搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导转变边沿探测器梁架尺寸估算方法

高冠华 徐郁 廖国福 卢方军

引用本文:
Citation:

超导转变边沿探测器梁架尺寸估算方法

高冠华, 徐郁, 廖国福, 卢方军

Estimation method for beam size of superconducting transition edge detector

Gao Guan-Hua, Xu Yu, Liao Guo-Fu, Lu Fang-Jun
PDF
HTML
导出引用
  • 由于具有极低的噪声等效功率, 超导转变边沿探测器(transition edge sensor, TES)近年来被广泛地应用于国际各个宇宙微波背景辐射(cosmic microwave background, CMB)极化观测项目中. 为保证探测器工作在性能最佳区间, 探测器饱和功率值需根据观测地点气象条件及观测波段进行调整, 而探测器梁架结构尺寸直接决定了饱和功率大小. 因工艺差异等原因, 不同加工方案下得到的梁架尺寸参数往往不能直接用于横向比对. 在之前的观测项目中, 一般先加工出一系列不同尺寸器件并逐一测量, 然后通过拟合实测饱和功率与梁架尺寸的关系推测实际需要尺寸. 为了与目标值匹配, 往往需要多次加工迭代过程. 本文使用边界限制的声子输运模型, 成功整合了之前观测项目中的器件参数, 对TES梁架尺寸进行预估. 并按照预估值首次在国内制备了用于探测CMB极化信号的TES探测器芯片. 测量表明参数与目标值相差较小. 该方法可以很好地对同类TES探测器尺寸进行估计, 对之后TES探测器的设计有指导性意义.
    Owing to its extremely low noise equivalent power, superconducting transition edge detectors have been widely used in various international cosmic microwave background polarization observation projects in recent years. In order to ensure that the detector works in the best performance range, the saturation power value of the detector needs to be adjusted according to the meteorological conditions of the observation site and the observation band, and the structural size of the detector beam directly determines the saturation power. Owing to process differences and other reasons, the beam sizes obtained under different processing schemes often cannot be directly used for horizontal comparison. In previous observation projects, a series of devices with different sizes were generally processed and measured one by one, and then the actual required size was inferred by fitting the relationship between the measured saturated power and the beam size. In order to match the target value, multiple machining iterations are often required. In this work, the boundary-restricted phonon transport model is used to successfully integrate the device parameters from previous observation projects to estimate the size of the transition edge sensor (TES) beam. According to the estimated value, the TES detector chips for detecting cosmic microwave background polarization signal are fabricated for the first time in China. Measurements show that its parameters deviate slightly from the target value. This method can well estimate the sizes of similar TES detectors, and thus has guiding significance for designing TES detectors in the future.
      通信作者: 卢方军, lufj@ihep.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11653004, 11905235)资助的课题
      Corresponding author: Lu Fang-Jun, lufj@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11653004, 11905235)
    [1]

    Mather J C, Fixsen D J, Shafer R A, Mosier C, Wilkinson D T 1999 Astrophys. J. 512 511Google Scholar

    [2]

    Hinshaw G, Spergel D N, Verde L, Hill R S, Meyer S S, Barnes C, Bennett C L, Halpern M, Jarosik N, Kogut A 2003 Astrophys. J. Suppl. Ser. 148 135Google Scholar

    [3]

    Ade P A R, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday A J, Barreiro R B, Bartlett J G, Battaner E, Benabed K, Benoît A, Benoit-Lévy A, Bernard J P, Bersanelli M, Bertincourt B, Bethermin M, Bielewicz P 2014 A&A 571 16

    [4]

    Abazajian K, Addison G, Adshead P, Ahmed Z, Allen S W, Alonso D, Alvarez M, Amin M A, Anderson A, Arnold K S, Baccigalupi C, Bailey K, Barkats D, Barron D, Barry P S, Bartlett J G, Thakur R B, Battaglia N, Baxter E, Bean R 2019 arXiv: 1908.01062 [astro-ph]

