搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢气在γ-U (100) /Mo表面吸附行为的第一性原理研究

李俊炜 贾维敏 吕沙沙 魏雅璇 李正操 王金涛

引用本文:
Citation:

氢气在γ-U (100) /Mo表面吸附行为的第一性原理研究

李俊炜, 贾维敏, 吕沙沙, 魏雅璇, 李正操, 王金涛

First principles study of hydrogen adsorption and dissociation behavior on γ-U (100)/Mo surface

Li Jun-Wei, Jia Wei-Min, Lü Sha-Sha, Wei Ya-Xuan, Li Zheng-Cao, Wang Jin-Tao
PDF
HTML
导出引用
  • 铀及铀合金贮存环境中的水分子与铀反应会产生氢气 (H2) , 进而对铀表面产生腐蚀作用. 基于密度泛函理论, 本文开展了H2在钼 (Mo) 涂层γ-U(100) 表面(U(100)/Mo) 吸附行为的第一性原理研究, 建立了γ-U(100)及U(100)/Mo表面模型, 计算了H2在不同吸附位点下的结构参数、吸附能、Bader电荷、表面功函数、电子态密度. 研究结果表明, H2在γ-U(100) 和U(100)/Mo表面的吸附主要为物理吸附, 在空位平行吸附构型下, H2完全解离成两个H原子, 化学吸附于基底表面. Bader电荷分布结果表明, 此时净电荷的变化量大于物理吸附时对应的净电荷变化量. H2在U(100)/Mo表面最稳定吸附构型下 (HMo-Hor) 的吸附能小于γ-U(100) 表面最稳定吸附构型 (HU-Hor) 的吸附能, 相比于H2在γ-U(100) 表面的吸附, H2在U(100)/Mo表面的吸附更稳定. 本文为铀合金及其Mo涂层表面氢化腐蚀研究提供了理论依据, 为未来开展铀合金表面抗腐蚀研究提供理论基础和实验技术支持.
    Uranium (U) is one of the most natural radioactive elements widely used in the nuclear industry. In the civilian field, uranium is the most important nuclear fuel in nuclear reactors; militarily, uranium is an important raw material for nuclear weapons. In addition, uranium is also used for radiation shielding and ship ballast due to its high-density properties. Depending on the temperature, U has three kinds of allotrope phases: the orthogonal α phase at temperature below 940 K, the body-centered tetragonal (BCT) β phase at temperature ranging from 940 K to 1050 K, and the body-centered cubic (BCC) γ phase at temperature above 1050 K. Compared with the other two structures, the crystal structure of γ phase has good symmetry and excellent mechanical properties. However, γ-U is extremely unstable at low temperature. No matter what heat treatment method is adopted, γ-U will undergo phase transformation and become α phase. It is shown that adding certain alloying elements, such as Mo, Nb, Zr, Ti and Hf, into uranium can stabilize γ-U to room temperature and improve the mechanical properties of uranium greatly. As an important uranium alloy, γ-U by doping Mo atom has excellent mechanical properties, structural stability and thermal conductivity, and is an important nuclear reactor fuel.However, uranium has special physical and chemical properties due to its complex electronic structure and strong correlation of 5f electrons. Because of its special valence electron structure, it is highly susceptible to chemical and electrochemical reactions of environmental media. After the reaction between uranium and hydrogen, hydrogen embrittlement will occur, and even easily break into powder, which reduces the performance of uranium in service and brings hidden trouble to its storage. With the increase of service life, surface corrosion becomes more serious, and the safety and reliability of U alloys are seriously affected. The adsorption and dissociation of hydrogen on U alloy surface is the primary process of hydrogenation corrosion.Based on density functional theory, first-principles study of hydrogen adsorption and dissociation on γ-U(100) surface by Mo atoms coatings is carried out in this work. The model of γ-U(100) and Mo atoms coatings on γ-U(100) surface are established, and the structural parameters, adsorption energy, Bader charge, surface work function, and electron state density of H2 at highly symmetrical adsorption sites are calculated. The results show that H2 molecule occurs when physical dissociation adsorption takes place on γ-U(100) and U(100)/Mo surface. The electron state density shows that H2 does not bond to the surface atoms and no new hybridization peak appears. However, in the hollow parallel adsorption configuration, H2 is completely dissociated into two H atoms and occurs chemical adsorption and dissociation on γ-U(100) and U(100)/Mo surface. The H/1s orbital electrons are hybridized with the U/6p, U/6d, Mo/5s, Mo/4p, Mo/4d orbital electrons, and the H atom forms stable chemical bonds with the Mo atoms. Bader charge distribution results show that the change of chemical adsorption net charge of H2 on U(100)/Mo is more than that of physical adsorption. Because the adsorption energy of H2 in the most stable configuration (HMo-Hor) on U(100)/Mo is less than that of the most stable configuration (HU-Hor) on γ-U(100), the adsorption of H2 on U(100)/Mo is more stable than that of γ-U(100) surface.
      通信作者: 李正操, zcli@tsinghua.edu.cn ; 王金涛, wangjintaolove@126.com
    • 基金项目: 国家自然科学基金(批准号: 11975135, 12005017)和国家重点基础研究发展计划(批准号: 2020YFB1901800)资助的课题.
      Corresponding author: Li Zheng-Cao, zcli@tsinghua.edu.cn ; Wang Jin-Tao, wangjintaolove@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975135, 12005017) and the National Basic Research Program of China (Grant No. 2020YFB1901800).
    [1]

