平均谱; (g) 超导能隙平均值与掺杂浓度的依赖关系

    Fig. 9.  Superconducting phase in 2 UC and 3 UC FeSe induced by Rb surface doping[41]: (a), (b) The averaged dI/dV spectra in “good superconducting” and “bad superconducting group” of 2 UC FeSe at different doping concentrations; (c), (d) the averaged dI/dV spectra in “good superconducting” and “bad superconducting group” of 3 UC FeSe at different doping concentrations; (e) the evolution of good superconducting ratio at different doping concentrations; (f) the averaged dI/dV spectra extracted from (a) and (c) at the doping concentrations with optimal homogeneity; (g) dependence of the averaged superconducting gap size on doping concentration.

    图 10  FeSe/STO随温度、层厚、电子掺杂变化的相图[41], 其中超导转变温度来自ARPES数据[10,11,104,105]

    Fig. 10.  Phase diagram of FeSe/STO as a function of temperature, thickness and doping[41]. The superconducting transition temperature is derived from ARPES data[10,11,104,105]

    图 11  条纹态与能带的比较[41] (a) 条纹态对应的傅里叶变换; (b)—(f) M点附近能带随层厚的演化, 能带结构取自ARPES数据

    Fig. 11.  Comparison between stripes and band structure[41]: (a) The Fourier transformation result of stripes. (b)–(f) Band structures near M point with different film thickness. The band structures are extracted from ARPES data.

  • [1]

    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128 10012Google Scholar

    [2]

    Wang QY, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [3]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262Google Scholar

    [4]

    Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X C, Xue Q K 2011 Phys. Rev. B 84 020503(RGoogle Scholar

    [5]

    Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F, Hung H H, Wu C, Ma X, Chen X, Xue Q K 2011 Science 332 1410Google Scholar

    [6]

    Deng L Z, Lv B, Wu Z, Xue Y Y, Zhang W H, Li F S, Wang L L, Ma X C, Xue Q K, Chu C W 2014 Phys. Rev. B 90 214513Google Scholar

    [7]

    Zhang Z, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D, Wang Y 2015 Sci. Bull. 60 1301Google Scholar

    [8]

    Sun Y, Zhang W, Xing Y, Li F, Zhao Y, Xia Z, Wang L, Ma X, Xue Q K, Wang J 2014 Sci. Rep. 4 6040Google Scholar

    [9]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nat. Commun. 3 931Google Scholar

    [10]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Matter. 12 605Google Scholar

    [11]

    Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B, Feng D 2013 Nat. Matter. 12 634Google Scholar

    [12]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245Google Scholar

    [13]

    Ye Z, Zhang C, Ning H, Li W, Chen L, Jia T, Hashimoto M, Lu D, Shen Z X, Zhang Y 2015 arXiv:1512.02526 [cond-mat.supr-con]

    [14]

    Song C L, Zhang H M, Zhong Y, Hu X P, Ji S H, Wang L, He K, Ma X C, Xue Q K 2016 Phys. Rev. Lett. 116 157001Google Scholar

    [15]

    Ying T P, Wang M X, Wu X X, Zhao Z Y, Zhang Z Z, Song B Q, Li Y C, Lei B, Li Q, Yu Y, Cheng E J, An Z H, Zhang Y, Jia X Y, Yang W, Chen X H, Li S Y 2018 Phys. Rev. Lett. 121 207003Google Scholar

    [16]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401Google Scholar

    [17]

    Huang D, Song C L, Webb T A, Fang S, Chang C Z, Moodera J S, Kaxiras E, Hoffman J E 2015 Phys. Rev. Lett. 115 017002Google Scholar

    [18]

    Shimojima T, Suzuki Y, Sonobe T, Nakamura A, Sakano M, Omachi J, Yoshioka K, Kuwata Gonokami M, Ono K, Kumigashira H, Böhmer A E, Hardy F, Wolf T, Meingast C, Löhneysen H v, Ikeda H, Ishizaka K 2014 Phys. Rev. B 90 121111Google Scholar

