搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电倍增管输出电子流脉冲堆叠对光子计数法测距的影响

向雨琰 李松 马跃

引用本文:
Citation:

光电倍增管输出电子流脉冲堆叠对光子计数法测距的影响

向雨琰, 李松, 马跃

Effect of pile-up of electron flow pulse from photomultiplier tube on ranging by photon counting

Xiang Yu-Yan, Li Song, Ma Yue
PDF
HTML
导出引用
  • 光电倍增管(photomultiplier tubes, PMT)具有光子级别的灵敏度、低暗计数、低后脉冲概率, 被广泛应用于可见光波段的光子计数雷达中. PMT没有光子探测死区时间, 每响应一个光子就会输出一个电子流脉冲, 这些电子流脉冲有可能堆成规模更大的脉冲, 使用阈值鉴别法鉴别光子事件时, 堆叠的脉冲会引入额外的脉冲行走误差. 考虑到脉冲堆叠的影响, 建立了新的PMT光子探测理论模型, 并通过蒙特卡罗仿真, 得到了基于PMT的光子计数测距法的行走误差、测距精度和回波激光脉宽, PMT输出电子流脉宽以及光子事件鉴别阈值之间的关系. 搭建了基于PMT的激光雷达系统, 通过与GM-APD的对比实验证明了脉冲堆叠对PMT光子计数法测距存在不可忽略的影响. 考虑到脉冲堆叠的PMT光子探测模型能够指导基于PMT的光子计数雷达的设计, 提高测距系统的测距精度和准度.
    Photomultiplier tube (PMT) features single photon level sensitivity, low dark count, and low afterpulse probability, and are widely used in photon-counting lidar in the visible spectrum. The PMT has no photon detection dead time, for every photon it responds to, it can output an electron flow pulse, these pulses of electron flow are likely to pile up into larger pulses. When using threshold identification method to identify photon-events, the stacked pulse will introduce additional pulse walking error, directly affecting the ranging precision of photon-counting ranging method in the practical application of laser ranging. Considering the influence of pulse pile-up, a new theoretical model of PMT photon detection is established to describe the influence of pulse pile-up on the detection probability of photon-events by analyzing the relationship between the detection time of photon and the identification time of the PMT final output photon-events. Through Monte Carlo simulation, the relationship among the ranging walking error, ranging accuracy, incident laser pulse width, PMT output electron flow pulse width and photon-events identification threshold is obtained. In order to verify the correctness of the theory, a PMT-based photon-counting lidar system is built. The comparative experiment with GM-APD proves that the influence of pulse pile-up on PMT photon-counting ranging method cannot be ignored, and that the experimental results are in good agreement with results from the theoretical model. The PMT photon detection model based on pulse pile-up can guide the design of PMT photon-counting radar and improve the ranging accuracy and precision of the ranging system.
      通信作者: 李松, ls@whu.edu.cn
      Corresponding author: Li Song, ls@whu.edu.cn
    [1]

    Degnan J 2016 Remote Sens. 8 958Google Scholar

    [2]

    Massa J S, Wallace A M, Buller G S, Fancey S J, Walker A C 1997 Opt. Lett. 22 543Google Scholar

    [3]

    Kirmani A, Venkatraman D, Shin D, Colaco A, Wong F N C, Shapiro J H, Goyal V K 2014 Science 343 58Google Scholar

    [4]

    Maccarone A, McCarthy A, Ren X, Warburton R E, Wallace A M, Moffat J, Petillot Y, Buller G S 2015 Opt. Express 23 33911Google Scholar

    [5]

    Li Z, Lai J, Wang C, Yan W, Li Z 2017 Appl. Opt. 56 6680Google Scholar

    [6]

    Akiba M, Inagaki K, Tsujino K 2012 Opt. Express 20 2779Google Scholar

    [7]

    Ravil A 2018 Appl. Opt. 57 3679Google Scholar

    [8]

    Kitsmiller V J, Campbell C, O'Sullivan T D 2020 Biomed. Opt. Express 11 5373Google Scholar

    [9]

    Jones R, Oliver C, Pike E R 1971 Appl. Opt. 10 1673Google Scholar

    [10]

    McGill M, Markus T, Scott V. S, Neumann T 2013 J. Atmos. Oceanic Technol. 30 345Google Scholar

    [11]

    Abdalati W, Zwally H. J, Bindschadler R, Csatho B, Farrell S L, Fricker H A, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C, 2010 Proc. IEEE 98 735Google Scholar

    [12]

    Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum C, B. Schutz E, Smith B, Yang Y, Zwally J 2017 Remote Sens. Environ. 190 260Google Scholar

