-
对微纳流体中纳米粒子的动态跟踪与检测一直是一项具有挑战性和高要求的工作. 本文提出了波导-同心环形谐振腔集成光学模型, 根据波导-同心环形谐振腔耦合结构输出的荧光功率强度变化来实现对微纳流体中纳米颗粒的微位移检测. 由于环形微谐振腔具有高Q以及对周围环境响应敏感的特性, 因而极大提高了器件的灵敏度. 使用时域有限差分法对荧光的偏振态, 两个环形谐振腔的间距等参数进行了数值仿真模拟, 利用荧光输出功率双峰值的变化能够对纳米粒子的微位移进行高精度的检测. 基于双峰值变化的同步检测可降低环境噪声影响从而提高了检测精度, 数值模拟结果也证实了此种方法可对纳米流体中纳米颗粒在0—1000 nm范围对微位移进行实时动态的测定. 本工作可以为微纳流体领域传感器系统的设计提供新的方向和思路.The dynamic tracking and detecting of nanoparticles in micro-nanofluids have always been a challenging and demanding task. In this work, an integrated model of waveguide-concentric ring resonator is proposed based on the waveguide-concentric ring resonator. The change of the fluorescence power intensity outputted by the cavity coupling structure is used to realize the micro-displacement detection of nanoparticles in the micro-nano fluid. Because the ring micro-resonator has the characteristics of high Q and the sensitivity to the surrounding environment, the sensitivity of the device is greatly improved. The finite-difference time domain method is used to study the parameters such as the polarization state of the fluorescence and the distance between the two ring resonators. The double-peak change of the fluorescence output power can be used to detect the displacement of the nanoparticles with high precision. Based on the synchronization of the double-peak changes, the detection can reduce the influence of environmental noise and improve the detection accuracy. The numerical simulation results also confirm that this method can measure the micro-displacement of nanoparticles in nanofluids in a range of 0–1000 nm, providing new directions and ideas.
-
Keywords:
- nanoparticles /
- micro-nanofluidics /
- ring resonator /
- biodetection
[1] 闵伶俐, 陈松月, 盛智芝, 王宏龙, 吴锋, 王苗, 侯旭 2016 物理学报 65 178301Google Scholar
Min L L, Chen S Y, Sheng Z Z, Wang H L, Wu F, Wang M, Hou X 2016 Acta Phys. Sin. 65 178301Google Scholar
[2] Mitchell K R, Esene J E, Woolley A T 2022 Anal. Bioanal. Chem. 414 167Google Scholar
[3] Rigas E, Hallam J M, Charrett T O H, Ford H D, Tatam R P 2019 Opt. Express 27 23849Google Scholar
[4] Komatsu T, Tokeshi M, Fan S K 2022 Biosens. Bioelectron. 195 113631Google Scholar
[5] 王琼, 王凯歌, 孟康康, 孙聃, 韩仝雨, 高爱华 2020 物理学报 69 168202Google Scholar
Wang X, Wang K G, Meng K K, Sun D, Han T Y, Gao A H 2020 Acta Phys. Sin 69 168202Google Scholar
[6] Lee T H, Kwon H B, Song W Y, Lee S S, Kim Y J 2021 Lab Chip 21 1503Google Scholar
[7] Zhu X, Suo Y, Fu Y, Zhang F, Ding N, Pang K, Xie C, Weng X, Tian M, He H, Wei X 2021 Light Sci. Appl. 10 110Google Scholar
[8] Sreekanth K V, Sreejith S, Alapan Y, Sitti M, Lim C T, Singh R 2019 Adv. Opt. Mater. 7 1801313Google Scholar
[9] Niculescu A G, Chircov C, Birca A C, Grumezescu A M 2021 Int. J. Mol. Sci. 22 2
[10] Liu Y, Zhang X 2021 Micromachines (Basel) 12 1
[11] Gong T, Kong K V, Goh D, Olivo M, Yong K T 2015 Biomed. Opt. Express 6 2076Google Scholar
[12] 唐文来, 项楠, 张鑫杰, 黄笛, 倪中华 2015 物理学报 64 184703Google Scholar
Tang W L, Xiang N, Zhang X J, Huang D, Ni Z H 2015 Acta Phys. Sin. 64 184703Google Scholar
[13] Postigo P A, Alvaro R, Juarros A, Merino S 2016 Biomed. Opt. Express 7 3289Google Scholar