    [19]

    Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001Google Scholar

    [20]

    Watson M D, Kim T K, Haghighirad A A, Davies N R, McCollam A, Narayanan A, Blake S F, Chen Y L, Ghannadzadeh S, Schofield A J, Hoesch M, Meingast C, Wolf T, Coldea A I 2015 Phys. Rev. B 91 155106Google Scholar

    [21]

    Zhang P, Qian T, Richard P, Wang X P, Miao H, Lv B Q, Fu B B, Wolf T, Meingast C, Wu X X, Wang Z Q, Hu J P, Ding H 2015 Phys. Rev. B 91 214503Google Scholar

    [22]

    Yi M, Pfau H, Zhang Y, He Y, Wu H, Chen T, Ye Z R, Hashimoto M, Yu R, Si Q, Lee D H, Dai P, Shen Z X, Lu D H, Birgeneau R J 2019 Phys. Rev. X 9 041049Google Scholar

    [23]

    Singh D J, Du M H 2008 Phys. Rev. Lett. 100 237003Google Scholar

    [24]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003Google Scholar

    [25]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004Google Scholar

    [26]

    Graser S, Maier T A, Hirschfeld P J, Scalapino D J 2009 New J. Phys. 11 025016Google Scholar

    [27]

    Wang F, Zhai H, Ran Y, Vishwanath A, Lee D H 2009 Phys. Rev. Lett. 102 047005Google Scholar

    [28]

    Zhang H, Zhang D, Lu X, Liu C, Zhou G, Ma X, Wang L, Jiang P, Xue Q K, Bao X 2017 Nat. Commun. 8 214Google Scholar

    [29]

    Zhao W, Li M, Chang C Z, Jiang J, Wu L, Liu C, Moodera J S, Zhu Y, Chan M H W 2018 Sci. Adv. 4 eaao2682Google Scholar

    [30]

    Zhang S, Guan J, Jia X, Liu B, Wang W, Li F, Wang L, Ma X, Xue Q, Zhang J, Plummer E W, Zhu X, Guo J 2016 Phys. Rev. B 94 081116Google Scholar

    [31]

    Zhang S, Wei T, Guan J, Zhu Q, Qin W, Wang W, Zhang J, Plummer E W, Zhu X, Zhang Z, Guo J 2019 Phys. Rev. Lett. 122 066802Google Scholar

    [32]

    Rebec S N, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R G, Shen Z X 2017 Phys. Rev. Lett. 118 067002Google Scholar

    [33]

    Zhang C, Liu Z, Chen Z, Xie Y, He R, Tang S, He J, Li W, Jia T, Rebec S N, Ma E Y, Yan H, Hashimoto M, Lu D, Mo S K, Hikita Y, Moore R G, Hwang H Y, Lee D, Shen Z 2017 Nat. Commun. 8 14468Google Scholar

    [34]

    Song Q, Yu T L, Lou X, Xie B P, Xu H C, Wen C H P, Yao Q, Zhang S Y, Zhu X T, Guo J D, Peng R, Feng D L 2019 Nat. Commun. 10 758Google Scholar

    [35]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nat. Commun. 5 5044Google Scholar

    [36]

    Zhou G, Zhang Q, Zheng F, Zhang D, Liu C, Wang X, Song C L, He K, Ma X C, Gu L, Zhang P, Wang L, Xue Q K 2018 Sci. Bull. 63 747Google Scholar

    [37]

    Yang H, Zhou G, Zhu Y, Gong G M, Zhang Q, Liao M, Li Z, Ding C, Meng F, Rafique M, Wang H, Gu L, Zhang D, Wang L, Xue Q K 2019 Sci. Bull. 64 490Google Scholar

    [38]

    Song Y, Chen Z, Zhang Q, Xu H, Lou X, Chen X, Xu X, Zhu X, Tao R, Yu T, Ru H, Wang Y, Zhang T, Guo J, Gu L, Xie Y, Peng R, Feng D 2021 Nat. Commun. 12 5926Google Scholar

