搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于面磁荷密度的金属磁记忆检测正演模型

罗旭 王丽红 吕良 曹书峰 董学成 赵建国

引用本文:
Citation:

基于面磁荷密度的金属磁记忆检测正演模型

罗旭, 王丽红, 吕良, 曹书峰, 董学成, 赵建国

Forward model of metal magnetic memory testing based on equivalent surface magnetic charge theory

Luo Xu, Wang Li-Hong, Lü Liang, Cao Shu-Feng, Dong Xue-Cheng, Zhao Jian-Guo
PDF
HTML
导出引用
  • 磁偶极子理论在金属磁记忆检测正演分析中得到了广泛应用, 但是现有模型中的磁荷密度多为假设值, 且假设磁荷在缺陷断面或应力集中区域呈均匀分布或线性分布, 无法实现磁记忆信号的准确定量分析. 针对上述问题, 本文在结合力磁耦合理论、磁荷理论和有限元方法基础上, 将试件离散为有限多个微小单元, 假设单元内部磁特征参数分布均匀, 建立了单元应力、磁化强度与磁荷密度之间的关系, 构建了能够考虑应力不均匀分布对磁荷密度分布影响的金属磁记忆检测正演模型. 与实验结果对比发现, 本文建立模型无论是定性还是定量上都能很好预测磁记忆信号变化规律; 在此基础上, 对比了应力集中和宏观裂纹表面磁场分布的差异, 并以裂纹缺陷为例, 详细讨论了裂纹缺陷尺寸参数对磁记忆信号及其特征参量的影响规律. 理论分析表明, 本文模型可为定量分析磁记忆检测过程中缺陷附近磁场变化规律提供新的理论模型.
    The magnetic dipole theory has been widely and successfully used to qualitatively analyze the testing signals of metal magnetic memory (MMM) testing. However, the magnetic charge density of the existing models is always an assumed value distributed uniformly or linearly along the defect section or in a stress concentration area, as a result the existing models are unsuitable for quantitatively analyzing the metal magnetic memory signal. In this work, a new forward model of MMM testing is established by considering the influence of uneven stress on magnetic charge density distribution, discretizing the specimen into numbers of micro elements firstly, assuming that the magnetic characteristic parameters of each element are evenly distributed and the magnetic charge density changes with stress in each element which can be determined by combining the modified magneto-mechanical model and the classical theory of magnetic charges. Compared with the experimental results of hole defect and crack defect specimen, the theoretical results calculated by the proposed model prove to be in good agreement with the testing results both qualitatively and quantitatively. Consequently, the proposed model is a new theoretical and quantitative model for analyzing the experimental change rule of metal magnetic memory testing. Then, the effects of stress concentration and macroscopic defects on the distribution of magnetic field are analyzed, showing that when there is only a stress concentration in the specimen, the horizontal component is negative valley, and the normal component changes from negative to positive valley peak in the stress concentration area; when there is a crack defect in the specimen, the distribution of magnetic field is just opposite to that when there is only a stress concentration. The distribution characteristics of the magnetic field can be used to judge the damage type in the specimen. Moreover, taking crack defect for example, the horizontal and normal component of magnetic field and their characteristic parameters changing with the size parameters of crack defect, such as width, length, depth and buried depth of crack defect, are analyzed in detail. The results show that the ${W_{\Delta {H_x}}}$ and ${W_{\Delta {H_z}}}$ increase lineally with the increase of the width of crack, $\Delta {H_x}$ and $\Delta {H_z}$increase with the increase of the length and depth of crack, but gradually decrease with the increase of defect buried depth.
      通信作者: 罗旭, luoxu@cdut.edu.cn
    • 基金项目: 四川省科技计划(批准号: 2021YFS0305, 202YFQ0061)资助的课题
      Corresponding author: Luo Xu, luoxu@cdut.edu.cn
    • Funds: Project Supported by the Science and Technology Program of Sichuan Province, China (Grant Nos. 2021YFS0305, 2022YFQ0061).
    [1]

    Dubov A A 1997 Met. Sci. Heat Treat. 39 401Google Scholar

    [2]

    Wang Z D, Yao K, Deng B, Ding K Q 2010 NDT and E Int. 43 354Google Scholar

    [3]