    [5]

    Hu W, White M 1997 New Astron. 2 323Google Scholar

    [6]

    Ade P A R, Aghanim N, Alves M I R, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Aussel H, Baccigalupi C, Banday A J, Barreiro R B, Barrena R, Bartelmann M, Bartlett J G, Bartolo N, Basak S, Battaner E, Battye R, Benabed K 2014 A&A 571 A1

    [7]

    Ade P A R, Ahmed Z, Amiri M, Barkats D, Basu T R, Bischoff C A, Beck D, Bock J J, Boenish H, Bullock E, Buza V, Cheshire IV J R, Connors J, Cornelison J, Crumrine M, Cukierman A, Denison E V, Dierickx M, Duband L, Eiben M 2022 Astrophys. J. 927 77Google Scholar

    [8]

    Enss C 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp2–5

    [9]

    张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜 2014 物理学报 63 200303Google Scholar

    Zhang Q Y, Dong W H, He G F, Li T F, Liu J S, Chen W 2014 Acta Phys. Sin. 63 200303Google Scholar

    [10]

    Gao H, Liu C, Li Z, Liu Y, Li Y, Li S, Li H, Gao G, Lu F, Zhang X 2017 Radiat. Detect. Technol. Methods 1 12Google Scholar

    [11]

    Kuo C L, Bock J J, Bonetti J A, Brevik J, Zmuidzinas J 2008 Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV SPIE Marseille, France, August 18, 2008 p415

    [12]

    Ahmed Z, Amiri M, Benton S J, Bock J J, Bowensrubin R, Buder I, Bullock E, Connors J, Filippini J P, Grayson J A, Halpern M, Hilton G C, Hristov V V, Hui H, Irwin K D, Kang J, Karkare K S, Karpel E, Kovac J M, Kuo C L 2014 Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII SPIE Montréal, Quebec, Canada, August 19, 2014 p540

    [13]

    Kermish Z D, Ade P, Anthony A, Arnold K, Zahn O 2012 Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI SPIE Amsterdam, Netherlands, September 24, 2012 p84521C

    [14]

    Gualtieri R, Filippini J P, Ade P A R, Amiri M, Benton S J, Bergman A S, Bihary R, Bock J J, Bond J R, Bryan S A, Chiang H C, Contaldi C R, Doré O, Duivenvoorden A J, Eriksen H K, Farhang M, Fissel L M, Fraisse A A, Freese K, Galloway M 2018 J. Low Temp. Phys. 193 1112Google Scholar

    [15]

    Thornton R J, Ade P A R, Aiola S, Angilè F E, Amiri M, Beall J A, Becker D T, Cho H M, Choi S K, Corlies P, Coughlin K P, Datta R, Devlin M J, Dicker S R, Dünner R, Fowler J W, Fox A E, Gallardo P A, Gao J, Grace E 2016 Astrophys. J. Suppl. Ser. 227 21Google Scholar

    [16]

    Henderson S W, Allison R, Austermann J, Baildon T, Battaglia N, Beall J A, Becker D, De Bernardis F, Bond J R, Calabrese E, Choi S K, Coughlin K P, Crowley K T, Datta R, Devlin M J, Duff S M, Dunkley J, Dünner R, Engelen A V, Gallardo P A 2016 J. Low Temp. Phys. 184 772Google Scholar

    [17]

    Koopman B J, Cothard N F, Choi S K, Crowley K T, Duff S M, Henderson S W, Ho S P, Hubmayr J, Gallardo P A, Nati F, Niemack M D, Simon S M, Staggs S T, Stevens J R, Vavagiakis E M, Wollack E J 2018 J. Low Temp. Phys. 193 1103Google Scholar

    [18]

    Ding J J, Ade P A R, Anderson A J, Avva J, Ahmed Z, Arnold K, Austermann J E, Bender A N, Benson B A, Bleem L E, Byrum K, Carlstrom J E, Carter F W, Chang C L, Cho H M, Cliche J F, Cukierman A, Czaplewski D, Divan R, Haan T D 2017 IEEE Trans. Appl. Supercond. 27 1