    [39]

    Liu C, Shin H, Doll A, Kung H H, Day R P, Davidson B A, Dreiser J, Levy G, Damascelli A, Piamonteze C, Zou K 2021 NPJ Quantum Mater. 6 85Google Scholar

    [40]

    Li W, Zhang Y, Deng P, Xu Z, Mo S K, Yi M, Ding H, Hashimoto M, Moore R G, Lu D H, Chen X, Shen Z X, Xue Q K 2017 Nat. Phys. 13 957Google Scholar

    [41]

    Yuan Y, Fan X, Wang X, He K, Zhang Y, Xue Q K, Li W 2021 Nature Commun. 12 2196Google Scholar

    [42]

    Wang X, Yuan Y, Xue Q K, Li W 2019 J. Phys. Condens. Matter. 32 013002Google Scholar

    [43]

    Kivelson S A, Fradkin E, Emery V J 1998 Nature 393 550Google Scholar

    [44]

    Fradkin E, Kivelson S A, Lawler M J, Eisenstein J P, Mackenzie A P 2010 Annu. Rev. Condens. Matter. Phys. 1 153Google Scholar

    [45]

    Xu S Y, Ma Q, Gao Y, Kogar A, Zong A, Mier Valdivia A M, Dinh T H, Huang S M, Singh B, Hsu C H, Chang T R, Ruff J P C, Watanabe K, Taniguchi T, Lin H, Karapetrov G, Xiao D, Jarillo Herrero P, Gedik N 2020 Nature 578 545Google Scholar

    [46]

    Ishioka J, Liu Y H, Shimatake K, Kurosawa T, Ichimura K, Toda Y, Oda M, Tanda S 2010 Phys. Rev. Lett. 105 176401Google Scholar

    [47]

    Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y, Uchida S 1995 Nature 375 561Google Scholar

    [48]

    Ando Y, Segawa K, Komiya S, Lavrov A N 2002 Phys. Rev. Lett. 88 137005Google Scholar

    [49]

    Hoffman J E, Hudson E W, Lang K M, Madhavan V, Eisaki H, Uchida S, Davis J C 2002 Science 295 466Google Scholar

    [50]

    Hanaguri T, Lupien C, Kohsaka Y, Lee D H, Azuma M, Takano M, Takagi H, Davis J C 2004 Nature 430 1001Google Scholar

    [51]

    Tranquada J M, Woo H, Perring T G, Goka H, Gu G D, Xu G, Fujita M, Yamada K 2004 Nature 429 534Google Scholar

    [52]

    Kohsaka Y, Taylor C, Fujita K, Schmidt A, Lupien C, Hanaguri T, Azuma M, Takano M, Eisaki H, Takagi H, Uchida S, Davis J C 2007 Science 315 1380Google Scholar

    [53]

    Hinkov V, Haug D, Fauqué B, Bourges P, Sidis Y, Ivanov A, Bernhard C, Lin C T, Keimer B 2008 Science 319 597Google Scholar

    [54]

    Parker C V, Aynajian P, da Silva Neto E H, Pushp A, Ono S, Wen J, Xu Z, Gu G, Yazdani A 2010 Nature 468 677Google Scholar

    [55]

    Blanco-Canosa S, Frano A, Schierle E, Porras J, Loew T, Minola M, Bluschke M, Weschke E, Keimer B, Le Tacon M 2014 Phys. Rev. B 90 054513Google Scholar

    [56]

    Cai P, Ruan W, Peng Y, Ye C, Li X, Hao Z, Zhou X, Lee D H, Wang Y 2016 Nat. Phys. 12 1047Google Scholar

    [57]

    Sato Y, Kasahara S, Murayama H, Kasahara Y, Moon E G, Nishizaki T, Loew T, Porras J, Keimer B, Shibauchi T, Matsuda Y 2017 Nat. Phys. 13 1074Google Scholar