    Wang Z D, Yao K, Deng B, Ding K Q 2010 NDT and E Int. 43 513Google Scholar

    [4]

    万强, 李思忠, 汤紫峰 2011 无损检测 33 12

    Wang Q, Li S Z, Tang Z F 2011 Nondestr. Test. 33 12

    [5]

    Leng J C, Xu M Q, Li J W 2010 Chin. J. Mech. Eng. 23 532Google Scholar

    [6]

    Leng J C, Xing H Y, Zhou G Q, Gao Y T 2013 Insight 55 498Google Scholar

    [7]

    徐明秀, 尤天庆, 徐敏强, 樊久铭, 李立 2015 中南大学学报(自然科学版) 46 1215Google Scholar

    Xu M X, You T Q, Xu M Q, Fan J M, Li L 2015 J. Cent. South Univ. 46 1215Google Scholar

    [8]

    Shi P P, Zheng X J 2016 Nondestr. Test. Eval. 31 45Google Scholar

    [9]

    时朋朋, 郝帅 2021 物理学报 70 034101Google Scholar

    Shi P P, Hao S 2021 Acta Phys. Sin. 70 034101Google Scholar

    [10]

    孙乐 2007 博士学位论文 (兰州: 兰州大学)

    Sun L 2007 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [11]

    周浩淼 2007 博士学位论文 (兰州: 兰州大学)

    Zhou H M 2007 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [12]

    Zhou H M, Zhou Y H, Zheng X J, Ye Q, Wei J 2009 J. Magn. Magn. Mater. 321 281Google Scholar

    [13]

    时朋朋 2017 博士学位论文 (西安: 西安电子科技大学)

    Shi P P 2017 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [14]

    Shi P P 2020 J. Magn. Magn. Mater. 512 166980Google Scholar

    [15]

    Shi P P, Jin K, Zheng X J 2016 J. Appl. Phys. 119 145103Google Scholar

    [16]

    罗旭, 朱海燕, 丁雅萍 2019 物理学报 68 187501Google Scholar

    Luo X, Zhu H Y, Ding Y P 2019 Acta Phys. Sin. 68 187501Google Scholar

    [17]

    刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋 2017 物理学报 66 107501Google Scholar

    Liu Q Y, Luo X, Zhu H Y, Liu J X, Han Y W 2017 Acta Phys. Sin. 66 107501Google Scholar

    [18]

    周国华, 肖昌汉, 刘胜道, 高俊吉 2009 电工技术学报 24 1Google Scholar

    Zhou G H, Xiao C H, Liu S D, Gao J J 2009 Trans. Chin. Elect. Soc. 24 1Google Scholar

    [19]

    孙阳 2018 硕士学位论文 (西安: 长安大学)

    Sun Y 2018 M. S. Thesis (Xi’an: Chang’ an University) (in Chinese)

    [20]

    周耀忠, 张国友 2004 舰船磁场分析计算 (北京: 国防工业出版社) 第187—195页

    Zhou Y Z, Zhang G Y 2004 Analysis and Calculation of Ship Magnetic Field (Beijing: National Defense Industry Press) pp187–195 (in Chinese)

    [21]

    Maciej R, Gawrilenko P 2008 NDT and E Int. 41 507Google Scholar

    [22]

    Maciej R, Andrzej R, Michal B 2013 Meccanica 48 45Google Scholar

  • 图 1  任意形状六面体单元及局部坐标示意图 (a) 任意形状六面体单元示意图; (b) 六面体单元表面${S_j}$局部坐标示意图

    Fig. 1.  Sketch of an irregular hexahedron element and its local coordinates: (a) Sketch of an irregular hexahedron element; (b) local coordinates of the surface ${S_j}$ of irregular hexahedron element .

    图 2  任意四边形面积分示意图 (a) 平行于x轴, 任意四边形分域积分示意图; (b) 平行于y轴, 任意四边形分域积分示意图

    Fig. 2.  Sketch of surface integral of an irregular quadrangle: (a) Surface integral of an irregular quadrangle parallel to the x axis; (b) surface integral of an irregular quadrangle parallel to the y axis.

    图 3  基于面磁荷密度的金属磁记忆正演计算流程

    Fig. 3.  Calculation flowchart of metal magnetic memory forward analysis based on surface magnetic charge density.

