搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析

陈晶晶 邱小林 李柯 周丹 袁军军

引用本文:
Citation:

纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析

陈晶晶, 邱小林, 李柯, 周丹, 袁军军

Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method

Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun
PDF
HTML
导出引用
  • 对纳米晶(单晶、多晶)CoNiCrFeMn高熵合金的力学性能评估有助于理解高熵合金材料物性, 更好地服务于核反应堆包壳管、航空发动机、喷气涡轮叶片等国防应用领域发展. 本文提出对纳米晶CoNiCrFeMn高熵合金微结构演化与力学性能间的相关性展开研究. 基于纳米压痕法, 研究了纳米晶高熵合金和纳米晶镍的变形行为与力学性能, 比较了使役温度对纳米晶CoNiCrFeMn高熵合金和纳米晶Ni的力学性能与微结构演化差异. 结果表明: 单晶高熵合金力学性能(最大承载荷、硬度、杨氏模量、接触刚度)优越于单晶镍主要源于单晶高熵合金外形呈鼓包式结构内的位错滑移与拓展传播受到局限域的阻滞作用. 极端低温5 K下的材料力学性能表现最佳, 多晶Ni相比单晶Ni的最大承载荷、硬度、杨氏模量、接触刚度降幅分别达28.9%, 20.27%, 32.61%, 36.4%; 多晶CoNiCrFeMn高熵合金相比单晶CoNiCrFeMn高熵合金的最大承载荷、硬度、杨氏模量、接触刚度降幅依次达21.74%, 23.61%, 23.79%, 22.90%. 此外, 多晶高熵合金力学性能相比单晶高熵合金对温度敏感性更强, 其力学性能随温度升高近似线性下降. 对多晶高熵合金和多晶镍而言, 晶界不仅是位错滋生、拓展、繁衍的起源区, 更是萌生缺陷、产生裂纹拓展与失效的集中域. 受应力驱动晶界边缘的微结构演化和缺陷存在, 多晶材料力学性能弱于单晶材料.
    Physical property and material mechanical performance of nanocrystalline (single crystal, polycrystalline) CoNiCrFeMn alloy can be known well through an in-depth understanding of the micro-evaluation behaviour of micro dislocation, so that it can better be used in defense fields, such as nuclear reactor cladding tubes, aircraft engines, jet turbine blades and others. In this paper we propose to study the correlation between micro-structure evolution and mechanical properties for nanocrystalline CoNiCrFeMn high entropy alloy. The force driven material deformation behaviors and mechanical properties of nanocrystalline alloy and Ni material are studied by using the nanoindentation method, and effects of temperature on the mechanical properties and micro-structure evolution are compared as well. Research results show that the mechanical properties (maximum load, hardness, Young’s modulus and contact stiffness) of single crystal alloy are superior to those of single crystal Ni, which mainly stems from the fact that the single crystal high entropy alloy with a drum-shape structure is produced under loading period, and the slip and expansion of dislocations in the bulge structure are blocked. At a low temperature (5 K), the maximum load, hardness, Young's modulus and contact stiffness of polycrystalline Ni decrease by 28.9%, 20.27%, 32.61% and 36.4% respectively in comparison with those of single crystal Ni. The maximum load, hardness, Young's modulus and contact stiffness of polycrystalline CoNiCrFeMn material decrease by 21.74%, 23.61%, 23.79% and 22.90% respectively with respect to those of single CoNiCrFeMn high entropy alloy. In addition, the mechanical properties of polycrystalline alloy are more sensitive to temperature than those of single crystal high entropy alloy, whose mechanical properties decrease approximately linearly with temperature increasing. For polycrystalline CoNiCrFeMn and Ni material, the grain boundary is not merely the origin region of dislocation breeding, expansion and reproduction, but also the concentration region of defect initiation, crack expansion and failure. Its mechanical properties are weaker than those of single crystal materials due to micro-structure evolution of grain boundaries driven from stress concentration and defects existence.
      通信作者: 陈晶晶, chenjingjingfzu@126.com
    • 基金项目: 南昌理工学院机械表/界面摩擦磨损与防护润滑校级研究中心、江西省教育厅科学技术研究项目(批准号: GJJ212101, GJJ219310)和南昌市重点实验室建设项目(批准号: 2020-NCZDSY-005)资助的课题.
      Corresponding author: Chen Jing-Jing, chenjingjingfzu@126.com
    • Funds: Project supported by the University-level Research Center of Friction and Wear and Protective Lubrication of Mechanical Table Interface, Nanchang Institute of Technology, China, the Science and Technology Research Project of Education Department of Jiangxi Province, China (Grant Nos. GJJ212101, GJJ219310), and the Nanchang Key Laboratory Construction Project of Jiangxi Province, China (Grant No. 2020-NCZDSY-005).
    [1]

