搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2.45 GHz微波无线能量传输用Ge基双通道整流单端肖特基势垒场效应晶体管

毕思涵 宋建军 张栋 张士琦

引用本文:
Citation:

2.45 GHz微波无线能量传输用Ge基双通道整流单端肖特基势垒场效应晶体管

毕思涵, 宋建军, 张栋, 张士琦

A Ge-based dual channel rectified single ended Schottky barrier field effect transistor for 2.45 GHz microwave wireless energy transmission

Bi Si-Han, Song Jian-Jun, Zhang Dong, Zhang Shi-Qi
PDF
HTML
导出引用
  • 整流器件是微波无线能量传输系统的核心部分, 新型整流器件的研发是当前领域研究的重要方向. 肖特基二极管和场效应晶体管是目前主流整流器件, 但二者整流范围有限, 无法实现兼顾弱能量和中等能量密度的宽范围整流. 有鉴于此, 本文提出并设计了2.45 GHz微波无线能量传输用Ge基p型单端肖特基势垒场效应晶体管(源端为肖特基接触, 漏端为标准p+掺杂). 在此基础上, 充分利用器件的肖特基结构, 采用新型二极管连接方式, 以实现不同偏压下开启的沟道和源衬肖特基结构的双通道宽范围整流. 采用Silvaco TCAD软件进行仿真, 对于负载为0.3 pF和70 kΩ的半波整流电路, 实现了–20—24 dBm宽范围整流, 相比同条件下Ge场效应晶体管范围拓宽8 dBm, 且在范围内整体整流效率较高, 在16 dBm整流效率峰值可达57.27%. 在–10 dBm弱能量密度的整流效率达到6.17%, 是同等条件下Ge 场效应晶体管的7倍多.
    Rectifier component is a core part of a microwave wireless energy transmission system, and the development of new rectifier components is an important research direction in this field. Schottky diodes and field-effect transistors are currently the mainstream rectifier devices, but they have a limited rectification range and cannot achieve a wide-range rectification of both weak energy and medium energy density at the same time. In view of this, in this work proposed and designed is a Ge based p-type single-ended Schottky barrier field effect transistor (Schottky contact at the source and standard p+ doping at the drain) for 2.45 GHz microwave wireless energy transmission. Based on this, the Schottky structure of the device is fully utilised and a new diode connection is used in order to realize a dual channel wide range rectification of the trench and source lined Schottky structure opened at different bias voltages. Simulations are carried out by using the Silvaco TCAD software. For a half-wave rectifier circuit with a load of 0.3 pF and 70 kΩ, a wide range from –20 to 24 dBm rectification is achieved, which is 8 dBm wider than the range of Ge field-effect transistors under the same conditions, and the overall rectification efficiency is higher in the range, with a peak rectification efficiency of 57.27% at 16 dBm. The rectification efficiency at –10 dBm weak energy density reaches 6.17%, which is more than 7 times that of Ge FETs under the same conditions.
      通信作者: 毕思涵, shbi@stu.xidian.edu.cn
    • 基金项目: 高等学校学科创新引智计划(批准号: B12026)和智能可重构通用系统技术研究(批准号: F020250058)资助的课题.
      Corresponding author: Bi Si-Han, shbi@stu.xidian.edu.cn
    • Funds: Project supported by the 111 Project (Grant No. B12026) and the Technology of Intelligent Reconfigurable General System, China (Grant No. F020250058).
    [1]

    Ullah M A, Keshavarz R, Abolhasan M, Lipman J, Esselle K P, Shariati N 2022 IEEE Access 10 17231Google Scholar

    [2]

    Haerinia M, Shadid R 2020 Signals 1 209Google Scholar

    [3]

    Divakaran S K, Krishna D D 2019 INT. J. RF. Microw. C. E 29 e21633Google Scholar

    [4]