    图 4  含裂纹缺陷拉伸试件尺寸及网格划分示意图 (a) 试件结构及尺寸; (b) 试件网格划分

    Fig. 4.  Shape, sizes and finite element meshing of the specimen with crack defect: (a) Shape and sizes of the specimen; (b) finite element meshing of the specimen.

    图 5  不同提离高度条件下试件表面${H_x}$${H_z}$计算结果 (a) ${H_x}$; (b) ${H_z}$

    Fig. 5.  Calculation of ${H_x}$ and ${H_z}$ with different lift off: (a) ${H_x}$; (b) ${H_z}$.

    图 6  文献[21]中含圆孔缺陷拉伸试样结构及尺寸示意图

    Fig. 6.  Shape and sizes of the specimen with hole defect in Ref. [21].

    图 7  含圆孔缺陷拉伸试样表面磁场分布理论计算结果与实验结果对比 (a)实验测试的${H_x}$分布情况; (b) 实验测试的${H_y}$分布情况; (c) 实验测试的${H_z}$分布情况; (d) 理论计算的${H_x}$分布情况; (e) 理论计算的${H_y}$分布情况; (f) 理论计算的${H_z}$分布情况

    Fig. 7.  Comparison between theoretical results and experimental results of magnetic field distribution of the specimen with hole defect: (a) ${H_x}$ of experimental results; (b) ${H_y}$ of experimental results; (c) ${H_z}$ of experimental results; (d) ${H_x}$ of theoretical results; (e) ${H_y}$ of theoretical results; (f) ${H_z}$ of theoretical results.

    图 8  文献[22]中裂纹缺陷拉伸试样示意图

    Fig. 8.  Shape and sizes of the specimen with crack defect in Ref. [22].

    图 9  含裂纹缺陷拉伸试样表面磁场分布理论计算结果与实验结果对比 (a) 实验测试的${H_x}$分布情况; (b) 实验测试的${H_y}$分布情况; (c) 实验测试的${H_z}$分布情况; (d) 理论计算的${H_x}$分布情况; (e) 理论计算的${H_y}$分布情况; (f) 理论计算的${H_z}$分布情况

    Fig. 9.  Comparison between theoretical results and experimental results of magnetic field distribution of the specimen with crack defect: (a) ${H_x}$ of experimental results; (b) ${H_y}$ of experimental results; (c) ${H_z}$ of experimental results; (d) ${H_x}$ of theoretical results; (e) ${H_y}$ of theoretical results; (f) ${H_z}$ of theoretical results.

    图 10  应力集中与宏观裂纹缺陷对试件表面磁场分布的影响对比 (a) 应力集中区域${H_x}$分布情况; (b) 宏观裂纹缺陷${H_x}$分布情况; (c) 应力集中区域${H_z}$分布情况; (d) 宏观裂纹缺陷${H_z}$分布情况

    Fig. 10.  Comparison of effects of stress concentration and macroscopic crack defect on the distribution of magnetic field distribution: (a) ${H_x}$ of stress concentration; (b) ${H_x}$ of macroscopic crack defects; (c) ${H_z}$ of stress concentration; (d) ${H_z}$ of macroscopic crack defects.

    图 11  应力对裂纹缺陷试件表面${H_x}$${H_z}$的影响 (a) 应力对裂纹缺陷试件表面${H_x}$的影响; (b) 应力对裂纹缺陷试件表面${H_z}$的影响

    Fig. 11.  Influence of stress on ${H_x}$ and ${H_z}$ of the specimen with macroscopic crack defect: (a) Influence of stress on ${H_x}$; (b) influence of stress on ${H_z}$.

    图 12  磁记忆检测信号特征参数 (a) 与磁场水平分量${H_x}$相关的特征值; (b) 磁场法向分量${H_z}$相关的特征值

    Fig. 12.  Characteristic parameters of magnetic memory detection signal: (a) Characteristic parameters of ${H_x}$; (b) characteristic parameters of ${H_z}$.