    [58]

    Zhao H, Ren Z, Rachmilowitz B, Schneeloch J, Zhong R, Gu G, Wang Z, Zeljkovic I 2019 Nat. Matter. 18 103Google Scholar

    [59]

    Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, Maeno Y 2017 Nat. Phys. 13 123Google Scholar

    [60]

    Yin J X, Zhang S S, Li H, Jiang K, Chang G, Zhang B, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z, Jia S, Wang W, Hasan M Z 2018 Nature 562 91Google Scholar

    [61]

    Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D, Hasan M Z 2021 Nat. Matter. 20 1353Google Scholar

    [62]

    Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, Zeljkovic I 2021 Nature 599 216Google Scholar

    [63]

    Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, Pasupathy A N 2019 Nature 572 95Google Scholar

    [64]

    Chichinadze D V, Classen L, Chubukov A V 2020 Phys. Rev. B 101 224513Google Scholar

    [65]

    Rubio-Verdú C, Turkel S, Song Y, Klebl L, Samajdar R, Scheurer M S, Venderbos J W F, Watanabe K, Taniguchi T, Ochoa H, Xian L, Kennes D M, Fernandes R M, Rubio Á, Pasupathy A N 2022 Nat. Phys. 18 196Google Scholar

    [66]

    Nomura T, Wng Kim S, Kamihara Y, Hirano M, V. Sushko P, Kato K, Takata M, L. Shluger A, Hosono H 2008 J. Phys. Soc. Japan 77 32Google Scholar

    [67]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002Google Scholar

    [68]

    de la Cruz C, Huang Q, Lynn J W, Li J, Ii W R, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P 2008 Nature 453 899Google Scholar

    [69]

    Zhao J, Huang Q, de la Cruz C, Li S, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L, Dai P 2008 Nat. Matter. 7 953Google Scholar

    [70]

    Wang Q, Shen Y, Pan B, Hao Y, Ma M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H, Zhao J 2016 Nat. Matter. 15 159Google Scholar

    [71]

    Wang Q, Shen Y, Pan B, Zhang X, Ikeuchi K, Iida K, Christianson A D, Walker H C, Adroja D T, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Zhao J 2016 Nature Commun. 7 12182Google Scholar

    [72]

    Chuang T M, Allan M P, Lee J, Xie Y, Ni N, Bud’ko S L, Boebinger G S, Canfield P C, Davis J C 2010 Science 327 181Google Scholar

    [73]

    Allan M P, Chuang T M, Massee F, Xie Y, Ni N, Bud’ko S L, Boebinger G S, Wang Q, Dessau D S, Canfield P C, Golden M S, Davis J C 2013 Nat. Phys. 9 220Google Scholar

    [74]

    Rosenthal E P, Andrade E F, Arguello C J, Fernandes R M, Xing L Y, Wang X C, Jin C Q, Millis A J, Pasupathy A N 2014 Nat. Phys. 10 225Google Scholar

    [75]

    Yim C M, Trainer C, Aluru R, Chi S, Hardy W N, Liang R, Bonn D, Wahl P 2018 Nat. Commun. 9 2602Google Scholar

    [76]

    Chu J H, Analytis J G, Greve K D, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824Google Scholar

    [77]

    Tanatar M A, Böhmer A E, Timmons E I, Schütt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud’ko S L, Canfield P C, Fernandes R M, Prozorov R 2016 Phys. Rev. Lett. 117 127001Google Scholar

    [78]

    Ying J J, Wang X F, Wu T, Xiang Z J, Liu R H, Yan Y J, Wang A F, Zhang M, Ye G J, Cheng P, Hu J P, Chen X H 2011 Phys. Rev. Lett. 107 067001Google Scholar

    [79]

    Chu J H, Kuo H H, Analytis J G, Fisher I R 2012 Science 337 710Google Scholar

    [80]