    伯格J J 著 (石琪 译) 1983 铀合金物理冶金 (北京: 原子能出版社) 第76—79页

    Burke J J (translated by Shi Q)1983 Physical Metallurgy of Uranium Alloys (Beijing: Atomic Energy Press) pp76–79 (in Chinese)

    [2]

    D. R. Lide, 2012 Handbook of Chemistry and Physics (Boca Raton: CRC) pp1–5

    [3]

    Koelling D D, Freeman A J 1973 Phys. Rev. B 7 4454Google Scholar

    [4]

    David A Y, 1991 Phase Diagrams of the Elements (Berkeley: University of California Press) pp222–223

    [5]

    Neogy, S, Laik A, Saify M. T, Jha S. K, Srivastava D, Dey G. K 2017 Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 6 2819Google Scholar

    [6]

    Kim-Ngan N, Tkach I, Mašková S, Gonçalves A, Havela L 2013 J. Alloys Compd. 580 223Google Scholar

    [7]

    Bajaj S, Landa A, Söderlind P, Turchi P E A, Arróyave R 2011 J. Nucl. Mater. 419 177Google Scholar

    [8]

    Yoo C S, Akella J, Moriarty J A 1993 Phys. Rev. B 48 15529Google Scholar

    [9]

    Shen Z Y, Kong Y, Du Y, Zhang S Y 2021 Calphad 72 102241Google Scholar

    [10]

    Söderlind P, Eriksson O, Johansson B, Wills J, Boring A 1995 Nature 374 524Google Scholar

    [11]

    Swissa W, Bloch J, Atzmony U, Mintz M H 1989 Surf. Sci. 214 323Google Scholar

    [12]

    McLean W, Colmenares C A, Smith R L, Somorjai G A 1982 Phys. Rev. B 25 8Google Scholar

    [13]

    Asada K, Ono K, Yamaguchi K, Yamamoto T, Maekawa A, Oe S, Yamawaki M 1995 J. Alloys Compd. 231 780Google Scholar

    [14]

    Banos A, Harker N J, Scott T B 2018 Corros. Sci. 136 129Google Scholar

    [15]

    Yang Y, Zhang P, Shi P, Wang X L 2011 J. Phys. Chem. C 115 23381Google Scholar

    [16]

    Chattaraj D, Parida S C, Majumder C 2011 Physica B 406 4317Google Scholar

    [17]

    Hasan, M Z, Hossain M M, Islam M S, Parvin F, Islam A K M A 2012 Comput. Mater. Sci. 63 256Google Scholar

    [18]