    图 13  槽形缺陷宽度${W_{\text{c}}}$对磁场分布的影响 (a) ${H_x}$随缺陷宽度${W_{\text{c}}}$变化情况; (b) ${H_z}$随缺陷宽度${W_{\text{c}}}$变化情况; (c) $\Delta {H_x}$$\Delta {H_z}$随缺陷宽度${W_{\text{c}}}$变化情况; (d) ${W_{\Delta {H_x}}}$${W_{\Delta {H_z}}}$随缺陷宽度${W_{\text{c}}}$变化情况

    Fig. 13.  Influence of crack defect width ${W_{\text{c}}}$ on magnetic field distribution: (a) Variation of ${H_x}$ with ${W_{\text{c}}}$; (b) variation of ${H_z}$ with ${W_{\text{c}}}$; (c) variation of $\Delta {H_x}$ and $\Delta {H_z}$ with ${W_{\text{c}}}$; (d) variation of ${W_{\Delta {H_x}}}$ and ${W_{\Delta {H_z}}}$ with ${W_{\text{c}}}$.

    图 14  槽形缺陷长度${L_{\text{c}}}$对磁场分布的影响 (a) ${H_x}$随缺陷长度${L_{\text{c}}}$变化情况; (b) ${H_z}$随缺陷长度${L_{\text{c}}}$变化情况; (c) $\Delta {H_x}$$\Delta {H_z}$随缺陷长度${L_{\text{c}}}$变化情况; (d) ${W_{\Delta {H_x}}}$${W_{\Delta {H_z}}}$随缺陷长度${L_{\text{c}}}$变化情况

    Fig. 14.  Influence of crack defect lengthen ${L_{\text{c}}}$ on magnetic field distribution: (a) Variation of ${H_x}$ with ${L_{\text{c}}}$; (b) variation of ${H_z}$ with ${L_{\text{c}}}$; (c) variation of $\Delta {H_x}$ and $\Delta {H_z}$ with ${L_{\text{c}}}$; (d) variation of ${W_{\Delta {H_x}}}$ and ${W_{\Delta {H_z}}}$ with Lc.

    图 15  槽形缺陷深度${D_{\text{c}}}$对磁场分布的影响 (a) ${H_x}$随缺陷深度${D_{\text{c}}}$变化情况; (b) ${H_z}$随缺陷深度${D_{\text{c}}}$变化情况; (c) $\Delta {H_x}$$\Delta {H_z}$随缺陷深度${D_{\text{c}}}$变化情况; (d)${W_{\Delta {H_x}}}$${W_{\Delta {H_z}}}$随缺陷深度${D_{\text{c}}}$变化情况

    Fig. 15.  Influence of crack defect depth ${D_{\text{c}}}$ on magnetic field distribution: (a) Variation of ${H_x}$ with ${D_{\text{c}}}$; (b) variation of ${H_z}$ with ${D_{\text{c}}}$; (c) variation of $\Delta {H_x}$ and $\Delta {H_z}$ with ${D_{\text{c}}}$; (d) variations of ${W_{\Delta {H_x}}}$ and ${W_{\Delta {H_z}}}$ with ${D_{\text{c}}}$.

    图 16  槽形缺陷埋深${B_{\text{c}}}$对磁场分布的影响 (a) ${H_x}$随缺陷埋深${B_{\text{c}}}$变化情况; (b) ${H_z}$随缺陷埋深${B_{\text{c}}}$变化情况; (c) $\Delta {H_x}$$\Delta {H_z}$随缺陷埋深${B_{\text{c}}}$变化情况; (d) ${W_{\Delta {H_x}}}$${W_{\Delta {H_z}}}$随缺陷埋深${B_{\text{c}}}$变化情况

    Fig. 16.  Influence of crack defect buried depth ${B_{\text{c}}}$ on magnetic field distribution: (a) Variation of ${H_x}$ with ${B_{\text{c}}}$; (b) variation of ${H_z}$ with ${B_{\text{c}}}$; (c) variation of $\Delta {H_x}$ and $\Delta {H_z}$ with ${B_{\text{c}}}$; (d) variation of ${W_{\Delta {H_x}}}$ and ${W_{\Delta {H_z}}}$ with ${B_{\text{c}}}$.

    表 1  不同正演模型计算结果与实验测试结果对比

    Table 1.  Comparison of magnetic field distribution of specimen with hole defect calculated by different models.