    [19]

    Mather J C 1982 Appl. Opt. 21 1125Google Scholar

    [20]

    Ullom J N, Bennett D A 2015 Supercond. Sci. Technol. 28 084003Google Scholar

    [21]

    Suen J Y, Fang M T, Lubin P M 2014 EEE Trans. Terahertz Sci. Technol. 4 86Google Scholar

    [22]

    Feshchenko A V, Saira O P, Peltonen J T, Pekola J P 2017 Sci. Rep. 7 1Google Scholar

    [23]

    Wang G, Yefremenko V, Novosad V, Datesman A, Pearson J, Divan R, Chang C L, Bleem L, Crites A T, Mehl J, Natoli T, McMahon J, Sayre J, Ruhl J, Meyer S S, Carlstrom J E 2010 IEEE Trans. Appl. Supercond. 21 232

    [24]

    Watson S K, Pohl R O 2003 Phys. Rev. B 68 104203Google Scholar

    [25]

    Bruls R J, Hintzen H T, De With G, Metselaar R 2001 J. Eur. Ceram. Soc. 21 263Google Scholar

    [26]

    Stephens R B 1973 Phys. Rev. B 8 2896Google Scholar

    [27]

    华钰超, 曹炳阳 2015 物理学报 64 146501Google Scholar

    Hua Y C, Cao B Y 2015 Acta Phys. Sin. 64 146501Google Scholar

    [28]

    Sultan R, Avery A D, Underwood J M, Mason S J, Bassett D, Zink B L 2013 Phys. Rev. B 87 214305Google Scholar

    [29]

    Johnson B R, Flanigan D, Abitbol M H, Ade P A R, Bryan S, Cho H M, Datta R, Day P, Doyle S, Irwin K, Jones G, Li D, Mauskopf P, McCarrick H, McMahon J, Miller A, Pisano G, Song Y, Surdi H, Tucker C 2018 J. Low Temp. Phys. 193 103Google Scholar

  • 图 1  (a)超导薄膜理想R-T曲线; (b) AlMn材料实测R-T曲线

    Fig. 1.  (a) Ideal R-T curve of superconducting thin films; (b) measured R-T curve of AlMn alloy

    图 2  TES探测器框架示意图

    Fig. 2.  Schematic diagram of TES detector system

    图 3  (a) TES探测器立体结构图; (b)梁架结构横截面示意图

    Fig. 3.  (a) Three dimensional (3D) structure of TES detector; (b) cross section of beam structure

    图 4  不同梁架宽度下声子有效平均自由程与材料表面漫反射概率的关系

    Fig. 4.  Relationship between the effective mean free path of phonons and the probability of diffuse reflection on the material surface under different beam widths

    图 5  TES探测器加工过程横截面示意图

    Fig. 5.  Schematic diagram of cross-section of TES detector fabricating process

    图 6  (a) TES探测器芯片整体实物照片; (b) TES探测器局部放大照片

    Fig. 6.  (a) Overall physical photo of TES detector chip; (b) partially enlarged photo of TES detector

    图 7  (a)绝热去磁制冷机照片; (b)装载TES的样品托的照片; (c)样品托在制冷机内安装状态的照片

    Fig. 7.  (a) Adiabatic demagnetization refrigerator; (b) sample holder loaded with TES; (c) sample holder installed in the refrigerator

    图 8  不同尺寸TES探测器发热功率$ P_{\rm TES} $随热沉温度变化曲线 (a)样品梁架长度为1100 ${\text{μm}}$; (b)样品梁架长度为900 ${\text{μm}} $; (c)样品梁架长度为700 ${\text{μm}} $.