    [13]

    Helstrom C W 1984 J. Appl. Phys. 55 2786Google Scholar

    [14]

    Ingle J D, Crouch S R 1972 Anal. Chem. 44 777Google Scholar

    [15]

    谢庚承, 叶一东, 李建民, 袁学文 2018 中国激光 45 260Google Scholar

    Xie G C, Ye Y D, Li J M, Yuan X W 2018 Chinese Journal of Lasers 45 260Google Scholar

    [16]

    Donovan D P, Whiteway J A, Carswell I A 1993 Appl. Opt. 32 6742Google Scholar

    [17]

    Chen Z D, Li X D, Li X H, Ye G C, Zhou Z G 2019 Opt. Commun. 434 7Google Scholar

    [18]

    Zhang Z Y, Li S, Ma Y, Zhang W H, Zhao P F, Xiang Y Y 2020 Optics Express. 28 13586Google Scholar

    [19]

    Gatt P, Johnson S, Nichols T 2009 Appl. Opt. 48 3261Google Scholar

    [20]

    Li S, Zhang Z, Ma Y, Zeng H M, Zhao P F, Zhang W H 2019 Opt. Express 27 A861Google Scholar

    [21]

    White Book of Photomultiplier Tubes, Hamamatsu Photonics http://share.hamamatsu.com.cn/57f4441b72a94d8a91500e56afad0b7b/download.html [2022-07-18]

    [22]

    黄科, 李松, 马跃, 田昕, 周辉, 张智宇 2018 物理学报 67 064205Google Scholar

    Huang K, Li S, Ma Y, Tian X, Zhou H, Zhang Z Y 2018 Acta Phys. Sin. 67 064205Google Scholar

  • 图 1  PMT输出电子流脉冲叠加对光子事件鉴别的影响

    Fig. 1.  Influence of PMT output electron flow pulse pile-up on photon-events discrimination.

    图 2  (a) 回波光子数为1时, PMT光子事件鉴别时间与电子流脉冲峰值时间存在系统误差$ \gamma $; (b)蓝色曲线和橙色曲线分别为PMT响应$ {\mu _1} $, $ {\mu _2} $时刻到达的光子输出的电子流脉冲, 黄色曲线为两个脉冲的叠加, $ {w_{\left( {{\mu _1}, {\mu _2}} \right)}} $$ {\mu _1} $, $ {\mu _2} $时刻的电子流脉冲叠加产生的脉冲行走误差

    Fig. 2.  (a) When the number of incident photons is 1, there is a systematic error $ \gamma $ between the PMT photon-events identification time and the peak time of electron flow pulse; (b) the blue curve and the orange curve are the electron flow pulses output responsed by PMT for the photon arriving at time $ {\mu _1} $ and $ {\mu _2} $ respectively. The yellow curve is the pile-up of two pulses, and $ {w_{\left( {{\mu _1}, {\mu _2}} \right)}} $ is the pulse walk error generated by the pile-up of the tow electron flow pulses at time $ {\mu _1} $ and $ {\mu _2} $.

    图 3  PMT单光子探测模型与传统单光子探测模型概率分布的区别 (a) Ns = 0.5; (b) Ns = 2; (c) Ns = 4; (d) Ns = 10

    Fig. 3.  Difference of probability distribution between PMT single-photon detection model and traditional single-photon detection model: (a) Ns = 0.5; (b) Ns = 2; (c) Ns = 4; (d) Ns = 10.

    图 4  PMT单光子探测模型和传统单光子探测模型关于测距行走误差Ra和测距精度 Rp的比较

    Fig. 4.  Comparison between PMT single-photon detection model and traditional single-photon detection model on ranging walking error Ra and ranging accuracy Rp.

    图 5  不同电子流高斯脉宽$ {\delta _{\text{p}}} $条件下PMT探测模型测距行走误差Ra和测距精度 Rp与入射信号光子数的关系

    Fig. 5.  Relationship of ranging walk error Ra and ranging accuracy Rp of PMT detection model to incident signal photon number under different Gaussian pulse width $ {\delta _{\text{p}}} $ of electron flow.

    图 6  PMT探测模型测距行走误差Ra和测距精度 Rp与光子事件鉴别阈值$ {T_{\text{h}}} $的关系

    Fig. 6.  Relationship of the ranging walking error Ra and ranging accuracy Rp of the PMT detection model to the identification threshold of photon-events

    图 7  光子计数雷达系统示意图

    Fig. 7.  Schematic of the photon-counting radar system.