    磁场分量实验结果[21]文献[13]图3.9
    结果
    本文模型计算
    结果
    ${H_x}$/(A·m–1)90—13080—14070 —140
    ${H_y}$/(A·m–1)–50—10–40—10–50—20
    ${H_z}$/(A·m–1)–70—20–70—20–60—20
    下载: 导出CSV

    表 2  不同正演模型计算含裂纹缺陷试件结果与实验测试结果对比

    Table 2.  Comparison of magnetic field distribution of specimen with crack defect calculated by different models

    磁场分量实验结果[22]文献[13]图3.28
    中的结果
    本文模型
    计算结果
    ${H_x}$/(A·m–1)–90—130–400—40060—140
    ${H_y}$/(A·m–1)–50—10–200—200–60—30
    ${H_z}$/(A·m–1)–70—20–500—500–80—80
    下载: 导出CSV
  • [1]

    Dubov A A 1997 Met. Sci. Heat Treat. 39 401Google Scholar

    [2]

    Wang Z D, Yao K, Deng B, Ding K Q 2010 NDT and E Int. 43 354Google Scholar

    [3]

    Wang Z D, Yao K, Deng B, Ding K Q 2010 NDT and E Int. 43 513Google Scholar

    [4]

    万强, 李思忠, 汤紫峰 2011 无损检测 33 12

    Wang Q, Li S Z, Tang Z F 2011 Nondestr. Test. 33 12

    [5]

    Leng J C, Xu M Q, Li J W 2010 Chin. J. Mech. Eng. 23 532Google Scholar

    [6]

    Leng J C, Xing H Y, Zhou G Q, Gao Y T 2013 Insight 55 498Google Scholar

    [7]

    徐明秀, 尤天庆, 徐敏强, 樊久铭, 李立 2015 中南大学学报(自然科学版) 46 1215Google Scholar

    Xu M X, You T Q, Xu M Q, Fan J M, Li L 2015 J. Cent. South Univ. 46 1215Google Scholar

    [8]

    Shi P P, Zheng X J 2016 Nondestr. Test. Eval. 31 45Google Scholar

    [9]

    时朋朋, 郝帅 2021 物理学报 70 034101Google Scholar

    Shi P P, Hao S 2021 Acta Phys. Sin. 70 034101Google Scholar

    [10]

    孙乐 2007 博士学位论文 (兰州: 兰州大学)

    Sun L 2007 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [11]

    周浩淼 2007 博士学位论文 (兰州: 兰州大学)

    Zhou H M 2007 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [12]

    Zhou H M, Zhou Y H, Zheng X J, Ye Q, Wei J 2009 J. Magn. Magn. Mater. 321 281Google Scholar

    [13]

    时朋朋 2017 博士学位论文 (西安: 西安电子科技大学)

    Shi P P 2017 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [14]

    Shi P P 2020 J. Magn. Magn. Mater. 512 166980Google Scholar

    [15]

    Shi P P, Jin K, Zheng X J 2016 J. Appl. Phys. 119 145103Google Scholar

    [16]

    罗旭, 朱海燕, 丁雅萍 2019 物理学报 68 187501Google Scholar

    Luo X, Zhu H Y, Ding Y P 2019 Acta Phys. Sin. 68 187501Google Scholar

    [17]

    刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋 2017 物理学报 66 107501Google Scholar

    Liu Q Y, Luo X, Zhu H Y, Liu J X, Han Y W 2017 Acta Phys. Sin. 66 107501Google Scholar

    [18]

    周国华, 肖昌汉, 刘胜道, 高俊吉 2009 电工技术学报 24 1Google Scholar

    Zhou G H, Xiao C H, Liu S D, Gao J J 2009 Trans. Chin. Elect. Soc. 24 1Google Scholar

    [19]

    孙阳 2018 硕士学位论文 (西安: 长安大学)

    Sun Y 2018 M. S. Thesis (Xi’an: Chang’ an University) (in Chinese)

    [20]

    周耀忠, 张国友 2004 舰船磁场分析计算 (北京: 国防工业出版社) 第187—195页

    Zhou Y Z, Zhang G Y 2004 Analysis and Calculation of Ship Magnetic Field (Beijing: National Defense Industry Press) pp187–195 (in Chinese)