    Fu W J, Huang Y J, Sun J F, Ngan A H W 2022 Int. J. Plast 154 103296Google Scholar

    [2]

    Tran N D, Saengdeejing A, Suzuki K, Miura H, Chen Y 2021 J. Phase Equilib. Diffus 42 606Google Scholar

    [3]

    Gorban V F, Andreev A A, Chikryzhov A M, Karpets M. V, Krapivka N A, Kovteba D V 2019 Powder Metall 58 58Google Scholar

    [4]

    Zheng T F, Lü J C, Wu Y 2021 Appl. Phys. Lett 119 201907Google Scholar

    [5]

    Tripathi P K, Chiu Y C, Bhowmick S 2021 J. Nanomater 11 2111Google Scholar

    [6]

    Li C, Xue Y, Hua M, Cao T Q, Ma L L, Wang L 2016 Mater. Des 90 601Google Scholar

    [7]

    Wang F J, Zhang Y, Chen G L 2009 J. Alloys Compd 478 321Google Scholar

    [8]

    Sun S J, Tian Y Z, Lin H R, Yang H J, Dong X G, Wang Y H, Zhang Z F 2018 Mater. Sci. Eng. , A 712 603Google Scholar

    [9]

    Juan C C, Tsai M H, Tsai C W, Hsu W L, Lin C M, Chen S K, Lin S J, Yeh J W 2016 Mater. Lett 184 200Google Scholar

    [10]

    Seol J B, Bae J W, Li Z, Han J C, Kim J G, Raabe D, Kim H S 2018 Acta Mater 151 366Google Scholar

    [11]

    Gou S Y, Li S C, Hu H L, Fang Y T, Liu J B, Dong W P, Wang H T 2021 Mater. Res. Lett 9 437Google Scholar

    [12]

    Li X Y, Sun S J, Zou Y 2022 Mater. Res. Lett 10 385Google Scholar

    [13]

    Zhao W R, Han J K, Kuzminova Y O 2021 Mater. Sci. Eng. , A 807 140898Google Scholar

    [14]

    Laplanche G, Kostka K, Horst O M, Eggeler G, George E P 2016 Acta Mater 118 152Google Scholar

    [15]

    Schuh B, Mendez-Martin F, Völker B, George E P, Clemens H, Pippan R 2015 Acta Mater 96 258Google Scholar

    [16]

    He J Y, Zhu C, Zhou D Q 2014 Intermetallics 55 9Google Scholar

    [17]

    Otto F, Dlouhy A, Somsen C, Bei H, Eggeler G, George E P 2013 Acta Mater 61 5743Google Scholar

    [18]

    Yu Y, Wang J, Li J S, Yang J, Kou H C, Liu W M 2016 J. Mater. Sci. Technol 32 470Google Scholar

    [19]

    Plimpton S 1995 J. Comput. Phys 117 1Google Scholar

    [20]

    Guo J, Chen J J, Wang Y Q 2020 Ceram. Int 46 12686Google Scholar

    [21]

    Xiang H G, Li H T, Fu T 2017 Acta Materialia 138 131Google Scholar

    [22]

    Xiang H G, Li H T, Fu T, Huang C, Peng X H 2017 Acta Mater. 138 131

    [23]

    Lee B J, Shim J H, Baskes M I 2003 Phys. Rev. B 68 144112Google Scholar

    [24]

    董斌, 王雪梅, 朱子亮 2020 原子与分子物理学报 37 591

    Dong B, Wang X M, Zhu Z L 2020 J. At. Mol. Phys. 37 591

    [25]