    图 8  (a)无射频放大器光子事件鉴别电路; (b)带射频放大器光子事件鉴别电路

    Fig. 8.  (a) Photon-events identification circuit without RF amplifier; (b) photon-events identification circuit with RF amplifier.

    图 9  (a) PMT输出脉冲归一化幅值与平均入射信号光子数的关系; (b) APD测得的回波信号脉冲

    Fig. 9.  (a) Relationship between PMT output pulse normalized amplitude and average number of incident signal photon; (b) incident signal pulse measured by APD.

    图 10  (a)带RF放大器的PMT探测概率分布随入射信号光子数的变化; (b)不带RF放大器的PMT探测概率分布随入射信号光子数的变化; (c) GM-APD探测概率分布随入射信号光子数的变化

    Fig. 10.  (a) Experimental results of PMT detection probability distribution with RF amplifier varying with the number of incident signal photons; (b) experimental results of PMT detection probability distribution without RF amplifier varying with the number of incident signal photons; (c) experimental results of GM-APD detection probability distribution varying with the number of incident signal photons.

    图 11  (a)带RF放大器的PMT探测概率分布随入射信号光子数的变化仿真实验结果; (b)不带RF放大器的PMT探测概率分布随入射信号光子数的变化仿真实验结果

    Fig. 11.  (a) Simulation results of PMT detection probability distribution with RF amplifier varying with photon number of incident signal; (b) simulation results of PMT detection probability distribution without RF amplifier varying with photon number of incident signal.

    图 12  三种探测器的测距行走误差的仿真模型和实验数据对比, 橙色实线为GM-APD的Ra理论探测曲线, 橙色“+”为GM-APD的Ra实验数据点; 蓝色实线为不带放大器PMT的Ra理论探测曲线, 蓝色“o”为不带RF放大器的PMT的 Ra实验数据点; 黄色实线为带RF放大器PMT的Ra理论探测曲线, 黄色“x”为带RF放大器PMT的Ra实验数据点

    Fig. 12.  Comparison of the simulation model and experimental data of the ranging walking error of the three detectors. The solid orange line is the Ra theoretial curve of GM-APD, and the orange “+” is the Ra experimental data point of GM-APD. The blue solid line is the Ra theoretial curve of PMT without RF amplifier, and the blue “o” is the Ra experimental data point of PMT without RF amplifier. The solid yellow line is Ra theoretial curve of PMT with RF amplifier, and the yellow “x” is Ra experimental data point of PMT with RF amplifier.

    表 1  PMT和GM-APD模块性能参数

    Table 1.  Parameters of PMT and GM-APD module

    探测器PMTGM-APD
    增益106—107105—106
    探测效率(640 nm)/%1820
    暗计数(counts)<30<500
    探测死区时间/ns2050
    时间抖动/ps<200<500
    下载: 导出CSV
  • [1]

    Degnan J 2016 Remote Sens. 8 958Google Scholar

    [2]

    Massa J S, Wallace A M, Buller G S, Fancey S J, Walker A C 1997 Opt. Lett. 22 543Google Scholar

    [3]

    Kirmani A, Venkatraman D, Shin D, Colaco A, Wong F N C, Shapiro J H, Goyal V K 2014 Science 343 58Google Scholar

    [4]

    Maccarone A, McCarthy A, Ren X, Warburton R E, Wallace A M, Moffat J, Petillot Y, Buller G S 2015 Opt. Express 23 33911Google Scholar

    [5]

    Li Z, Lai J, Wang C, Yan W, Li Z 2017 Appl. Opt. 56 6680Google Scholar

    [6]

    Akiba M, Inagaki K, Tsujino K 2012 Opt. Express 20 2779Google Scholar

    [7]

    Ravil A 2018 Appl. Opt. 57 3679Google Scholar

    [8]

    Kitsmiller V J, Campbell C, O'Sullivan T D 2020 Biomed. Opt. Express 11 5373Google Scholar

    [9]

    Jones R, Oliver C, Pike E R 1971 Appl. Opt. 10 1673Google Scholar

    [10]

    McGill M, Markus T, Scott V. S, Neumann T 2013 J. Atmos. Oceanic Technol. 30 345Google Scholar

    [11]

    Abdalati W, Zwally H. J, Bindschadler R, Csatho B, Farrell S L, Fricker H A, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C, 2010 Proc. IEEE 98 735Google Scholar

    [12]

    Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum C, B. Schutz E, Smith B, Yang Y, Zwally J 2017 Remote Sens. Environ. 190 260Google Scholar

    [13]

    Helstrom C W 1984 J. Appl. Phys. 55 2786Google Scholar

    [14]

    Ingle J D, Crouch S R 1972 Anal. Chem. 44 777Google Scholar

    [15]