    Zhang Z, Pang H, Georgiadis A, Cecati C 2019 IEEE Trans. Ind. Electron. 66 1044Google Scholar

    [5]

    Eteng A A, Goh H H, Rahim S K A, Alomainy A 2021 IEEE Access 9 27518Google Scholar

    [6]

    Zhu G L, Du J X, Yang X X, Zhou Y G, Gao S 2019 IEEE Access 7 141978Google Scholar

    [7]

    Xiao H, Zhang H, Song W, Wang J, Chen W, Lu M 2021 IEEE Trans. Ind. Electron. 69 2896Google Scholar

    [8]

    宋建军, 张龙强, 陈雷, 周亮, 孙雷, 兰军峰, 习楚浩, 李家豪 2021 物理学报 70 108401Google Scholar

    Song J J, Zhang L Q, Chen L, Zhou L, Sun L, Lan J F, Xi C H, Li J H 2021 Acta Phys. Sin. 70 108401Google Scholar

    [9]

    李妤晨, 陈航宇, 宋建军 2020 物理学报 69 108401Google Scholar

    Li Y C, Chen H Y, Song J J 2020 Acta Phys. Sin. 69 108401Google Scholar

    [10]

    Chong G, Ramiah H, Yin J, Rajendran J, Mak P I, Martins R P 2019 IEEE Trans. Circuits Syst. II, Exp. Briefs 68 1743Google Scholar

    [11]

    Choi W, Lee J, Shin M 2014 IEEE Trans. Electron Devices 61 37Google Scholar

    [12]

    Kim S, Lee K, Lee J H, Park B G, Kwon D 2021 IEEE Trans. Electron Devices 68 4754Google Scholar

    [13]

    Yao Y, Sun Y, Li X, Shi Y, Liu Z 2020 IEEE Trans. Electron Devices 67 751Google Scholar

    [14]

    Chen C W, Tzeng J Y, Chuang C T, Chien H P, Chien C H, Luo G L 2014 IEEE Trans. Electron Devices 61 2656Google Scholar

    [15]

    张茂添 2014 硕士学位论文 (厦门: 厦门大学)

    Zhang M T 2014 M. S. Thesis (Xiamen: Xiamen University) (in Chinese)

    [16]

    施敏, 伍国珏(耿莉, 张瑞智译) 2007 半导体器件物理 (北京: 西安交通大学出版社) 第 130—142页

    Sze S M, Kwok K N (translated by Geng L, Zhang R Z) 2007 Physics of Semiconductor Devices (Xi’an: Xi’an jiaotong University Press) pp130–142 (in Chinese)

    [17]

    汤晓燕 2007博士学位论文 (西安: 西安电子科技大学)

    Tang X Y 2007 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [18]

    Shokrani M R, Hamidon M N, Khoddam M, Najafi V 2012 IEEE International Conference on Electronics Design Kuala Lumpur, Malaysia, November 5–6, 2012 p234

    [19]

    Shokrani M R, Khoddam M, Hamidon M N B, Kamsani N A, Rokhani F Z, Shafie S B 2014 Sci. World J. 2014 1Google Scholar

    [20]

    Zhang D, Song J J, Xue X H, Zhang S Q 2022 Chin. Phys. B 31 068401Google Scholar

  • 图 1  Ge基p沟SB-MOSFET随外加电压变化的能带图 (a)$| {{V_{\text{g}}}} | = | {{V_{\text{d}}}} | = 0$; (b)$| {{V_{\text{g}}}} | = 0, | {{V_{\text{d}}}} | > 0$; (c)$ | {{V_{\text{g}}}} | < | {{V_{\text{T}}}} | $; (d)$| {{V_{\text{g}}}} | > | {{V_{\text{T}}}} |$

    Fig. 1.  Energy band diagram of Ge based p-channel SB-MOSFET with applied voltage: (a)$ | {{V_{\text{g}}}} | = | {{V_{\text{d}}}} | = 0 $; (b)$ | {{V_{\text{g}}}} | = 0, | {{V_{\text{d}}}} | > 0 $; (c)$ | {{V_{\text{g}}}} | < | {{V_{\text{T}}}} | $; (d)$ | {{V_{\text{g}}}} | > | {{V_{\text{T}}}} | $.