    房彩红, 尚家香, 刘增辉 2012 物理学报 61 047101Google Scholar

    Fang C H, Shang J X, Liu Z H 2012 Acta Phys. Sin. 61 047101Google Scholar

    [19]

    Liu G D, Liu Z X, Ao B Y, Hu W Y, Deng H Q 2018 Comput. Mater. Sci. 144 85Google Scholar

    [20]

    Cheng S, Li S, Liu J, Liu B, Zhang Z 2019 Nucl. Instrum. Meth. B 457 63Google Scholar

    [21]

    Tian X F, Wang Yu, Li L S, Wu M D, Yu Y 2020 Comput. Mater. Sci. 179 109633Google Scholar

    [22]

    Harris J, Andersson S 1985 Phys. Rev. Lett. 55 1583Google Scholar

    [23]

    Bloch J, Mintz M H 1996 J. Alloys Compd. 241 224Google Scholar

    [24]

    Bloch J, Mintz M H 1997 J. Alloys Compd. 253 529Google Scholar

    [25]

    Bingert J F, Hanrahan R J, Field R D 2004 J. Alloys Compd. 362 138Google Scholar

    [26]

    Greenbaum Y, Barlam D, Mintz M H, Shneck R Z 2008 J. Alloys Compd. 452 325Google Scholar

    [27]

    Harker R M 2006 J. Alloys Compd. 426 106Google Scholar

    [28]

    Teter D F, Hanrahan R J, Wetteland C J 2000 Uranium Hydride Initation Kinetics: Effect of Oxide Thickness (New Mexico: Los Alamos National Laboratory) pp1–8

    [29]

    Teter D F, Hanrahan R J, Wetteland C J 2001 Uranium Hydride Nucleation Kinetics: Effects of Oxide Thickness and Vacuum Outgassing (New Mexico: Los alamos national laboratory) pp1–15

    [30]

    Bazley S G, Petherbridge J R, Glascott J 2012 Solid State Ionics 211 1Google Scholar

    [31]

    Kim K H, Park J M, Kim C K, Hofman G L, Meyer M K 2002 Nucl. Eng. Des. 211 229Google Scholar

    [32]

    Park J M, Kim K H, Kim C K, Meyer M K, Hofman, G L, Strain R V 2001 Met. Mater. Int. 7 151Google Scholar

    [33]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [34]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [36]

    Kresse G, Hafner J 1993 Phys. Rev. B Condens. Matter. 48 13115Google Scholar

    [37]

    Kresse G, Joubert D 1999 Phys. Rev. B Condens. Matter. 59 1758Google Scholar

    [38]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B Condens. Matter. 46 6671

    [39]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [40]

    Pack James D, Monkhorst H J 1976 Phys. Rev. B 13 5188Google Scholar

    [41]

    蒙大桥, 罗文华, 李赣, 陈虎翅 2009 物理学报 58 8224Google Scholar

    Meng D Q, Luo W H, Li G, Chen H C 2009 Acta Phys. Sin. 58 8224Google Scholar

    [42]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Modern phys. 64 1045Google Scholar

    [43]

    Xiang S K, Huang H C, Hsiung L M 2008 J. Nucl. Mater. 375 113Google Scholar

    [44]

    Chiotti P, Klepfer H H, White R W 1959 Trans. Am. Soc. Met. 51 772

    [45]

    李赣, 罗文华, 陈虎翅 2010 物理化学学报 22 1283

    Li G, Luo W H, Chen H C 2010 Chem. Res. Appl. 22 1283

    [46]

    Neugebauer J, Scheffler M 1992 Phys. Rev. B 46 16067Google Scholar

    [47]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [48]

    Electronegativity of Chemical Elements, material-properties https://material-properties.org/electronegativity-of-chemical-elements/

    [49]

    Hopkins B J, Sargood A J 1967 Properties of Vapor-Deposited Uranium Films in Ultrahigh Vacuum And In Hydrogen (Southampton: Southampton University) pp1–15

    [50]

