搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全内反射荧光显微研究磷脂支撑膜形成中的片层前沿成长

马贝贝 王凡 林玲 朱涛 蒋中英

引用本文:
Citation:

全内反射荧光显微研究磷脂支撑膜形成中的片层前沿成长

马贝贝, 王凡, 林玲, 朱涛, 蒋中英

Total internal reflection fluorescence microscopy to study sheet front growth in phospholipid supported lipid membrane formation

Ma Bei-Bei, Wang Fan, Lin Ling, Zhu Tao, Jiang Zhong-Ying
PDF
HTML
导出引用
  • 基于支撑磷脂双层膜(SLB)的生物传感器越来越多地被用于快速测定抗原、检测细胞色素等. 囊泡在衬底的吸附和自发破裂可形成SLB, 最近的研究强调在此过程中考察个体囊泡吸附和破裂的重要性. 本研究利用全内反射荧光显微镜(TIRFM) 实时监测荧光标记的纳米级个体囊泡的吸附、破裂, 追踪片层前沿成长动力学过程. 结合带耗散的石英晶体微天平(QCM-D)的表征和分析, 发现囊泡尺寸对片层前沿成长有显著影响. 通过片层前沿平均成长速度($ {v}_{\mathrm{a}\mathrm{f}\mathrm{v}} $)定量分析片层成长, 不同尺寸囊泡的$ {v}_{\mathrm{a}\mathrm{f}\mathrm{v}}\mathrm{存}\mathrm{在} $数量级差异. 理论分析小囊泡具有较高的表面浓度(C)和扩散性, 加快了片层前沿成长, 与实验值能够较好地符合. 此外, 通过全局成长理论模型, 解释了对于相同的片层,前沿加速成长主要取决于C和囊泡破裂时的磷脂丢失率. 计算的小囊泡成片层的磷脂丢失率略大于大囊泡, 但更大差异的C是片层加速成长程度不同的关键. 囊泡供应影响片层前沿成长的机理诠释深化了磷脂在界面再组装的认识.
    Supported lipid bilayer (SLB) based biosensors possess biomedical applications such as in rapid detection of antigens and cytochromes. It is generally believed that the SLB can be formed by adsorbing and spontaneously rupturing vesicles on substrate. Recent findings highlight the importance of investigating the adsorption and rupture of individual vesicles during the SLB formation. Here, we use total internal reflection fluorescence microscopy (TIRFM) to characterize the spatiotemporal kinetics of the front spreading at patch boundary. Owing to the mixture of labeled and unlabeled vesicles individual vesicle or patch on the surface can be identified. The TIRFM is employed to investigate the adsorption, rupture of vesicles, and spreading of the patch front. Combining quartz crystal microbalance with dissipation monitoring (QCM-D) and TIRFM characterizations, we find that the size of vesicle has a significant effect on the front spreading at the patch boundary. Quantification of the number of patches and patches area displays that smaller vesicles are more prone to the formation of patches. The front spreading at the patch boundary is analyzed quantitatively using the average front growth velocity ($ {v}_{\rm afv} $), which indicates that the $ {v}_{\rm afv} $of 40-nm vesicles is one order of magnitude larger than that of the 112 nm vesicles. Both theoretical analysis and experimental observation show that the smaller vesicles can attain the higher concentration on the surface (C) and high diffusivity in the medium. The global growth theoretical model (GGM) presents that for the patches with the same surface area and vesicle exposure time, the growth of the patch depends on C and lipid loss percentage during the vesicle rupture. The calculated lipid loss of the smaller vesicles is slightly higher than that of the larger vesicles, while C plays a dominating role in determining the disparity of the patch growth between the different vesicles. This study promotes the understanding of the growth mechanism of patches on the surface. It demonstates the critcial role of the supply of vesicles in this process and provides an enlightenment for investigating the reassembly of lipids on a nanoscale.
      通信作者: 朱涛, zhuttd@163.com ; 蒋中英, jiangzhying@163.com
    • 基金项目: 新疆自然科学基金联合基金(批准号: 2022D01C336)、伊犁师范大学科研项目(批准号: 2021YSYB087)和国家自然科学基金(批准号: 11904167, 22163011)资助的课题.
      Corresponding author: Zhu Tao, zhuttd@163.com ; Jiang Zhong-Ying, jiangzhying@163.com
    • Funds: Project supported by the Joint Funds of Xinjiang Natural Science Foundation, China (Grant No. 2022D01C336), the School Level Scientific Projects of Yili Normal University, China (Grant No. 2021YSYB087), and the National Natural Science Foundation of China (Grant Nos. 11904167, 22163011).
    [1]