    Fang Q H, Chen Y, Li J 2019 Int. J. Plast 114 161Google Scholar

    [26]

    Foiles, S M, Baskes, M I, Daw M S 1988 Phys. Rev. B 33 7983

    [27]

    Qian Y, Shang F, Wan Q 2018 J. Phys. D 24 115102

    [28]

    Qian Y, Shang F, Wan Q 2018 Comput. Mater. Sci 149 230Google Scholar

    [29]

    Goel S, Luo X, Reuben R L 2012 Appl. Phys. Lett 100 231

    [30]

    Shimizu F, Ogata S, Li J 2007 Mater. Trans 48 2923Google Scholar

    [31]

    Oliver W C, Pharr G M 1992 J. Mater. Sci 7 1564

    [32]

    Fan X, Rui Z, Cao H, Fu R, Feng R 2019 Materials 12 770Google Scholar

    [33]

    Belak J, Boercker D B, Stowers I F 1993 MRS Bull 18 55

  • 图 1  纳米晶Ni和纳米晶CoNiCrFeMn高熵合金的四种待测样品物理模型 (a) 单晶Ni模型; (b) 单晶CoNiCrFeMn高熵合金模型; (c) 多晶Ni模型; (d) 多晶CoNiCrFeMn高熵合金模型; (e) CoNiCrFeMn高熵合金五种元素均匀分布

    Fig. 1.  Atomic nanoindentation simulation of physical model for single crystal high entropy alloy CoNiCrFeMn and single crystal Ni: (a) Single crystal Ni; (b) single crystal CoNiCrFeMn high entropy alloy; (c) polycrystal Ni; (d) polycrystal CoNiCrFeMn high entropy alloy; (e) uniform distributions of five elements in CoNiCrFeMn high entropy alloy.

    图 2  四种待测样品载荷与位移曲线的温度响应 (a) 单晶Ni; (b) 多晶Ni; (c) 单晶CoNiCrFeMn高熵合金; (d) 多晶高熵合金

    Fig. 2.  Temperature effects on curves of load versus indentation depth at nanoindentation simulation for four samples: (a) Single crystal Ni; (b) polycrystal Ni; (c) single crystal CoNiCrFeMn; (d) polycrystal CoNiCrFeMn.

    图 3  极端低温5 K的纳米晶CoNiCrFeMn高熵合金和纳米晶Ni上表面受载诱导的剪切变形 (a), (b) 加载过程; (c) 卸载过程

    Fig. 3.  Atomic snapshoot of shear strain deformation induced by maximum loads at nanoindentation test ((a), (b) loading and (c) unloading process) during extremely low temperature 5 K for single crystal and polycrystal material (Ni and CoNiCrFeMn ) that can be seen from XY horizontal plane perspective view.

    图 4  纳米晶Ni、纳米晶CoNiCrFeMn高熵合金力学性能受温度影响的变化

    Fig. 4.  Temperature response of the mechanical properties of nanocrystalline Ni and nanocrystalline CoNiCrFeMn high entropy alloys

    图 5  最大压深载荷时的纳米晶Ni(a), (b)、纳米晶CoNiCrFeMn高熵合金(c), (d)受极端高低温(5—1100 K)影响的表面形貌特征; 相应地接触面积 (e)纳米晶Ni; (f)纳米晶CoNiCrFeMn高熵合金

    Fig. 5.  Surface topography snapshot of nanocrystalline nickel and nanocrystalline high entropy alloys at maximum loading moment for testing four specimen with ambient temperature (5 K~1100 K)variations as shown in Fig. 5(a)-(d), among then, the locked position of virtual indenter was indicated with black dotted line. In addition, whose corresponding contact area was statisticed and quantified at Fig. 5(e) and 5(f).

    图 6  纳米晶Ni (a), (b)和纳米晶CoNiCrFeMn高熵合金(c), (d)极端低温下的微结构演化特征

    Fig. 6.  Micro-structure evolution characteristics of nanocrystalline nickel (a), (b) and nanocrystalline CoNiCrFeMn (c), (d) high Entropy alloy at extremely low temperature.