    Lea C, Mee C H B 1968 J. Appl. Phys. 39 5890Google Scholar

    [51]

    Hao Y G, Eriksson O, Fernando G W 1993 Phys. Rev. B Condens. Matter. 47 6680Google Scholar

    [52]

    BéNARD J, BERTHIER Y. 1983 Adsorption on Metal Surfaces: An Integrated Approach (New York: Elsevier Scientific Pub. Co.) pp151–165

    [53]

    Soon A, Todorova M, Delley B, Stampfl C 2007 Phys. Rev. B 75 125420Google Scholar

    [54]

    Fu C F, Sun J Y, Luo Q Q, Li X X, Hu W, Yang J L 2018 Nano Lett. 18 6312Google Scholar

    [55]

    Yu S Q, Wei W, Li F P, Huang B B, Dai Y 2020 Phys. Chem. 22 25675

  • 图 1  γ-U (100) 和U (100)/Mo优化后结构模型及表面3种吸附位俯视图

    Fig. 1.  Structure model of γ-U (100) and U (100)/Mo slab before and after optimization and top view of three adsorption sites on the surface.

    图 2  H2在γ-U (100) 表面吸附模型的俯视图和侧视图 (a) 顶位平行; (b) 顶位垂直; (c) 空位平行; (d) 空位垂直; (e) 桥位平行; (f) 桥位平行2; (g) 桥位垂直. H和U元素分别为红色和蓝色

    Fig. 2.  Top and side views of absorption models of H2 molecule on γ-U (100) surface: (a) Top parallel; (b) top vertical; (c) hollow parallel; (d) hollow vertical; (e) bridge parallel; (f) bridge parallel 2; (g) bridge vertical. Hydrogen and uranium elements are red and blue, respectively.

    图 3  H2在U (100)/Mo表面吸附模型的俯视图和侧视图 (a) 顶位平行; (b) 顶位垂直; (c) 空位平行; (d) 空位垂直; (e) 桥位平行; (f) 桥位平行2; (g) 桥位垂直. H元素、U元素、Mo元素分别为红色、蓝色和绿色

    Fig. 3.  Top and side views of absorption models of H2 molecule on U (100)/Mo surface: (a) Top parallel; (b) top vertical; (c) hollow parallel; (d) hollow vertical; (e) bridge parallel; (f) bridge parallel 2; (g) bridge vertical. Hydrogen, uranium and molybdenum elements are red, blue and green, respectively.

    图 4  H2在γ-U (100) 表面吸附优化后的俯视图和侧视图 (a) TU-Hor; (b) TU-Ver; (c) HU-Hor; (d) HU-Ver; (e) BU-Hor; (f) BU-Hor2; (g) BU-Ver

    Fig. 4.  Top and side views of the optimization structures for H2 molecule absorption on γ-U (100) surface: (a) TU-Hor; (b) TU-Ver; (c) HU-Hor; (d) HU-Ver; (e) BU-Hor; (f) BU-Hor2; (g) BU-Ver.

    图 5  H2在U (100)/Mo表面吸附优化后的俯视图和侧视图 (a) TMo-Hor; (b) TMo-Ver; (c) HMo-Hor; (d) HMo-Ver; (e) BMo-Hor; (f) BMo-Hor2; (g) BMo-Ver

    Fig. 5.  Top and side views of the optimization structures for H2 molecule absorption on U (100)/Mo surface: (a) TMo-Hor; (b) TMo-Ver; (c) HMo-Hor; (d) HMo-Ver; (e) BMo-Hor; (f) BMo-Hor2; (g) BMo-Ver.

    图 6  静电势沿z轴距离的变化

    Fig. 6.  The distribution of electrostatic potential along distance of z axis.

    图 7  (a) U (100)/Mo表面的总态密度; (b) H2-U (100)/Mo吸附体系中最稳定吸附状态(HMo-Hor)总态密度; (c) U (100)/Mo表面的分态密度; (d) H2-U (100)/Mo吸附体系中最稳定吸附状态(HMo-Hor)分态密度

    Fig. 7.  (a) TDOS of the clean U (100)/Mo surface; (b) TDOS of the most stable configuration (HMo-Hor) for H2-U (100)/Mo adsorption system; (c) PDOS of the clean U (100)/Mo surface; (d) PDOS of the most stable configuration (HMo-Hor) for H2-U (100)/Mo adsorption system.