    [21]

    Maciej R, Gawrilenko P 2008 NDT and E Int. 41 507Google Scholar

    [22]

    Maciej R, Andrzej R, Michal B 2013 Meccanica 48 45Google Scholar

  • [1] 陈崇, 马铭远, 潘峰, 宋成. 磁声耦合: 物理、材料与器件. 物理学报, 2024, 73(5): 058502. doi: 10.7498/aps.73.20231908
    [2] 王思远, 梁添寿, 时朋朋. 金属磁记忆应变诱导磁性变化的原子尺度作用机理. 物理学报, 2022, 71(19): 197502. doi: 10.7498/aps.71.20220745
    [3] 时朋朋, 郝帅. 磁记忆检测的力磁耦合型磁偶极子理论及解析解. 物理学报, 2021, 70(3): 034101. doi: 10.7498/aps.70.20200937
    [4] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型. 物理学报, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [5] 刘娟, 胡锐, 范志强, 张振华. 过渡金属掺杂的扶手椅型氮化硼纳米带的磁电子学特性及力-磁耦合效应. 物理学报, 2017, 66(23): 238501. doi: 10.7498/aps.66.238501
    [6] 刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正. 物理学报, 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [7] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [8] 杨理践, 刘斌, 高松巍, 陈立佳. 金属磁记忆效应的第一性原理计算与实验研究. 物理学报, 2013, 62(8): 086201. doi: 10.7498/aps.62.086201
    [9] 章鹏, 刘琳, 陈伟民. 磁性应力监测中力磁耦合特征及关键影响因素分析. 物理学报, 2013, 62(17): 177501. doi: 10.7498/aps.62.177501
    [10] 许小勇, 钱丽洁, 胡经国. 铁磁多层膜中的力致磁电阻效应. 物理学报, 2009, 58(3): 2023-2029. doi: 10.7498/aps.58.2023
    [11] 丁凌云, 龚中良, 黄 平. 基于耦合振子模型的摩擦力计算研究. 物理学报, 2008, 57(10): 6500-6506. doi: 10.7498/aps.57.6500
    [12] 郑红星, 刘 剑, 夏明许, 李建国. Ni-Fe-Ga磁致形状记忆合金中间马氏体相变. 物理学报, 2005, 54(4): 1719-1721. doi: 10.7498/aps.54.1719
    [13] 邵元智, 林光明, 蓝图, 钟伟荣. 基于交换耦合模型纳米双相(硬磁/软磁)自旋体系的磁性. 物理学报, 2002, 51(10): 2362-2368. doi: 10.7498/aps.51.2362
    [14] 柳祝红, 胡凤霞, 王文洪, 陈京兰, 吴光恒, 高书侠, 敖玲. 哈斯勒合金Ni-Mn-Ga的马氏体相变和磁增强双向形状记忆效应. 物理学报, 2001, 50(2): 233-238. doi: 10.7498/aps.50.233
    [15] 应用于金属蒸气激光器的磁约束溅射放电理论模型. 物理学报, 1997, 46(8): 1479-1486. doi: 10.7498/aps.46.1479
    [16] 钟立军, 陶瑞宝. FeRh合金顺磁到铁磁相变的对称理论. 物理学报, 1992, 41(12): 2003-2007. doi: 10.7498/aps.41.2003
    [17] 陈仁, 王养璞. S=1/2铁磁理论海森堡模型的随机量子化处理. 物理学报, 1989, 38(4): 614-618. doi: 10.7498/aps.38.614
    [18] 沈觉涟. 磁性晶体二级相变理论与镧系金属的磁结构. 物理学报, 1966, 22(1): 94-110. doi: 10.7498/aps.22.94
    [19] 李荫远, 冷忠昂, 潘守甫. 磁声参量振荡的理论. 物理学报, 1960, 16(8): 448-461. doi: 10.7498/aps.16.448
    [20] 李華宗. 量子力學中之Hermite演索. 物理学报, 1946, 6(2): 86-99. doi: 10.7498/aps.6.86
计量
  • 文章访问数:  4098
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 修回日期:  2022-04-05
  • 上网日期:  2022-07-26
  • 刊出日期:  2022-08-05

/

返回文章
返回