    图 7  纳米晶Ni(a)和纳米晶CoNiCrFeMn高熵合金(b)极端高低温下的微结构演化特征

    Fig. 7.  Micro-structure evolution characteristics of nanocrystalline Ni (a) and nanocrystalline CoNiCrFeMn high entropy alloys (b) at extremely high and low temperatures.

    图 8  纳米晶Ni和纳米晶CoNiCrFeMn高熵合金材料内部的位错类型分布与量化统计 (a) 单晶Ni和CoNiCrFeMn; (b) 多晶Ni和CoNiCrFeMn

    Fig. 8.  Distribution characteristics and data statistics of dislocation types in nanocrystalline Ni and nanocrystalline CoNiCrFeMn high entropy alloys: (a) Single crystal Ni and CoNiCrFeMn; (b) polycrystal Ni and CoNiCrFeMn.

    图 9  极端低温5 K下的纳米晶Ni和CoNiCrFeMn高熵合金的应力分布状态 (a) 加载下多晶Ni; (b) 加载下多晶CoNiCrFeMn; (c) 卸载后单晶Ni和CoNiCrFeMn; (d) 卸载后多晶Ni和CoNiCrFeMn

    Fig. 9.  Atomic stress distribution of nanocrystalline Ni and nanocrystalline CoNiCrFeMn high entropy alloys under extremely low temperature with 5 K: (a) Polycrystal Ni under loading; (b) polycrystal CoNiCrFeMn under loading; (c) single crystal Ni and CoNiCrFeMn under unloading; (d) polycrystal Ni and CoNiCrFeMn under unloading.

    图 10  加载期的纳米晶Ni和纳米晶CoNiCrFeMn高熵合金的应力分布受温度响应的影响 (a) 单晶Ni; (b) 多晶Ni; (c) 单晶CoNiCrFeMn; (d) 多晶CoNiCrFeMn

    Fig. 10.  Atomic stress distribution of nanocrystalline Ni and nanocrystalline CoNiCrFeMn high entropy alloys effected by temperature variations at loading process: (a) Single crystal Ni; (b) polycrystal Ni; (c) single crystal CoNiCrFeMn; (d) polycrystal CoNiCrFeMn.

  • [1]

    Fu W J, Huang Y J, Sun J F, Ngan A H W 2022 Int. J. Plast 154 103296Google Scholar

    [2]

    Tran N D, Saengdeejing A, Suzuki K, Miura H, Chen Y 2021 J. Phase Equilib. Diffus 42 606Google Scholar

    [3]

    Gorban V F, Andreev A A, Chikryzhov A M, Karpets M. V, Krapivka N A, Kovteba D V 2019 Powder Metall 58 58Google Scholar

    [4]

    Zheng T F, Lü J C, Wu Y 2021 Appl. Phys. Lett 119 201907Google Scholar

    [5]

    Tripathi P K, Chiu Y C, Bhowmick S 2021 J. Nanomater 11 2111Google Scholar

    [6]

    Li C, Xue Y, Hua M, Cao T Q, Ma L L, Wang L 2016 Mater. Des 90 601Google Scholar

    [7]

    Wang F J, Zhang Y, Chen G L 2009 J. Alloys Compd 478 321Google Scholar

    [8]

    Sun S J, Tian Y Z, Lin H R, Yang H J, Dong X G, Wang Y H, Zhang Z F 2018 Mater. Sci. Eng. , A 712 603Google Scholar

    [9]

    Juan C C, Tsai M H, Tsai C W, Hsu W L, Lin C M, Chen S K, Lin S J, Yeh J W 2016 Mater. Lett 184 200Google Scholar

    [10]

    Seol J B, Bae J W, Li Z, Han J C, Kim J G, Raabe D, Kim H S 2018 Acta Mater 151 366Google Scholar

    [11]

    Gou S Y, Li S C, Hu H L, Fang Y T, Liu J B, Dong W P, Wang H T 2021 Mater. Res. Lett 9 437Google Scholar

    [12]

    Li X Y, Sun S J, Zou Y 2022 Mater. Res. Lett 10 385Google Scholar

    [13]