    图 8  (a) HMo-Hor吸附构型下, H2-U(100)/Mo吸附体系下分态密度; (b) BMo-Hor吸附构型下, H2-U(100)/Mo吸附体系下分态密度

    Fig. 8.  (a) PDOS of the configuration (HMo-Hor) for H2-U(100)/Mo adsorption system; (b) PDOS of the configuration (BMo-Hor) for H2-U(100)/Mo adsorption system.

    图 9  (a) HMo-Hor吸附构型差分电荷密度 (等值面: 0.0015 e3); (b) BMo-Hor吸附构型差分电荷密度(等值面: 4×10–5 e3), 黄色表示电荷密度增大, 蓝色表示电荷密度减小

    Fig. 9.  (a) Isosurfaces of differential charge density for the HMo-Hor configuration (Isosurfaces level: 0.0015 e3); (b) isosurfaces of differential charge density for the BMo-Hor configuration (Isosurfaces level: 4×10–5 e3), yellow means an increase in charge density and blue means a decrease in charge density.

    表 1  氢气吸附在γ-U(100) 表面的吸附能和几何结构参数

    Table 1.  Absorption energy and geometrical parameters of H2 adsorption on the γ-U(100) surface.

    ConfigurationEads/eVhH1-SurfhH2-SurfdH1-UdH2-UdH1-H2
    TU–Hor–0.4511.2961.2962.1502.1503.430
    TU–Ver–0.0203.6364.3893.6364.3890.753
    HU–Hor–0.4541.3011.3012.1552.1553.330
    HU–Ver–0.0283.3584.1124.1434.7750.755
    BU–Hor–0.0144.1834.1834.3934.3930.750
    BU–Hor20.0301.7671.7672.4982.4980.829
    BU–Ver–0.0213.2584.0143.6834.3650.756
    下载: 导出CSV

    表 2  氢气吸附在U(100)/Mo表面的吸附能和几何结构参数

    Table 2.  Absorption energy and geometrical parameters of H2 adsorption on the U(100)/Mo surface.

    ConfigurationEads/eVhH1-SurfhH2-SurfdH1-UdH2-UdH1-ModH2-ModH1-H2
    TMo–Hor–0.3311.9781.9783.8493.8492.0192.0190.807
    TMo–Ver–0.0262.6353.3903.3903.3902.6352.6350.755
    HMo–Hor–0.7460.7830.7831.9391.9392.3812.3812.540
    HMo–Ver–0.0293.7563.0034.9624.2094.4723.8610.753
    BMo–Hor–0.0154.0164.0165.5095.5094.2344.2340.751
    BMo–Hor20.1181.5991.5993.0953.0952.3812.3810.819
    BMo–Ver–0.0293.7152.9605.2114.5064.0923.4220.754
    下载: 导出CSV

    表 3  H2-U(100)/Mo体系的Bader电荷布局数, qH1qH2为第一个和第二个氢原子的Bader电荷, qtotal为两个氢原子上的总Bader电荷数, q1st, q2nd, q3rd, q4thq5th分别表示U(100)/Mo表面第1层到第5层的Bader电荷数

    Table 3.  Bader charge distribution number of H2-U(100)/Mo system. qH1 and qH2 are the Bader charge number of the H1 and H2 atom, qtotal is the total Bader charge number of the H1 and H2 atoms, q1st, q2nd, q3rd, q4th and q5th represent the total Bader charge number of first to fifth layers on the U(100)/Mo surface, respectively.