    Fig. 8.  Curves of heating power as a function of heat sink temperature with different beam sizes: (a) The length of beams is 1100 μm; (b) the length of beams is 900 μm; (c) the length of beams is 700 μm

    图 9  不同尺寸下TES探测器饱和功率$ P_{\rm \text{饱和}} $随热沉温度变化曲线 (a) 样品梁架长度为1100 $ {\text{μm}}$; (b)样品梁架长度为900 ${\text{μm}}$; (c)样品梁架长度为700 $ {\text{μm}}$

    Fig. 9.  Curve of saturation power of TES detector with heat sink temperature under different sizes: (a) The length of beams is 1100 μm; (b) the length of beams is 900 μm; (c) the length of beams is 700 μm

    图 10  (a)不同尺寸TES探测器实际饱和功率与预测饱和功率之比随热沉温度的变化; (b)不同尺寸TES探测器实际饱和功率与修正后预测饱和功率之比随热沉温度的变化

    Fig. 10.  (a) Ratio of actual saturation power to predicted saturation power for TES detectors of different sizes as a function of heat sink temperature; (b) the ratio of the actual saturation power to the corrected predicted saturation power of TES detectors with different sizes as a function of heat sink temperature

  • [1]

    Mather J C, Fixsen D J, Shafer R A, Mosier C, Wilkinson D T 1999 Astrophys. J. 512 511Google Scholar

    [2]

    Hinshaw G, Spergel D N, Verde L, Hill R S, Meyer S S, Barnes C, Bennett C L, Halpern M, Jarosik N, Kogut A 2003 Astrophys. J. Suppl. Ser. 148 135Google Scholar

    [3]

    Ade P A R, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday A J, Barreiro R B, Bartlett J G, Battaner E, Benabed K, Benoît A, Benoit-Lévy A, Bernard J P, Bersanelli M, Bertincourt B, Bethermin M, Bielewicz P 2014 A&A 571 16

    [4]

    Abazajian K, Addison G, Adshead P, Ahmed Z, Allen S W, Alonso D, Alvarez M, Amin M A, Anderson A, Arnold K S, Baccigalupi C, Bailey K, Barkats D, Barron D, Barry P S, Bartlett J G, Thakur R B, Battaglia N, Baxter E, Bean R 2019 arXiv: 1908.01062 [astro-ph]

    [5]

    Hu W, White M 1997 New Astron. 2 323Google Scholar

    [6]

    Ade P A R, Aghanim N, Alves M I R, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Aussel H, Baccigalupi C, Banday A J, Barreiro R B, Barrena R, Bartelmann M, Bartlett J G, Bartolo N, Basak S, Battaner E, Battye R, Benabed K 2014 A&A 571 A1

    [7]

    Ade P A R, Ahmed Z, Amiri M, Barkats D, Basu T R, Bischoff C A, Beck D, Bock J J, Boenish H, Bullock E, Buza V, Cheshire IV J R, Connors J, Cornelison J, Crumrine M, Cukierman A, Denison E V, Dierickx M, Duband L, Eiben M 2022 Astrophys. J. 927 77Google Scholar

    [8]

    Enss C 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp2–5

    [9]

    张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜 2014 物理学报 63 200303Google Scholar

    Zhang Q Y, Dong W H, He G F, Li T F, Liu J S, Chen W 2014 Acta Phys. Sin. 63 200303Google Scholar

    [10]

    Gao H, Liu C, Li Z, Liu Y, Li Y, Li S, Li H, Gao G, Lu F, Zhang X 2017 Radiat. Detect. Technol. Methods 1 12Google Scholar

    [11]

    Kuo C L, Bock J J, Bonetti J A, Brevik J, Zmuidzinas J 2008 Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV SPIE Marseille, France, August 18, 2008 p415

    [12]

    Ahmed Z, Amiri M, Benton S J, Bock J J, Bowensrubin R, Buder I, Bullock E, Connors J, Filippini J P, Grayson J A, Halpern M, Hilton G C, Hristov V V, Hui H, Irwin K D, Kang J, Karkare K S, Karpel E, Kovac J M, Kuo C L 2014 Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII SPIE Montréal, Quebec, Canada, August 19, 2014 p540