    Zhao W R, Han J K, Kuzminova Y O 2021 Mater. Sci. Eng. , A 807 140898Google Scholar

    [14]

    Laplanche G, Kostka K, Horst O M, Eggeler G, George E P 2016 Acta Mater 118 152Google Scholar

    [15]

    Schuh B, Mendez-Martin F, Völker B, George E P, Clemens H, Pippan R 2015 Acta Mater 96 258Google Scholar

    [16]

    He J Y, Zhu C, Zhou D Q 2014 Intermetallics 55 9Google Scholar

    [17]

    Otto F, Dlouhy A, Somsen C, Bei H, Eggeler G, George E P 2013 Acta Mater 61 5743Google Scholar

    [18]

    Yu Y, Wang J, Li J S, Yang J, Kou H C, Liu W M 2016 J. Mater. Sci. Technol 32 470Google Scholar

    [19]

    Plimpton S 1995 J. Comput. Phys 117 1Google Scholar

    [20]

    Guo J, Chen J J, Wang Y Q 2020 Ceram. Int 46 12686Google Scholar

    [21]

    Xiang H G, Li H T, Fu T 2017 Acta Materialia 138 131Google Scholar

    [22]

    Xiang H G, Li H T, Fu T, Huang C, Peng X H 2017 Acta Mater. 138 131

    [23]

    Lee B J, Shim J H, Baskes M I 2003 Phys. Rev. B 68 144112Google Scholar

    [24]

    董斌, 王雪梅, 朱子亮 2020 原子与分子物理学报 37 591

    Dong B, Wang X M, Zhu Z L 2020 J. At. Mol. Phys. 37 591

    [25]

    Fang Q H, Chen Y, Li J 2019 Int. J. Plast 114 161Google Scholar

    [26]

    Foiles, S M, Baskes, M I, Daw M S 1988 Phys. Rev. B 33 7983

    [27]

    Qian Y, Shang F, Wan Q 2018 J. Phys. D 24 115102

    [28]

    Qian Y, Shang F, Wan Q 2018 Comput. Mater. Sci 149 230Google Scholar

    [29]

    Goel S, Luo X, Reuben R L 2012 Appl. Phys. Lett 100 231

    [30]

    Shimizu F, Ogata S, Li J 2007 Mater. Trans 48 2923Google Scholar

    [31]

    Oliver W C, Pharr G M 1992 J. Mater. Sci 7 1564

    [32]

    Fan X, Rui Z, Cao H, Fu R, Feng R 2019 Materials 12 770Google Scholar

    [33]

    Belak J, Boercker D B, Stowers I F 1993 MRS Bull 18 55

  • [1] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [2] 汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽. 石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究. 物理学报, 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [3] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [4] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟. 物理学报, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [5] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [7] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [8] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [9] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [10] 胡兴健, 郑百林, 杨彪, 余金桂, 贺鹏飞, 岳珠峰. 初始压入位置对Ni基单晶合金纳米压痕影响研究. 物理学报, 2015, 64(7): 076201. doi: 10.7498/aps.64.076201
    [11] 樊倩, 徐建刚, 宋海洋, 张云光. 层厚度和应变率对铜-金复合纳米线力学性能影响的模拟研究. 物理学报, 2015, 64(1): 016201. doi: 10.7498/aps.64.016201
    [12] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [13] 刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳. 粗晶和纳米晶Sm3Co合金的制备及其性能研究. 物理学报, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [14] 胡兴健, 郑百林, 胡腾越, 杨彪, 贺鹏飞, 岳珠峰. 考虑相界效应的Ni基单晶合金纳米压痕模拟. 物理学报, 2014, 63(17): 176201. doi: 10.7498/aps.63.176201
    [15] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [16] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [17] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [18] 王华滔, 秦昭栋, 倪玉山, 张文. 不同晶体取向下纳米压痕的多尺度模拟. 物理学报, 2009, 58(2): 1057-1063. doi: 10.7498/aps.58.1057
    [19] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
计量
  • 文章访问数:  3314
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-05-20
  • 上网日期:  2022-09-20
  • 刊出日期:  2022-10-05

/

返回文章
返回