    ConfigurationqH1/eqH2/eqtotal/eq1 st/eq2 nd/eq3 rd/eq4 th/eq5 th/e
    Atom0.0616–0.06160
    free surface1.0016–0.5646–0.68120.7102–0.5094
    TMo-Hor–0.02970.08830.05860.9551–0.6080–0.61480.6679–0.5000
    TMo-Ver–0.06190.08120.01931.0149–0.5955–0.65720.6838–0.5089
    HMo-Hor0.38060.38060.76120.4796–0.8028–0.68810.6848–0.4759
    HMo-Ver–0.03620.05040.01420.9853–0.5404–0.70520.7109–0.5094
    BMo-Hor–0.06650.07000.00351.0006–0.5761–0.65940.6830–0.5085
    BMo-Hor20.12200.00580.12780.9261–0.6205–0.65980.6697–0.4848
    BMo-Ver0.0317–0.01620.01551.0037–0.5741–0.67730.6963–0.5087
    下载: 导出CSV

    表 A1  γ-U (100) , U (100)/Mo表面弛豫度, Δdij表示第i层和第j层原子间的平均距离, d0表示γ-U晶胞优化后的晶格常数

    Table A1.  The relative surface relaxation for the γ-U (100) and U (100)/Mo, Δdij represents the average distance between the i-th and j-th atomic layer of these surfaces. d0 represents the lattice constant of γ-U unit cell after optimization.

    Slapγ-U(100)文献[15]U(100)/Mo
    Δd12/d0–25.041%–26.4%–29.875%
    Δd23/d014.239%15.6%8.773%
    Δd34/d0–8.289%4.246%
    下载: 导出CSV

    表 A2  H2分子在U(100)/Mo表面不同吸附点位表面功函数变化, ΔΦ为功函数的变化

    Table A2.  Surface work function changes of H2 molecule at different adsorption sites on U(100)/Mo Surface, ΔΦ is the change of the work function.

    ConfigurationEvacuum/eVEFermi/eVΦ/eVΔΦ/eV
    Free surface7.12443.07004.0544
    TMo-Hor6.98973.13063.8591–0.1953
    TMo-Ver6.94693.05103.8959–0.1585
    HMo-Hor7.15023.02134.12890.0745
    HMo-Ver7.06893.02414.0448–0.0096
    BMo-Hor7.10453.13943.9651–0.0893
    BMo-Ver7.04303.03144.0116–0.0428
    下载: 导出CSV
  • [1]

    伯格J J 著 (石琪 译) 1983 铀合金物理冶金 (北京: 原子能出版社) 第76—79页

    Burke J J (translated by Shi Q)1983 Physical Metallurgy of Uranium Alloys (Beijing: Atomic Energy Press) pp76–79 (in Chinese)

    [2]

    D. R. Lide, 2012 Handbook of Chemistry and Physics (Boca Raton: CRC) pp1–5

    [3]

    Koelling D D, Freeman A J 1973 Phys. Rev. B 7 4454Google Scholar

    [4]

    David A Y, 1991 Phase Diagrams of the Elements (Berkeley: University of California Press) pp222–223

    [5]

    Neogy, S, Laik A, Saify M. T, Jha S. K, Srivastava D, Dey G. K 2017 Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 6 2819Google Scholar

    [6]

    Kim-Ngan N, Tkach I, Mašková S, Gonçalves A, Havela L 2013 J. Alloys Compd. 580 223Google Scholar

    [7]

    Bajaj S, Landa A, Söderlind P, Turchi P E A, Arróyave R 2011 J. Nucl. Mater. 419 177Google Scholar

    [8]

    Yoo C S, Akella J, Moriarty J A 1993 Phys. Rev. B 48 15529Google Scholar

    [9]

    Shen Z Y, Kong Y, Du Y, Zhang S Y 2021 Calphad 72 102241Google Scholar

    [10]

    Söderlind P, Eriksson O, Johansson B, Wills J, Boring A 1995 Nature 374 524Google Scholar

    [11]

    Swissa W, Bloch J, Atzmony U, Mintz M H 1989 Surf. Sci. 214 323Google Scholar

    [12]

    McLean W, Colmenares C A, Smith R L, Somorjai G A 1982 Phys. Rev. B 25 8Google Scholar

    [13]