    Fu M F, Li J B 2018 Angew. Chem. Int. Ed. 57 11404Google Scholar

    [2]

    王克青, 李自若, 费进波, 王晨蕾, 崔 巍, 赵 洁, 李峻柏 2021 高分子学报 52 1024Google Scholar

    Wang K Q, Li Z R, Fei J B, Wang C L, Cui W, Zhao J, Li J B 2021 Acta Polym. Sin. 52 1024Google Scholar

    [3]

    Kumar R K, Li M, Olof S N, Patil A J, Mann S 2013 Small 9 357Google Scholar

    [4]

    Xu Y Q, Fei J B, Li G L, Yuan T T, Li J B 2017 ACS Nano 11 10175Google Scholar

    [5]

    Ding H M, Yin Y W, Ni S D, Sheng Y J, Ma Y Q 2021 Chin. Phys. Lett. 38 018701Google Scholar

    [6]

    Jackman J A, Zhdanov V P, Cho N J 2014 Langmuir 30 9494Google Scholar

    [7]

    Richter R, Mukhopadhyay A, Brisson A 2003 Biophys. J. 85 3035Google Scholar

    [8]

    Keller C A, Glasmastar K, Zhdanov V P, Kasemo B 2000 Phys. Rev. Lett. 84 5443Google Scholar

    [9]

    Reimhult E, Hook F, Kasemo B 2002 J. Chem. Phys. 117 7401Google Scholar

    [10]

    Reimhult E, Hook F, Kasemo B 2003 Langmuir 19 1681Google Scholar

    [11]

    Zhu T, Jiang Z Y, Ma Y Q, Hu Y 2016 ACS Appl. Mater. Interfaces 8 5857Google Scholar

    [12]

    Hope M J, Walker D C, Cullis P R 1983 Biochem. Biophys. Res. Commun. 110 15Google Scholar

    [13]

    Seantier B, Kasemo B 2009 Langmuir 25 5767Google Scholar

    [14]

    Seantier B, Breffa C, Felix O, Decher G 2005 J. Phys. Chem. B 109 21755Google Scholar

    [15]

    Boudard S, Seantier B, Breffa C, Decher G, Felix O 2006 Thin Solid Films 495 246Google Scholar

    [16]

    Keller C A, Kasemo B 1998 Biophys. J. 75 1397Google Scholar

    [17]

    Roiter Y, Ornatska M, Rammohan A R, Balakrishnan J, Heine D R, Minko S 2008 Nano Lett. 8 941Google Scholar

    [18]

    Richter R P, Berat R, Brisson A R 2006 Langmuir 22 3497Google Scholar

    [19]

    Anderson T H, Min Y J, Weirich K L, Zeng H B, Fygenson D, Israelachvili J N 2009 Langmuir 25 6997Google Scholar

    [20]

    Jackman J A, Kim M C, Zhdanov V P, Cho N J 2016 Phys. Chem. Chem. Phys. 18 3065Google Scholar

    [21]

    杨盼, 涂展春 2016 物理学报 65 188701Google Scholar

    Yang P, Tu Z C 2016 Acta Phys. Sin. 65 188701Google Scholar

    [22]

    Reviakine I, Rossetti F F, Morozov A N, Textor M 2005 J. Chem. Phys. 122 204711Google Scholar

    [23]

    Reviakine I, Gallego M, Johannsmann D, Tellechea E 2012 J. Chem. Phys. 136 084702Google Scholar

    [24]

    Hatzakis N S, Bhatia V K, Larsen J, Madsen K L, Bolinger P Y, Kunding A H, Castillo J, Gether U, Hedegard P, Stamou D 2009 Nat. Chem. Biol. 5 835Google Scholar

    [25]

    Rabe M, Tabaei S R, Zetterberg H, Zhdanov V P, Hook F 2015 Angew. Chem. Int. Ed. 54 1022Google Scholar

    [26]

    Andrecka J, Spillane K M, Ortega-Arroyo J, Kukura P 2013 ACS Nano 7 10662Google Scholar

    [27]

    Weirich K L, Israelachvili J N, Fygenson D K 2010 Biophys. J. 98 85Google Scholar

    [28]

    Mapar M, Yoemetsa S, Pace H, Zhdanov V P, Agnarsson B, Hook F 2018 J. Phys. Chem. Lett. 9 5143Google Scholar

    [29]

    Xia Q S, Zhu T, Jiang Z Y, Ding H M, Ma Y Q 2020 Nanoscale 12 7804Google Scholar

    [30]