    Kasahara S, Shi H J, Hashimoto K, Tonegawa S, Mizukami Y, Shibauchi T, Sugimoto K, Fukuda T, Terashima T, Nevidomskyy A H, Matsuda Y 2012 Nature 486 382Google Scholar

    [81]

    Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R, Shen Z X 2011 Proc. Natl. Acad. Sci. USA. 108 6878Google Scholar

    [82]

    Fu M, Torchetti D A, Imai T, Ning F L, Yan J Q, Sefat A S 2012 Phys. Rev. Lett. 109 247001Google Scholar

    [83]

    Baek S H, Efremov D V, Ok J M, Kim J S, van den Brink J, Büchner B 2015 Nat. Matter. 14 210Google Scholar

    [84]

    Böhmer A E, Arai T, Hardy F, Hattori T, Iye T, Wolf T, Löhneysen H v, Ishida K, Meingast C 2015 Phys. Rev. Lett. 114 027001Google Scholar

    [85]

    Li J, Lei B, Zhao D, Nie L P, Song D W, Zheng L X, Li S J, Kang B L, Luo X G, Wu T, Chen X H 2020 Phys. Rev. X 10 011034Google Scholar

    [86]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97Google Scholar

    [87]

    Lederer S, Schattner Y, Berg E, Kivelson S A 2015 Phys. Rev. Lett. 114 097001Google Scholar

    [88]

    Kuo H H, Chu J H, Palmstrom J C, Kivelson S A, Fisher I R 2016 Science 352 958Google Scholar

    [89]

    Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A, Khasanov R 2010 Phys. Rev. Lett. 104 087003Google Scholar

    [90]

    Bendele M, Ichsanow A, Pashkevich Y, Keller L, Strässle T, Gusev A, Pomjakushina E, Conder K, Khasanov R, Keller H 2012 Phys. Rev. B 85 064517Google Scholar

    [91]

    Wang P S, Sun S S, Cui Y, Song W H, Li T R, Yu R, Lei H, Yu W 2016 Phys. Rev. Lett. 117 237001Google Scholar

    [92]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146Google Scholar

    [93]

    Kothapalli K, Böhmer A E, Jayasekara W T, Ueland B G, Das P, Sapkota A, Taufour V, Xiao Y, Alp E, Bud’ko S L, Canfield P C, Kreyssig A, Goldman A I 2016 Nat. Commun. 7 12728Google Scholar

    [94]

    Matsuura K, Mizukami Y, Arai Y, Sugimura Y, Maejima N, Machida A, Watanuki T, Fukuda T, Yajima T, Hiroi Z, Yip K Y, Chan Y C, Niu Q, Hosoi S, Ishida K, Mukasa K, Kasahara S, Cheng J G, Goh S K, Matsuda Y, Uwatoko Y, Shibauchi T 2017 Nat. Commun. 8 1143Google Scholar

    [95]

    Yu R, Si Q 2015 Phys. Rev. Lett. 115 116401Google Scholar

    [96]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valentí R 2015 Nat. Phys. 11 953Google Scholar

    [97]

    Wang F, Kivelson S A, Lee D H 2015 Nat. Phys. 11 959Google Scholar

    [98]

    Tam Y T, Yao D X, Ku W 2015 Phys. Rev. Lett. 115 117001Google Scholar

    [99]

    Zhang Y, Yi M, Liu Z K, Li W, Lee J J, Moore R G, Hashimoto M, Nakajima M, Eisaki H, Mo S K, Hussain Z, Devereaux T P, Shen Z X, Lu D H 2016 Phys. Rev. B 94 115153Google Scholar

    [100]

    Fang C, Yao H, Tsai W F, Hu J, Kivelson S A 2008 Phys. Rev. B 77 224509Google Scholar

    [101]

    Tang C, Liu C, Zhou G, Li F, Ding H, Li Z, Zhang D, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q K 2016 Phys. Rev. B 93 020507Google Scholar

    [102]

    Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett 16 1969Google Scholar

    [103]