    Asada K, Ono K, Yamaguchi K, Yamamoto T, Maekawa A, Oe S, Yamawaki M 1995 J. Alloys Compd. 231 780Google Scholar

    [14]

    Banos A, Harker N J, Scott T B 2018 Corros. Sci. 136 129Google Scholar

    [15]

    Yang Y, Zhang P, Shi P, Wang X L 2011 J. Phys. Chem. C 115 23381Google Scholar

    [16]

    Chattaraj D, Parida S C, Majumder C 2011 Physica B 406 4317Google Scholar

    [17]

    Hasan, M Z, Hossain M M, Islam M S, Parvin F, Islam A K M A 2012 Comput. Mater. Sci. 63 256Google Scholar

    [18]

    房彩红, 尚家香, 刘增辉 2012 物理学报 61 047101Google Scholar

    Fang C H, Shang J X, Liu Z H 2012 Acta Phys. Sin. 61 047101Google Scholar

    [19]

    Liu G D, Liu Z X, Ao B Y, Hu W Y, Deng H Q 2018 Comput. Mater. Sci. 144 85Google Scholar

    [20]

    Cheng S, Li S, Liu J, Liu B, Zhang Z 2019 Nucl. Instrum. Meth. B 457 63Google Scholar

    [21]

    Tian X F, Wang Yu, Li L S, Wu M D, Yu Y 2020 Comput. Mater. Sci. 179 109633Google Scholar

    [22]

    Harris J, Andersson S 1985 Phys. Rev. Lett. 55 1583Google Scholar

    [23]

    Bloch J, Mintz M H 1996 J. Alloys Compd. 241 224Google Scholar

    [24]

    Bloch J, Mintz M H 1997 J. Alloys Compd. 253 529Google Scholar

    [25]

    Bingert J F, Hanrahan R J, Field R D 2004 J. Alloys Compd. 362 138Google Scholar

    [26]

    Greenbaum Y, Barlam D, Mintz M H, Shneck R Z 2008 J. Alloys Compd. 452 325Google Scholar

    [27]

    Harker R M 2006 J. Alloys Compd. 426 106Google Scholar

    [28]

    Teter D F, Hanrahan R J, Wetteland C J 2000 Uranium Hydride Initation Kinetics: Effect of Oxide Thickness (New Mexico: Los Alamos National Laboratory) pp1–8

    [29]

    Teter D F, Hanrahan R J, Wetteland C J 2001 Uranium Hydride Nucleation Kinetics: Effects of Oxide Thickness and Vacuum Outgassing (New Mexico: Los alamos national laboratory) pp1–15

    [30]

    Bazley S G, Petherbridge J R, Glascott J 2012 Solid State Ionics 211 1Google Scholar

    [31]

    Kim K H, Park J M, Kim C K, Hofman G L, Meyer M K 2002 Nucl. Eng. Des. 211 229Google Scholar

    [32]

    Park J M, Kim K H, Kim C K, Meyer M K, Hofman, G L, Strain R V 2001 Met. Mater. Int. 7 151Google Scholar

    [33]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [34]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [36]

    Kresse G, Hafner J 1993 Phys. Rev. B Condens. Matter. 48 13115Google Scholar

    [37]

    Kresse G, Joubert D 1999 Phys. Rev. B Condens. Matter. 59 1758Google Scholar

    [38]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B Condens. Matter. 46 6671

    [39]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [40]

    Pack James D, Monkhorst H J 1976 Phys. Rev. B 13 5188Google Scholar

    [41]

    蒙大桥, 罗文华, 李赣, 陈虎翅 2009 物理学报 58 8224Google Scholar

    Meng D Q, Luo W H, Li G, Chen H C 2009 Acta Phys. Sin. 58 8224Google Scholar

    [42]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Modern phys. 64 1045Google Scholar

    [43]

    Xiang S K, Huang H C, Hsiung L M 2008 J. Nucl. Mater. 375 113Google Scholar

    [44]

    Chiotti P, Klepfer H H, White R W 1959 Trans. Am. Soc. Met. 51 772

    [45]