    蒋中英, 张国梁, 马晶, 朱涛 2013 物理学报 62 018701Google Scholar

    Jiang Z Y, Zhang G L, Ma J, Zhu T 2013 Acta Phys. Sin. 62 018701Google Scholar

    [31]

    Patty P J, Frisken B J 2003 Biophys. J. 85 996Google Scholar

    [32]

    Reimhult E, Zach M, Hook F, Kasemo B 2006 Langmuir 22 3313Google Scholar

    [33]

    Nabika H, Fukasawa A, Murakoshi K 2008 Phys. Chem. Chem. Phys. 10 2243Google Scholar

  • 图 1  支撑双层膜形成的动力学过程: 四张典型TIRFM照片显示了SLB形成过程的不同阶段. 第一次观测到的囊泡破裂用红色箭头标记表示形成了初始片层. 比例尺为20 μm

    Fig. 1.  Spatiotemporal kinetics of the SLB formation: Four typical TIRFM images illustrating different stages of SLB formation. The first observed vesicle rupture is marked with red arrows to indicate the formation of the initial patch. The scale bar is 20 μm.

    图 2  定量两种囊泡尺寸下, 片层成长动力学(统计区域为5812 μm2) (a) 片层数量随时间(t)变化; (b) 片层归一化面积随时间的变化, 插图为局域放大图; (c) 112 nm囊泡与 (d) 40 nm囊泡的TIRFM图像. 比例尺为20 μm

    Fig. 2.  The kinetics of patch growth was quantitatively investigated using two vesicle samples with different sizes (Area of interest is 5812 μm2): (a) The number of patches changes with time (t); (b) the normalized area of patches changes with time. The inset shows the data on enlarged scales; TIRFM images of (c) 112 nm vesicles and (d) 40 nm vesicles. The scale bar is 20 μm.

    图 3  片层成长期间观察到的代表性图像以及$ {v}_{\mathrm{a}\mathrm{f}\mathrm{v}} $对时间的依赖性, 颜色指代了其前沿的成长速度 (a) 112 nm囊泡; (b) 40 nm囊泡. 比例尺为20 μm

    Fig. 3.  Representative images observed during the patch growth and the dependence of $ {v}_{\mathrm{a}\mathrm{f}\mathrm{v}} $ on t, colors refer to the growth rate of patch boundary: (a) 112 nm vesicles; (b) 40 nm vesicles. The scale bar is 20 μm.

    图 4  (a) 通过TIRFM表征不同尺寸囊泡初始片层形成、片层数量达到峰值及完全成膜的时间; (b) 囊泡数量与随时间变化(统计区域为5812 µm2); (c) 通过QCM-D表征不同尺寸囊泡的吸附与成膜

    Fig. 4.  (a) The time spent for the initial patch formation, the maximum of patch number, and complete SLB formation using vesicles with different sizes, characterized by TIRFM; (b) The number of vesicles changes with time (The area of interest is 5812 µm2); (c) The vesicle-to-SLB transformation using vesicles with different sizes, characterized by QCM-D.

    图 5  扩散受限的囊泡吸附动力学 (a) 40 nm (上)和112 nm (下)的囊泡表面浓度随时间变化的TIRFM图像; (b) 吸附囊泡数量的实验统计与理论计算值. 比例尺为20 μm

    Fig. 5.  Diffusion-limited kinetics of vesicle adsorption: (a) TIRFM images of surface-attached vesicles, whose concentration changes with time. Vesicle diameter = 40 nm (upper) and 112 nm (lower); (b) Experimental statistics and theoretical estimation of the number of adsorbed vesicles. The scale bar is 20 μm.

    图 6  片层的半径随kt的变化 (a)选用的40和112 nm囊泡形成的片层; (b) 两种尺寸囊泡的片层成长的全局(实线)和局域(虚线)模型拟合. 比例尺为20 μm

    Fig. 6.  Radius of the patch changes as a function of kt: (a) Patches formed by 40 and 112 nm vesicles; (b) fit of the experimental data to the GGM and LGM using the vesicles with two sizes. The scale bar is 20 μm.