    [13]

    Kermish Z D, Ade P, Anthony A, Arnold K, Zahn O 2012 Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI SPIE Amsterdam, Netherlands, September 24, 2012 p84521C

    [14]

    Gualtieri R, Filippini J P, Ade P A R, Amiri M, Benton S J, Bergman A S, Bihary R, Bock J J, Bond J R, Bryan S A, Chiang H C, Contaldi C R, Doré O, Duivenvoorden A J, Eriksen H K, Farhang M, Fissel L M, Fraisse A A, Freese K, Galloway M 2018 J. Low Temp. Phys. 193 1112Google Scholar

    [15]

    Thornton R J, Ade P A R, Aiola S, Angilè F E, Amiri M, Beall J A, Becker D T, Cho H M, Choi S K, Corlies P, Coughlin K P, Datta R, Devlin M J, Dicker S R, Dünner R, Fowler J W, Fox A E, Gallardo P A, Gao J, Grace E 2016 Astrophys. J. Suppl. Ser. 227 21Google Scholar

    [16]

    Henderson S W, Allison R, Austermann J, Baildon T, Battaglia N, Beall J A, Becker D, De Bernardis F, Bond J R, Calabrese E, Choi S K, Coughlin K P, Crowley K T, Datta R, Devlin M J, Duff S M, Dunkley J, Dünner R, Engelen A V, Gallardo P A 2016 J. Low Temp. Phys. 184 772Google Scholar

    [17]

    Koopman B J, Cothard N F, Choi S K, Crowley K T, Duff S M, Henderson S W, Ho S P, Hubmayr J, Gallardo P A, Nati F, Niemack M D, Simon S M, Staggs S T, Stevens J R, Vavagiakis E M, Wollack E J 2018 J. Low Temp. Phys. 193 1103Google Scholar

    [18]

    Ding J J, Ade P A R, Anderson A J, Avva J, Ahmed Z, Arnold K, Austermann J E, Bender A N, Benson B A, Bleem L E, Byrum K, Carlstrom J E, Carter F W, Chang C L, Cho H M, Cliche J F, Cukierman A, Czaplewski D, Divan R, Haan T D 2017 IEEE Trans. Appl. Supercond. 27 1

    [19]

    Mather J C 1982 Appl. Opt. 21 1125Google Scholar

    [20]

    Ullom J N, Bennett D A 2015 Supercond. Sci. Technol. 28 084003Google Scholar

    [21]

    Suen J Y, Fang M T, Lubin P M 2014 EEE Trans. Terahertz Sci. Technol. 4 86Google Scholar

    [22]

    Feshchenko A V, Saira O P, Peltonen J T, Pekola J P 2017 Sci. Rep. 7 1Google Scholar

    [23]

    Wang G, Yefremenko V, Novosad V, Datesman A, Pearson J, Divan R, Chang C L, Bleem L, Crites A T, Mehl J, Natoli T, McMahon J, Sayre J, Ruhl J, Meyer S S, Carlstrom J E 2010 IEEE Trans. Appl. Supercond. 21 232

    [24]

    Watson S K, Pohl R O 2003 Phys. Rev. B 68 104203Google Scholar

    [25]

    Bruls R J, Hintzen H T, De With G, Metselaar R 2001 J. Eur. Ceram. Soc. 21 263Google Scholar

    [26]

    Stephens R B 1973 Phys. Rev. B 8 2896Google Scholar

    [27]

    华钰超, 曹炳阳 2015 物理学报 64 146501Google Scholar

    Hua Y C, Cao B Y 2015 Acta Phys. Sin. 64 146501Google Scholar

    [28]

    Sultan R, Avery A D, Underwood J M, Mason S J, Bassett D, Zink B L 2013 Phys. Rev. B 87 214305Google Scholar

    [29]