    Wu M K, Hsu F C, Yeh K W, Huang T W, Luo J Y, Wang M J, Chang H H, Chen T K, Rao S M, Mok B H, Chen C L, Huang Y L, Ke C T, Wu P M, Chang A M, Wu C T, Perng T P 2009 Physica C Supercond. 469 340Google Scholar

    [104]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nat. Matter. 14 775Google Scholar

    [105]

    Wen C H P, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nat. Commun. 7 10840Google Scholar

    [106]

    Fan Q, Zhang W H, Liu X, Yan Y J, Ren M Q, Peng R, Xu H C, Xie B P, Hu J P, Zhang T, Feng D L 2015 Nat. Phys. 11 946Google Scholar

    [107]

    Agterberg D F, Shishidou T, O’Halloran J, Brydon P M R, Weinert M 2017 Phys. Rev. Lett. 119 267001Google Scholar

    [108]

    Liu C, Mao J, Ding H, Wu R, Tang C, Li F, He K, Li W, Song C L, Ma X C, Liu Z, Wang L, Xue Q K 2018 Phys. Rev. B 97 024502Google Scholar

    [109]

    Liu C, Wang Z, Gao Y, Liu X, Liu Y, Wang Q H, Wang J 2019 Phys. Rev. Lett. 123 036801Google Scholar

    [110]

    Zhang H, Ge Z, Weinert M, Li L 2020 Commun. Phys. 3 75Google Scholar

    [111]

    Zhou Y, Miao L, Wang P, Zhu F F, Jiang W X, Jiang S W, Zhang Y, Lei B, Chen X H, Ding H F, Zheng H, Zhang W T, Jia J F, Qian D, Wu D 2018 Phys. Rev. Lett. 120 097001Google Scholar

  • [1] 殷嘉鑫, 王强华. 超导能隙振荡: 到底来自配对密度波还是拆对散射?. 物理学报, 2024, 73(15): 157401. doi: 10.7498/aps.73.20240807
    [2] 朱孟龙, 杨俊, 董玉兰, 周源, 邵岩, 侯海良, 陈智慧, 何军. Cu(111)衬底上单层铁电GeS薄膜的原子和电子结构研究. 物理学报, 2024, 73(1): 010701. doi: 10.7498/aps.73.20231246
    [3] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器. 物理学报, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [4] 戴昊光, 查访星, 陈平平. InGaAs(110)解理面的扫描隧道谱的理论诠释. 物理学报, 2021, 70(19): 196801. doi: 10.7498/aps.70.20210419
    [5] 李渊, 邓翰宾, 王翠香, 李帅帅, 刘立民, 朱长江, 贾可, 孙英开, 杜鑫, 于鑫, 关童, 武睿, 张书源, 石友国, 毛寒青. 反铁磁轴子绝缘体候选材料EuIn2As2的表面原子排布和电子结构. 物理学报, 2021, 70(18): 186801. doi: 10.7498/aps.70.20210783
    [6] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [7] 丁翠, 刘充, 张庆华, 龚冠铭, 汪恒, 刘效治, 孟繁琦, 杨好好, 武睿, 宋灿立, 李渭, 何珂, 马旭村, 谷林, 王立莉, 薛其坤. 单层FeSe薄膜/氧化物界面高温超导. 物理学报, 2018, 67(20): 207415. doi: 10.7498/aps.67.20181681
    [8] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [9] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [10] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [11] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [12] 郎莎莎, 耿兴国, 臧渡洋. 八重准周期排列的短沟槽结构减阻机理分析. 物理学报, 2014, 63(8): 084704. doi: 10.7498/aps.63.084704
    [13] 冯卫, 赵爱迪. 钴原子及其团簇在Rh(111)和Pd(111)表面的扫描隧道显微学研究. 物理学报, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [14] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [15] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [16] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [17] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [18] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [19] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  6639
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-16
  • 修回日期:  2022-02-06
  • 上网日期:  2022-02-28
  • 刊出日期:  2022-06-20

/

返回文章
返回