  • [1]

    Fu M F, Li J B 2018 Angew. Chem. Int. Ed. 57 11404Google Scholar

    [2]

    王克青, 李自若, 费进波, 王晨蕾, 崔 巍, 赵 洁, 李峻柏 2021 高分子学报 52 1024Google Scholar

    Wang K Q, Li Z R, Fei J B, Wang C L, Cui W, Zhao J, Li J B 2021 Acta Polym. Sin. 52 1024Google Scholar

    [3]

    Kumar R K, Li M, Olof S N, Patil A J, Mann S 2013 Small 9 357Google Scholar

    [4]

    Xu Y Q, Fei J B, Li G L, Yuan T T, Li J B 2017 ACS Nano 11 10175Google Scholar

    [5]

    Ding H M, Yin Y W, Ni S D, Sheng Y J, Ma Y Q 2021 Chin. Phys. Lett. 38 018701Google Scholar

    [6]

    Jackman J A, Zhdanov V P, Cho N J 2014 Langmuir 30 9494Google Scholar

    [7]

    Richter R, Mukhopadhyay A, Brisson A 2003 Biophys. J. 85 3035Google Scholar

    [8]

    Keller C A, Glasmastar K, Zhdanov V P, Kasemo B 2000 Phys. Rev. Lett. 84 5443Google Scholar

    [9]

    Reimhult E, Hook F, Kasemo B 2002 J. Chem. Phys. 117 7401Google Scholar

    [10]

    Reimhult E, Hook F, Kasemo B 2003 Langmuir 19 1681Google Scholar

    [11]

    Zhu T, Jiang Z Y, Ma Y Q, Hu Y 2016 ACS Appl. Mater. Interfaces 8 5857Google Scholar

    [12]

    Hope M J, Walker D C, Cullis P R 1983 Biochem. Biophys. Res. Commun. 110 15Google Scholar

    [13]

    Seantier B, Kasemo B 2009 Langmuir 25 5767Google Scholar

    [14]

    Seantier B, Breffa C, Felix O, Decher G 2005 J. Phys. Chem. B 109 21755Google Scholar

    [15]

    Boudard S, Seantier B, Breffa C, Decher G, Felix O 2006 Thin Solid Films 495 246Google Scholar

    [16]

    Keller C A, Kasemo B 1998 Biophys. J. 75 1397Google Scholar

    [17]

    Roiter Y, Ornatska M, Rammohan A R, Balakrishnan J, Heine D R, Minko S 2008 Nano Lett. 8 941Google Scholar

    [18]

    Richter R P, Berat R, Brisson A R 2006 Langmuir 22 3497Google Scholar

    [19]

    Anderson T H, Min Y J, Weirich K L, Zeng H B, Fygenson D, Israelachvili J N 2009 Langmuir 25 6997Google Scholar

    [20]

    Jackman J A, Kim M C, Zhdanov V P, Cho N J 2016 Phys. Chem. Chem. Phys. 18 3065Google Scholar

    [21]

    杨盼, 涂展春 2016 物理学报 65 188701Google Scholar

    Yang P, Tu Z C 2016 Acta Phys. Sin. 65 188701Google Scholar

    [22]

    Reviakine I, Rossetti F F, Morozov A N, Textor M 2005 J. Chem. Phys. 122 204711Google Scholar

    [23]

    Reviakine I, Gallego M, Johannsmann D, Tellechea E 2012 J. Chem. Phys. 136 084702Google Scholar

    [24]

    Hatzakis N S, Bhatia V K, Larsen J, Madsen K L, Bolinger P Y, Kunding A H, Castillo J, Gether U, Hedegard P, Stamou D 2009 Nat. Chem. Biol. 5 835Google Scholar

    [25]

    Rabe M, Tabaei S R, Zetterberg H, Zhdanov V P, Hook F 2015 Angew. Chem. Int. Ed. 54 1022Google Scholar

    [26]

    Andrecka J, Spillane K M, Ortega-Arroyo J, Kukura P 2013 ACS Nano 7 10662Google Scholar

    [27]

    Weirich K L, Israelachvili J N, Fygenson D K 2010 Biophys. J. 98 85Google Scholar

    [28]

    Mapar M, Yoemetsa S, Pace H, Zhdanov V P, Agnarsson B, Hook F 2018 J. Phys. Chem. Lett. 9 5143Google Scholar

    [29]

    Xia Q S, Zhu T, Jiang Z Y, Ding H M, Ma Y Q 2020 Nanoscale 12 7804Google Scholar

    [30]

    蒋中英, 张国梁, 马晶, 朱涛 2013 物理学报 62 018701Google Scholar

    Jiang Z Y, Zhang G L, Ma J, Zhu T 2013 Acta Phys. Sin. 62 018701Google Scholar

    [31]

    Patty P J, Frisken B J 2003 Biophys. J. 85 996Google Scholar

    [32]

    Reimhult E, Zach M, Hook F, Kasemo B 2006 Langmuir 22 3313Google Scholar

    [33]

    Nabika H, Fukasawa A, Murakoshi K 2008 Phys. Chem. Chem. Phys. 10 2243Google Scholar