    图 2  Ge基p沟SBSL-MOSFET随外加电压变化的能带图 (a) $ \left| {{V_{\text{g}}}} \right| = \left| {{V_{\text{d}}}} \right| = 0 $; (b) $ \left| {{V_{\text{g}}}} \right| > \left| {{V_{\text{T}}}} \right| $

    Fig. 2.  Energy band diagram of Ge based p-channel SBSL-MOSFET with applied voltage: (a) $ \left| {{V_{\text{g}}}} \right| = \left| {{V_{\text{d}}}} \right| = 0 $; (b) $ \left| {{V_{\text{g}}}} \right| > \left| {{V_{\text{T}}}} \right| $.

    图 3  SB-MOSFET (a) 和 SBSL-MOSFET (b)器件结构及仿真用关键参数值

    Fig. 3.  The key parameter values for device structure and simulation of SB-MOSFET (a) and SBSL-MOSFET (b).

    图 4  Ge SB-MOSFET (a)和 Ge SBSL-MOSFET (b)仿真结构图

    Fig. 4.  The simulation structure diagram of Ge SB-MOSFET (a) and SBSL-MOSFET (b).

    图 5  标准坐标系(a)和对数坐标系下(b)三种MOSFET的转移特性曲线图

    Fig. 5.  Transfer characteristic curves of three MOSFETs in the standard coordinate system (a) and the logarithmic coordinate system (b).

    图 6  SB-MOSFET和SBSL-MOSFET输出特性曲线图

    Fig. 6.  Output characteristic curves of SB-MOSFET and SBSL-MOSFET.

    图 7  Ge-MOSFET输出特性曲线图

    Fig. 7.  Output characteristic curve of Ge-MOSFET.

    图 8  传统二极管连接方式SBSL-MOSFET电流示意图 (a) 正向电流; (b) 反向电流

    Fig. 8.  Conventional diode connection of SBSL-MOSFET current diagram: (a) Forward current; (b) reverse current.

    图 9  新型连接方式SBSL-MOSFET电流示意图 (a) 正向电流; (b) 反向电流

    Fig. 9.  Novel connection of SBSL-MOSFET current diagram: (a) Forward current; (b) reverse current.

    图 10  半波整流电路示意图

    Fig. 10.  The schematic diagram of half wave rectifier circuit.

    图 11  Ge基SBSL-MOSFET在两种连接方式下的I-V曲线图

    Fig. 11.  I-V curve diagram under two connection methods of Ge based SBSL-MOSFET.

    图 12  SB-MOSFET和SBSL-MOSFET在新型连接方式下I-V曲线图

    Fig. 12.  I-V curve diagram under the new connection method of SB-MOSFET and SBSL-MOSFET.

    图 13  (a) 瞬态仿真输入输出电流电压波形图; (b) 瞬态仿真输入输出电压单周期局部放大图; (c) 瞬态仿真输入输出功率图; (d) 整流效率和负载电压随负载阻抗变化图

    Fig. 13.  (a) Transient simulation input and output current and voltage waveforms; (b) transient simulation input and output voltage single-cycle partial enlarged diagram; (c) transient simulation input and output power diagrams; (d) rectification efficiency and load voltage with load impedance change graph.

    图 14  SB-MOSFET和SBSL-MOSFET整流效率曲线图

    Fig. 14.  Rectifying efficiency graph of SB-MOSFET and SBSL-MOSFET.

    图 15  四种MOSFET整流效率曲线图

    Fig. 15.  Rectifying efficiency graphs of four kinds of MOSFET.