    Johnson B R, Flanigan D, Abitbol M H, Ade P A R, Bryan S, Cho H M, Datta R, Day P, Doyle S, Irwin K, Jones G, Li D, Mauskopf P, McCarrick H, McMahon J, Miller A, Pisano G, Song Y, Surdi H, Tucker C 2018 J. Low Temp. Phys. 193 103Google Scholar

  • [1] 王学智, 汤雨婷, 车军伟, 令狐佳珺, 侯兆阳. 二元氧化物Yb3TaO7的非晶状热传导机理. 物理学报, 2023, 72(5): 056101. doi: 10.7498/aps.72.20221581
    [2] 王权杰, 邓宇戈, 王仁宗, 刘向军. 界面工程调控GaN基异质结界面热传导性能研究. 物理学报, 2023, 72(22): 226301. doi: 10.7498/aps.72.20230791
    [3] 任国梁, 申开波, 刘永佳, 刘英光. 类石墨烯氮化碳结构(C3N)热传导机理研究. 物理学报, 2023, 72(1): 013102. doi: 10.7498/aps.72.20221441
    [4] 潘东楷, 宗志成, 杨诺. 纳米尺度热物理中的声子弱耦合问题. 物理学报, 2022, 71(8): 086302. doi: 10.7498/aps.71.20220036
    [5] 卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳. 多通道石墨纳米带中弹性声学声子输运和热导特性. 物理学报, 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [6] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [7] 张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜. 超导转变边沿单光子探测器原理与研究进展. 物理学报, 2014, 63(20): 200303. doi: 10.7498/aps.63.200303
    [8] 叶伏秋, 李科敏, 彭小芳. 低温下多通道量子结构中的弹性声子输运和热导. 物理学报, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [9] 彭小芳, 王新军, 龚志强, 陈丽群. 量子点调制的一维量子波导中声学声子输运和热导. 物理学报, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [10] 李斌, 邢钟文, 刘楣. LiFeAs超导体中磁性与声子软化. 物理学报, 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [11] 金蔚, 惠宁菊, 屈世显. 螺旋纳米带中的声子输运. 物理学报, 2011, 60(1): 016301. doi: 10.7498/aps.60.016301
    [12] 雷中华, 兰明建, 汪先友, 李建杰. 遗迹引力波对宇宙微波背景辐射极化的影响. 物理学报, 2008, 57(11): 7408-7414. doi: 10.7498/aps.57.7408
    [13] 徐刚毅, 李爱珍. 量子级联激光器有源核中界面声子的特性研究. 物理学报, 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [14] 贺梦冬, 龚志强. 多层异质结构中的声学声子输运. 物理学报, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [15] 唐黎明, 王 艳, 王 丹, 王玲玲. 边界条件对介电量子波导中声子输运性质的影响. 物理学报, 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [16] 范希庆, 刘砚章, 王淮生, 刘福绥. 多声子强耦合超导理论. 物理学报, 1989, 38(1): 53-59. doi: 10.7498/aps.38.53
    [17] 翁征宇, 吴杭生. 归一有效声子谱谱形对超导临界温度Tc的影响. 物理学报, 1988, 37(2): 239-247. doi: 10.7498/aps.37.239
    [18] 雷啸霖, 丁秦生. 非线性电子输运中声学和光学声子的联合散射效应. 物理学报, 1985, 34(8): 983-991. doi: 10.7498/aps.34.983
    [19] 卫崇德, 赵士平, 薛立新. 声子注入下超导锡膜的非均匀态. 物理学报, 1985, 34(10): 1368-1372. doi: 10.7498/aps.34.1368
    [20] 李宏成. 有效声子谱对超导体临界温度的影响. 物理学报, 1979, 28(1): 104-116. doi: 10.7498/aps.28.104
计量
  • 文章访问数:  3906
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-25
  • 修回日期:  2022-03-18
  • 上网日期:  2022-07-19
  • 刊出日期:  2022-08-05

/

返回文章
返回