  • [1] 武文斌, 彭士香, 张艾霖, 周海京, 马腾昊, 蒋耀湘, 李凯, 崔步坚, 郭之虞, 陈佳洱. 微型电子回旋共振离子源的全局模型. 物理学报, 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [2] 段华, 李剑锋, 张红东. 二维情况下两组分带电囊泡形变耦合相分离的理论模拟研究. 物理学报, 2018, 67(3): 038701. doi: 10.7498/aps.67.20171740
    [3] 盛洁, 王开宇, 马贝贝, 朱涛, 蒋中英. 多聚赖氨酸诱导的负电性磷脂巨囊泡形变. 物理学报, 2018, 67(15): 158701. doi: 10.7498/aps.67.20180456
    [4] 宁利中, 胡彪, 宁碧波, 田伟利. Poiseuille-Rayleigh-Bnard流动中对流斑图的分区和成长. 物理学报, 2016, 65(21): 214401. doi: 10.7498/aps.65.214401
    [5] 邓真渝, 章林溪. 流场环境下复杂囊泡的动力学行为. 物理学报, 2015, 64(16): 168201. doi: 10.7498/aps.64.168201
    [6] 夏彬凯, 李剑锋, 李卫华, 张红东, 邱枫. 基于离散变分原理的耗散动力学模拟方法:模拟三维囊泡形状. 物理学报, 2013, 62(24): 248701. doi: 10.7498/aps.62.248701
    [7] 屈江涛, 张鹤鸣, 秦珊珊, 徐小波, 王晓艳, 胡辉勇. 小尺寸应变Si nMOSFET物理模型的研究. 物理学报, 2011, 60(9): 098501. doi: 10.7498/aps.60.098501
    [8] 郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋. 含遮蔽抛射沉积模型的有限尺寸效应. 物理学报, 2011, 60(3): 038102. doi: 10.7498/aps.60.038102
    [9] 王裴, 邵建立, 秦承森. 加载波前沿宽度对铝表面微射流的影响. 物理学报, 2009, 58(2): 1064-1070. doi: 10.7498/aps.58.1064
    [10] 刘艳松, 陈 铠, 乔 峰, 黄信凡, 韩培高, 钱 波, 马忠元, 李 伟, 徐 骏, 陈坤基. 尺寸可控的纳米硅的生长模型和实验验证. 物理学报, 2006, 55(10): 5403-5408. doi: 10.7498/aps.55.5403
    [11] 陈卫兵, 徐静平, 邹 晓, 李艳萍, 许胜国, 胡致富. 小尺寸MOSFET隧穿电流解析模型. 物理学报, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
    [12] 李剑锋, 张红东, 邱 枫, 杨玉良. 模拟囊泡形变动力学的新方法离散空间变分法. 物理学报, 2005, 54(9): 4000-4005. doi: 10.7498/aps.54.4000
    [13] 李国栋, 黄永念. 水平流作用下行波对流的成长及周期性重复. 物理学报, 2004, 53(11): 3800-3805. doi: 10.7498/aps.53.3800
    [14] 王 龙. 等离子体中的颗粒成长模型. 物理学报, 1999, 48(6): 1072-1077. doi: 10.7498/aps.48.1072
    [15] 邹南之, 龚昌德. 薄膜尺寸效应对表面临界行为的影响. 物理学报, 1989, 38(5): 807-811. doi: 10.7498/aps.38.807
    [16] 邹南之, 龚昌德. n分量φ4模型薄膜的尺寸效应. 物理学报, 1989, 38(2): 218-227. doi: 10.7498/aps.38.218
    [17] 马玉英, 丁大成. 带压电片的阶梯形变幅杆的几何尺寸对振动特性的影响. 物理学报, 1987, 36(2): 208-216. doi: 10.7498/aps.36.208
    [18] 汪克林, 吴自玉, 汪懋骅. K-S模型中孤子解及尺寸效应. 物理学报, 1986, 35(6): 824-828. doi: 10.7498/aps.35.824
    [19] 范天佑, 梁振亚. 晶界裂纹成长的一种可能的机构和蠕变断裂时的估计. 物理学报, 1978, 27(3): 269-275. doi: 10.7498/aps.27.269
    [20] 谢党. 测定半导体扩散层表面浓度、p-n结深度及扩散系数的霍耳效应法. 物理学报, 1966, 22(8): 877-885. doi: 10.7498/aps.22.877
计量
  • 文章访问数:  3148
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-04-03
  • 上网日期:  2022-08-02
  • 刊出日期:  2022-08-20

/

返回文章
返回