    谢庚承, 叶一东, 李建民, 袁学文 2018 中国激光 45 260Google Scholar

    Xie G C, Ye Y D, Li J M, Yuan X W 2018 Chinese Journal of Lasers 45 260Google Scholar

    [16]

    Donovan D P, Whiteway J A, Carswell I A 1993 Appl. Opt. 32 6742Google Scholar

    [17]

    Chen Z D, Li X D, Li X H, Ye G C, Zhou Z G 2019 Opt. Commun. 434 7Google Scholar

    [18]

    Zhang Z Y, Li S, Ma Y, Zhang W H, Zhao P F, Xiang Y Y 2020 Optics Express. 28 13586Google Scholar

    [19]

    Gatt P, Johnson S, Nichols T 2009 Appl. Opt. 48 3261Google Scholar

    [20]

    Li S, Zhang Z, Ma Y, Zeng H M, Zhao P F, Zhang W H 2019 Opt. Express 27 A861Google Scholar

    [21]

    White Book of Photomultiplier Tubes, Hamamatsu Photonics http://share.hamamatsu.com.cn/57f4441b72a94d8a91500e56afad0b7b/download.html [2022-07-18]

    [22]

    黄科, 李松, 马跃, 田昕, 周辉, 张智宇 2018 物理学报 67 064205Google Scholar

    Huang K, Li S, Ma Y, Tian X, Zhou H, Zhang Z Y 2018 Acta Phys. Sin. 67 064205Google Scholar

  • [1] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [2] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [3] 王翀, 党文斌, 朱炳利, 杨凯, 杨嘉皓, 韩江浩. 光电倍增管时间测量误差补偿方法研究. 物理学报, 2022, 71(22): 222901. doi: 10.7498/aps.71.20221193
    [4] 向雨琰, 李松, 马跃. 光电倍增管输出电子流脉冲堆叠对光子计数法测距的影响. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220537
    [5] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光. 百微米精度的单光子测距. 物理学报, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [6] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳. 飞秒脉冲非对称互相关绝对测距. 物理学报, 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [7] 黄民双, 马鹏, 刘晓晨. 高频共振预探测多脉冲激光测距方法. 物理学报, 2018, 67(7): 074202. doi: 10.7498/aps.67.20172079
    [8] 曹辉, 宋有建, 于佳禾, 师浩森, 胡明列, 王清月. 奇异谱分析用于提升双光梳激光测距精度. 物理学报, 2018, 67(1): 010601. doi: 10.7498/aps.67.20171922
    [9] 徐孝彬, 张合, 张祥金, 陈杉杉, 张伟. 脉冲激光探测平面目标特性对测距分布的影响. 物理学报, 2016, 65(21): 210601. doi: 10.7498/aps.65.210601
    [10] 王冬, 郭良浩, 刘建军, 戚聿波. 一种基于warping变换的浅海脉冲声源被动测距方法. 物理学报, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302
    [11] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [12] 郭乐慧, 田进寿, 卢裕, 李红伟. 一种用于中微子探测的3-inch光电倍增管的优化设计. 物理学报, 2016, 65(22): 228501. doi: 10.7498/aps.65.228501
    [13] 寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强. 机载多脉冲激光测距特性及其不确定度研究. 物理学报, 2015, 64(12): 120601. doi: 10.7498/aps.64.120601
    [14] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响. 物理学报, 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [15] 秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月. 基于飞秒激光平衡光学互相关的任意长绝对距离测量. 物理学报, 2012, 61(24): 240601. doi: 10.7498/aps.61.240601
    [16] 王茜蒨, 魏光辉. 机油类产品激光诱导荧光时间特性的研究. 物理学报, 2002, 51(5): 1031-1034. doi: 10.7498/aps.51.1031
    [17] 王绍民. 光电倍增管时间分辨特性的探讨. 物理学报, 1962, 18(11): 600-604. doi: 10.7498/aps.18.600
    [18] 唐孝威. 可控制脉冲供电计数管(Ⅲ). 物理学报, 1961, 17(9): 430-438. doi: 10.7498/aps.17.430
    [19] 唐孝威. 可控制脉冲供电计数管(Ⅱ). 物理学报, 1961, 17(7): 340-352. doi: 10.7498/aps.17.340
    [20] 唐孝威. 可控制脉冲供电计数管(Ⅰ). 物理学报, 1961, 17(6): 273-286. doi: 10.7498/aps.17.273
计量
  • 文章访问数:  4118
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 修回日期:  2022-07-21
  • 上网日期:  2022-10-19
  • 刊出日期:  2022-11-05

/

返回文章
返回