  • [1]

    Ullah M A, Keshavarz R, Abolhasan M, Lipman J, Esselle K P, Shariati N 2022 IEEE Access 10 17231Google Scholar

    [2]

    Haerinia M, Shadid R 2020 Signals 1 209Google Scholar

    [3]

    Divakaran S K, Krishna D D 2019 INT. J. RF. Microw. C. E 29 e21633Google Scholar

    [4]

    Zhang Z, Pang H, Georgiadis A, Cecati C 2019 IEEE Trans. Ind. Electron. 66 1044Google Scholar

    [5]

    Eteng A A, Goh H H, Rahim S K A, Alomainy A 2021 IEEE Access 9 27518Google Scholar

    [6]

    Zhu G L, Du J X, Yang X X, Zhou Y G, Gao S 2019 IEEE Access 7 141978Google Scholar

    [7]

    Xiao H, Zhang H, Song W, Wang J, Chen W, Lu M 2021 IEEE Trans. Ind. Electron. 69 2896Google Scholar

    [8]

    宋建军, 张龙强, 陈雷, 周亮, 孙雷, 兰军峰, 习楚浩, 李家豪 2021 物理学报 70 108401Google Scholar

    Song J J, Zhang L Q, Chen L, Zhou L, Sun L, Lan J F, Xi C H, Li J H 2021 Acta Phys. Sin. 70 108401Google Scholar

    [9]

    李妤晨, 陈航宇, 宋建军 2020 物理学报 69 108401Google Scholar

    Li Y C, Chen H Y, Song J J 2020 Acta Phys. Sin. 69 108401Google Scholar

    [10]

    Chong G, Ramiah H, Yin J, Rajendran J, Mak P I, Martins R P 2019 IEEE Trans. Circuits Syst. II, Exp. Briefs 68 1743Google Scholar

    [11]

    Choi W, Lee J, Shin M 2014 IEEE Trans. Electron Devices 61 37Google Scholar

    [12]

    Kim S, Lee K, Lee J H, Park B G, Kwon D 2021 IEEE Trans. Electron Devices 68 4754Google Scholar

    [13]

    Yao Y, Sun Y, Li X, Shi Y, Liu Z 2020 IEEE Trans. Electron Devices 67 751Google Scholar

    [14]

    Chen C W, Tzeng J Y, Chuang C T, Chien H P, Chien C H, Luo G L 2014 IEEE Trans. Electron Devices 61 2656Google Scholar

    [15]

    张茂添 2014 硕士学位论文 (厦门: 厦门大学)

    Zhang M T 2014 M. S. Thesis (Xiamen: Xiamen University) (in Chinese)

    [16]

    施敏, 伍国珏(耿莉, 张瑞智译) 2007 半导体器件物理 (北京: 西安交通大学出版社) 第 130—142页

    Sze S M, Kwok K N (translated by Geng L, Zhang R Z) 2007 Physics of Semiconductor Devices (Xi’an: Xi’an jiaotong University Press) pp130–142 (in Chinese)

    [17]

    汤晓燕 2007博士学位论文 (西安: 西安电子科技大学)

    Tang X Y 2007 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [18]

    Shokrani M R, Hamidon M N, Khoddam M, Najafi V 2012 IEEE International Conference on Electronics Design Kuala Lumpur, Malaysia, November 5–6, 2012 p234

    [19]

    Shokrani M R, Khoddam M, Hamidon M N B, Kamsani N A, Rokhani F Z, Shafie S B 2014 Sci. World J. 2014 1Google Scholar

    [20]