    李赣, 罗文华, 陈虎翅 2010 物理化学学报 22 1283

    Li G, Luo W H, Chen H C 2010 Chem. Res. Appl. 22 1283

    [46]

    Neugebauer J, Scheffler M 1992 Phys. Rev. B 46 16067Google Scholar

    [47]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [48]

    Electronegativity of Chemical Elements, material-properties https://material-properties.org/electronegativity-of-chemical-elements/

    [49]

    Hopkins B J, Sargood A J 1967 Properties of Vapor-Deposited Uranium Films in Ultrahigh Vacuum And In Hydrogen (Southampton: Southampton University) pp1–15

    [50]

    Lea C, Mee C H B 1968 J. Appl. Phys. 39 5890Google Scholar

    [51]

    Hao Y G, Eriksson O, Fernando G W 1993 Phys. Rev. B Condens. Matter. 47 6680Google Scholar

    [52]

    BéNARD J, BERTHIER Y. 1983 Adsorption on Metal Surfaces: An Integrated Approach (New York: Elsevier Scientific Pub. Co.) pp151–165

    [53]

    Soon A, Todorova M, Delley B, Stampfl C 2007 Phys. Rev. B 75 125420Google Scholar

    [54]

    Fu C F, Sun J Y, Luo Q Q, Li X X, Hu W, Yang J L 2018 Nano Lett. 18 6312Google Scholar

    [55]

    Yu S Q, Wei W, Li F P, Huang B B, Dai Y 2020 Phys. Chem. 22 25675

  • [1] 盛喆, 戴显英, 苗东铭, 吴淑静, 赵天龙, 郝跃. 各Li吸附组分下硅烯氢存储性能的第一性原理研究. 物理学报, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [2] 王立鹏, 江新标, 吴宏春, 樊慧庆. 氮化铀热中子截面的第一性原理计算. 物理学报, 2018, 67(20): 202801. doi: 10.7498/aps.67.20180834
    [3] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [4] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [5] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算. 物理学报, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [6] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [7] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [8] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [9] 叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军. 通过AC-HVAF方法制备铁基非晶合金涂层的结构分析. 物理学报, 2014, 63(7): 078101. doi: 10.7498/aps.63.078101
    [10] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究. 物理学报, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [11] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究. 物理学报, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [12] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究. 物理学报, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [13] 李文胜, 罗时军, 黄海铭, 张琴, 付艳华. 一种基于光子晶体结构的坦克涂层设计. 物理学报, 2012, 61(16): 164102. doi: 10.7498/aps.61.164102
    [14] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [15] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究. 物理学报, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [16] 张 辉, 张国英, 何君琦, 王 丹, 杨 爽. 杂质对吸附系统O/RhxPt1-x衬底合金(110)表面偏析的影响. 物理学报, 2008, 57(3): 1846-1850. doi: 10.7498/aps.57.1846
    [17] 刘以良, 孔凡杰, 杨缤维, 蒋 刚. 金刚石延(111)面生长的第一性原理研究. 物理学报, 2007, 56(9): 5413-5417. doi: 10.7498/aps.56.5413
    [18] 张 辉, 张国英, 王瑞丹, 周永军, 李 星. 无序二元合金(NixCu1-x)不同解理面上O吸附对Cu偏析的影响. 物理学报, 2005, 54(11): 5356-5361. doi: 10.7498/aps.54.5356
    [19] 张 辉, 张国英, 李 星, 刘士阳. 无序二元合金(NixCu1-x)表面CO吸附及对表面偏析的影响. 物理学报, 2004, 53(9): 3152-3156. doi: 10.7498/aps.53.3152
    [20] 李红海, 李英德, 王传奎. 分子和金表面相互作用的第一性原理研究. 物理学报, 2002, 51(6): 1239-1243. doi: 10.7498/aps.51.1239
计量
  • 文章访问数:  4998
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-07-05
  • 上网日期:  2022-11-04
  • 刊出日期:  2022-11-20

/

返回文章
返回