[14] Guo J, Liu X, Kang K, Ai Y, Wang Z, Kang Y 2015 J. Lightwave Technol. 33 3433Google Scholar
[15] Liang L, Zhao C, Xie F, Sun L P, Ran Y, Jin L, Guan B O 2020 Opt. Express 28 24408Google Scholar
[16] Ha B, Kim T J, Moon E, Giaccia A J, Pratx G 2021 Biosens. Bioelectron. 194 113565Google Scholar
[17] Lipka T, Moldenhauer L, Wahn L, Trieu H K 2017 JOL 42 1084
[18] Wang Y, Chen ZH 2018 J. Mater. Sci. 54 4970
[19] Wang Y, Wu N, Chen Z H 2021 J. Mater. Sci. 56 14368Google Scholar
[20] Chen S, Hao R, Zhang Y, Yang H 2019 Photon. Res. 7 532Google Scholar
[21] Bag S K, Sinha R K, Wan M, Varshney S K 2021 J. Phys. D Appl. Phys. 54 1601Google Scholar
[22] Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar
[23] Pin C, Jager J B, Tardif M, Picard E, Hadji E, de Fornel F, Cluzel B 2018 Lab Chip 18 1750Google Scholar
[24] Lin S, Crozier K B 2011 Lab Chip 11 4047Google Scholar
[25] Wu S H, Huang N, Jaquay E, Povinelli M L 2016 Nano Lett. 16 5261Google Scholar
[26] Xu Z, Song W, Crozier K B 2018 ACS Photonics 5 4993Google Scholar
[27] Ma Z, Hanham S M, Arroyo Huidobro P, Gong Y, Hong M, Klein N, Maier S A 2017 APL Photonics 2 116102Google Scholar
[28] Jiang B, Dai H, Zou Y, Chen X J 2018 Opt. Express 26 12579Google Scholar
[29] 肖金标, 罗辉, 徐银, 孙小菡 2015 物理学报 64 194207Google Scholar
Xiao J B, Luo H, Xu Y, Sun X H 2015 Acta Phys. Sin. 64 194207Google Scholar
[30] 唐水晶, 李贝贝, 肖云峰 2019 物理 48 137Google Scholar
Tang S J, Li B B, Xiao Y F 2019 Physics 48 137Google Scholar
[31] Chien M H, Steurer J, Sadeghi P, Cazier N, Schmid S 2020 ACS Photonics 7 2197Google Scholar
[32] Wang W, Liu S, Gu Z, Wang Y 2020 Phys. Rev. A 101 13833Google Scholar
[33] Liu Y, Shi L, Xu X, Zhao P, Wang Z, Pu S, Zhang X 2014 Lab Chip 14 3004Google Scholar
[34] Salafi T, Zhang Y, Zhang Y 2019 Nanomicro. Lett. 11 77
[35] 蒋炳炎, 彭涛, 袁帅, 周明勇 2021 化学进展 33 17Google Scholar
Jiang B Y, Peng T, Yuan S, Zhou M Y 2021 Prog. Chem. 33 17Google Scholar
[36] 李霖伟, 陈智辉, 杨毅彪, 费宏明 2021 中国光学 14 145Google Scholar
Li L W, Chen Z H, Yang Y B, Fei H M 2021 Chin. Opt. 14 145Google Scholar
-
图 7 (a), (b) 环间距在350 nm与50 nm时, 荧光量子点的运动范围在0—1000 nm时的荧光输出示意图; (c) 环间距在50 nm时, 波长在1280 nm与1325 nm附近时, 荧光量子点的运动范围在0—1000 nm时的荧光峰值功率曲线图
Fig. 7. (a), (b) Schematic diagrams of the fluorescence output when the ring spacings are 350 nm and 50 nm, and the motion range of the fluorescent quantum dots is 0–1000 nm; (c) when the ring spacing is 50 nm, the wavelengths are 1280 nm and 1325 nm. Fluorescence peak power curve graph when the motion range of fluorescent quantum dots is in the vicinity of 0–1000 nm
图 8 荧光量子点的运动范围在0—1000 nm变化时 (a)本工作的荧光功率输出示意图, (b) 波导-单谐振腔的荧光功率输出示意图; (c), (d)波长在1280 nm与1325 nm附近时, 两个结构的荧光输出功率峰值曲线图
Fig. 8. When the motion range of fluorescent quantum dots varies from 0 to 1000 nm: (a) The schematic diagram of the fluorescence power output of this work; (b) the schematic diagram of the fluorescence power output of the waveguide-single resonator; (c), (d) the fluorescence output power peak curves of the two structures when the wavelength is around 1280 nm and 1325 nm, respectively.