    Zhang D, Song J J, Xue X H, Zhang S Q 2022 Chin. Phys. B 31 068401Google Scholar

  • [1] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 不同相NbS2与GeS2构成的二维金属-半导体异质结的电接触性质. 物理学报, 2024, 73(13): 137102. doi: 10.7498/aps.73.20240530
    [2] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [3] 梁前, 钱国林, 罗祥燕, 梁永超, 谢泉. 外电场和双轴应变对MoSH/WSi2N4肖特基结势垒的调控. 物理学报, 2022, 71(21): 217301. doi: 10.7498/aps.71.20220882
    [4] 黄玲琴, 朱靖, 马跃, 梁庭, 雷程, 李永伟, 谷晓钢. SiC电力电子器件金属接触研究现状与进展. 物理学报, 2021, 70(20): 207302. doi: 10.7498/aps.70.20210675
    [5] 宋建军, 张龙强, 陈雷, 周亮, 孙雷, 兰军峰, 习楚浩, 李家豪. 基于晶向优化和Sn合金化技术的一种2.45 G弱能量微波无线输能用Ge基肖特基二极管. 物理学报, 2021, 70(10): 108401. doi: 10.7498/aps.70.20201674
    [6] 李妤晨, 陈航宇, 宋建军. 用于提高微波无线能量传输系统接收端能量转换效率的肖特基二极管. 物理学报, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [7] 石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙. 人工磁导体对无线能量传输空间场的调控. 物理学报, 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
    [8] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究. 物理学报, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [9] 赵俊飞, 张冶文, 李云辉, 陈永强, 方恺, 赫丽. 基于环磁美特材料的无线传能系统. 物理学报, 2016, 65(16): 168801. doi: 10.7498/aps.65.168801
    [10] 许立军, 张鹤鸣. 环栅肖特基势垒金属氧化物半导体场效应管漏致势垒降低效应研究. 物理学报, 2013, 62(10): 108502. doi: 10.7498/aps.62.108502
    [11] 刘兴辉, 赵宏亮, 李天宇, 张仁, 李松杰, 葛春华. 基于异质双栅电极结构提高碳纳米管场效应晶体管电子输运效率. 物理学报, 2013, 62(14): 147308. doi: 10.7498/aps.62.147308
    [12] 万宁, 郭春生, 张燕峰, 熊聪, 马卫东, 石磊, 李睿, 冯士维. AlGaAs/InGaAs PHEMT栅电流参数退化模型研究. 物理学报, 2013, 62(15): 157203. doi: 10.7498/aps.62.157203
    [13] 于歆杰, 吴天逸, 李臻. 基于Metglas/PFC磁电层状复合材料的电能无线传输系统. 物理学报, 2013, 62(5): 058503. doi: 10.7498/aps.62.058503
    [14] 邵铮铮, 王晓峰, 张学骜, 常胜利. 原子力显微技术研究ZnO纳米棒的压电放电特性. 物理学报, 2010, 59(1): 550-554. doi: 10.7498/aps.59.550
    [15] 黄维, 陈之战, 陈义, 施尔畏, 张静玉, 刘庆峰, 刘茜. 组合材料方法研究膜厚对Ni/SiC电极接触性质的影响. 物理学报, 2010, 59(5): 3466-3472. doi: 10.7498/aps.59.3466
    [16] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压. 物理学报, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [17] 林若兵, 王欣娟, 冯 倩, 王 冲, 张进城, 郝 跃. AlGaN/GaN高电子迁移率晶体管肖特基高温退火机理研究. 物理学报, 2008, 57(7): 4487-4491. doi: 10.7498/aps.57.4487
    [18] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [19] 竺 云, 王太宏. 量子点器件的三端电测量研究. 物理学报, 2003, 52(3): 677-682. doi: 10.7498/aps.52.677
    [20] 王 源, 张义门, 张玉明, 汤晓燕. 6H-SiC肖特基源漏MOSFET的模拟仿真研究. 物理学报, 2003, 52(10): 2553-2557. doi: 10.7498/aps.52.2553
计量
  • 文章访问数:  4298
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 修回日期:  2022-06-29
  • 上网日期:  2022-10-13
  • 刊出日期:  2022-10-20

/

返回文章
返回