-
[1] 闵伶俐, 陈松月, 盛智芝, 王宏龙, 吴锋, 王苗, 侯旭 2016 物理学报 65 178301Google Scholar
Min L L, Chen S Y, Sheng Z Z, Wang H L, Wu F, Wang M, Hou X 2016 Acta Phys. Sin. 65 178301Google Scholar
[2] Mitchell K R, Esene J E, Woolley A T 2022 Anal. Bioanal. Chem. 414 167Google Scholar
[3] Rigas E, Hallam J M, Charrett T O H, Ford H D, Tatam R P 2019 Opt. Express 27 23849Google Scholar
[4] Komatsu T, Tokeshi M, Fan S K 2022 Biosens. Bioelectron. 195 113631Google Scholar
[5] 王琼, 王凯歌, 孟康康, 孙聃, 韩仝雨, 高爱华 2020 物理学报 69 168202Google Scholar
Wang X, Wang K G, Meng K K, Sun D, Han T Y, Gao A H 2020 Acta Phys. Sin 69 168202Google Scholar
[6] Lee T H, Kwon H B, Song W Y, Lee S S, Kim Y J 2021 Lab Chip 21 1503Google Scholar
[7] Zhu X, Suo Y, Fu Y, Zhang F, Ding N, Pang K, Xie C, Weng X, Tian M, He H, Wei X 2021 Light Sci. Appl. 10 110Google Scholar
[8] Sreekanth K V, Sreejith S, Alapan Y, Sitti M, Lim C T, Singh R 2019 Adv. Opt. Mater. 7 1801313Google Scholar
[9] Niculescu A G, Chircov C, Birca A C, Grumezescu A M 2021 Int. J. Mol. Sci. 22 2
[10] Liu Y, Zhang X 2021 Micromachines (Basel) 12 1
[11] Gong T, Kong K V, Goh D, Olivo M, Yong K T 2015 Biomed. Opt. Express 6 2076Google Scholar
[12] 唐文来, 项楠, 张鑫杰, 黄笛, 倪中华 2015 物理学报 64 184703Google Scholar
Tang W L, Xiang N, Zhang X J, Huang D, Ni Z H 2015 Acta Phys. Sin. 64 184703Google Scholar
[13] Postigo P A, Alvaro R, Juarros A, Merino S 2016 Biomed. Opt. Express 7 3289Google Scholar
[14] Guo J, Liu X, Kang K, Ai Y, Wang Z, Kang Y 2015 J. Lightwave Technol. 33 3433Google Scholar
[15] Liang L, Zhao C, Xie F, Sun L P, Ran Y, Jin L, Guan B O 2020 Opt. Express 28 24408Google Scholar
[16] Ha B, Kim T J, Moon E, Giaccia A J, Pratx G 2021 Biosens. Bioelectron. 194 113565Google Scholar
[17] Lipka T, Moldenhauer L, Wahn L, Trieu H K 2017 JOL 42 1084
[18] Wang Y, Chen ZH 2018 J. Mater. Sci. 54 4970
[19] Wang Y, Wu N, Chen Z H 2021 J. Mater. Sci. 56 14368Google Scholar
[20] Chen S, Hao R, Zhang Y, Yang H 2019 Photon. Res. 7 532Google Scholar
[21] Bag S K, Sinha R K, Wan M, Varshney S K 2021 J. Phys. D Appl. Phys. 54 1601Google Scholar
[22] Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar
[23] Pin C, Jager J B, Tardif M, Picard E, Hadji E, de Fornel F, Cluzel B 2018 Lab Chip 18 1750Google Scholar
[24] Lin S, Crozier K B 2011 Lab Chip 11 4047Google Scholar
[25] Wu S H, Huang N, Jaquay E, Povinelli M L 2016 Nano Lett. 16 5261Google Scholar
[26] Xu Z, Song W, Crozier K B 2018 ACS Photonics 5 4993Google Scholar
[27] Ma Z, Hanham S M, Arroyo Huidobro P, Gong Y, Hong M, Klein N, Maier S A 2017 APL Photonics 2 116102Google Scholar
[28] Jiang B, Dai H, Zou Y, Chen X J 2018 Opt. Express 26 12579Google Scholar
[29] 肖金标, 罗辉, 徐银, 孙小菡 2015 物理学报 64 194207Google Scholar
Xiao J B, Luo H, Xu Y, Sun X H 2015 Acta Phys. Sin. 64 194207Google Scholar
[30] 唐水晶, 李贝贝, 肖云峰 2019 物理 48 137Google Scholar
Tang S J, Li B B, Xiao Y F 2019 Physics 48 137Google Scholar
[31] Chien M H, Steurer J, Sadeghi P, Cazier N, Schmid S 2020 ACS Photonics 7 2197Google Scholar
[32] Wang W, Liu S, Gu Z, Wang Y 2020 Phys. Rev. A 101 13833Google Scholar
[33] Liu Y, Shi L, Xu X, Zhao P, Wang Z, Pu S, Zhang X 2014 Lab Chip 14 3004Google Scholar
[34] Salafi T, Zhang Y, Zhang Y 2019 Nanomicro. Lett. 11 77
[35] 蒋炳炎, 彭涛, 袁帅, 周明勇 2021 化学进展 33 17Google Scholar
Jiang B Y, Peng T, Yuan S, Zhou M Y 2021 Prog. Chem. 33 17Google Scholar
[36] 李霖伟, 陈智辉, 杨毅彪, 费宏明 2021 中国光学 14 145Google Scholar
Li L W, Chen Z H, Yang Y B, Fei H M 2021 Chin. Opt. 14 145Google Scholar
计量
- 文章访问数: 4382
- PDF下载量: 68
- 被引次数: 0