搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维MoS2压痕过程异质界面范德瓦耳斯力引起的撕裂行为

李耀华 董耀勇 董辉 郑学军

引用本文:
Citation:

二维MoS2压痕过程异质界面范德瓦耳斯力引起的撕裂行为

李耀华, 董耀勇, 董辉, 郑学军

Tearing behavior induced by van der Waals force at heterogeneous interface during two-dimensional MoS2 nanoindentation

Li Yao-Hua, Dong Yao-Yong, Dong Hui, Zheng Xue-Jun
PDF
HTML
导出引用
  • 结合扫描电子显微镜视频模块和原位纳米力学测试系统, 采用纳米压痕法研究了二维材料范德瓦耳斯异质结构的剥离撕裂行为. 利用湿法转移将化学气相沉积法制备的二维MoS2纳米片, 在SiO2/Si基底上组装成MoS2/SiO2异质结构, 然后采用原位力学杆探针对其实施压入实验. 钨探针压入MoS2纳米片形成W/MoS2/SiO2新的异质结构. 探针回撤过程, 黏附作用使二维MoS2纳米片从SiO2/Si基底剥离形成鼓包, 达到一定高度后沿针尖接触圆弧线发生不完全穿透断裂. 未断裂部分开始发生沿两个长条形裂纹面解理同时MoS2/SiO2界面分离, 随后MoS2纳米片发生大面积撕裂现象. 通过密度泛函理论计算范德瓦耳斯异质界面结合能密度, 结果表明MoS2/W的界面结合能密度比MoS2/SiO2更大, 解释了MoS2纳米片在异质界面范德瓦耳斯力引起的黏附剥离现象. 基于薄膜撕裂模型, 利用扫描电子显微镜实时记录的MoS2纳米片剥离高度和撕裂长度, 可确定MoS2断裂强度为27.055 GPa和应力-应变关系. 密度泛函理论计算结果表明, MoS2断裂强度为21.7—32.5 GPa, 应力-应变关系与薄膜撕裂模型实验测量结果基本一致. 该工作有望在探究二维材料断裂强度、二维材料及其范德瓦耳斯异质结构器件的组装、拆卸的操控与可靠性设计方面发挥重要的指导作用.
    Combining with in situ nanomechanical testing system and video module of scanning electron microscope, the nanoindentation testing is performed to study the peeling-tearing behavior of two-dimensional material van der Waals heterostructures. After two-dimensional MoS2 nanosheets prepared by chemical vapor deposition are assembled into MoS2/SiO2 heterostructures by wet transfer, the nanoindentation is carried out by manipulating the tungsten probe in the in situ nanomechanical testing system. When the tungsten probe is tightly indenting into MoS2 nanosheets, a new W/MoS2/SiO2 heterostructure is assembled. With the tungsten probe retracting, the adhesive effect makes the two-dimensional MoS2 nanosheet peel off from SiO2/Si substrate to form a bulge. After reaching a certain height, under the van der Waals adhesion interaction, an incomplete penetration fracture occurs along the arc line contacting the needle. Then cleavage appears and produces two strip cracks and MoS2/SiO2 interface separation takes place simultaneously, before a large area of MoS2 nanosheet is teared. Based on the density functional theory calculation of interface binding energy density of van der Waals heterogeneous interface, the interface binding energy density of MoS2/W is verified to be larger than that of MoS2/SiO2, which explains the adhesion peeling behavior of MoS2 induced by van der Waals force between heterogeneous interfaces, perfectly. By using the peeling height and tearing length of MoS2 recorded by video module, the fracture strength of MoS2 is obtained to be 27.055 GPa and stress-strain relation can be achieved according to the film tearing model. The density functional theory simulation results show that the fracture strength of MoS2 is in a range of 21.7–32.5 GPa, and the stress-strain relation is consistent with the experimental result measured based on film tearing model. The present work is expected to play an important role in measuring the fracture strengths of two-dimensional materials, the assembly, disassembly manipulation and reliability design of two-dimensional materials and van der Waals heterostructures devices.
      通信作者: 郑学军, zhengxuejun@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11832016, 51775471, 11902284)和湖南省自然科学基金(批准号: 2021JJ20008)资助的课题资助的课题.
      Corresponding author: Zheng Xue-Jun, zhengxuejun@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11832016, 51775471, 11902284) and the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ20008) .
    [1]

    Liu Y, Weiss N O, Duan X, Cheng H-C, Huang Y, Duan X 2016 Nat. Rev. Mater 1 1Google Scholar

    [2]

    顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞 2016 物理学报 65 018102Google Scholar

    Gu P C, Zhang K L, Feng Y L, Wang F, Miao Y P, Han Y M, Zhang H X 2016 Acta Phys. Sin. 65 018102Google Scholar

    [3]

    Li T, Galli G 2007 J. Phys. Chem. C 111 16192Google Scholar

    [4]

    Castellanos‐Gomez A, Poot M, Steele G A, van Der Zant H S, Agraït N, Rubio-Bollinger G 2012 Adv. Mater 24 772Google Scholar

    [5]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem 5 263Google Scholar

    [6]

    Yim C, O'Brien M, McEvoy N, Winters S, Mirza I, Lunney J G, Duesberg G S 2014 Appl. Phys. Lett 104 103114Google Scholar

    [7]

    Sahoo S, Gaur A P, Ahmadi M, Guinel M J-F, Katiyar R S 2013 J. Phys. Chem. C 117 9042Google Scholar

    [8]

    Bertolazzi S, Krasnozhon D, Kis A 2013 ACS Nano 7 3246Google Scholar

    [9]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol 6 147Google Scholar

    [10]

    Chang K, Chen W 2011 ACS Nano 5 4720Google Scholar

    [11]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol 8 497Google Scholar

    [12]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [13]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol 7 699Google Scholar

    [14]

    Han Y, Zhou J, Wang H, Gao L, Feng S, Cao K, Xu Z, Lu Y 2021 Appl. Nanosci 11 1075Google Scholar

    [15]

    Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S 2014 Nano. Lett 14 5097Google Scholar

    [16]

    Li B, Yin J, Liu X, Wu H, Li J, Li X, Guo W 2019 Nat. Nanotechnol 14 567Google Scholar

    [17]

    Li B, Liu X, Guo W 2021 Nano. Res 14 692Google Scholar

    [18]

    Tao Q, Wu R, Li Q, Kong L, Chen Y, Jiang J, Lu Z, Li B, Li W, Li Z 2021 Nat. Commun 12 1Google Scholar

    [19]

    Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y, Zhang J, Zhang X 2014 Nat. Commun 5 1

    [20]

    Yang Y, Li X, Wen M, Hacopian E, Chen W, Gong Y, Zhang J, Li B, Zhou W, Ajayan P M 2017 Adv. Mater 29 1604201Google Scholar

    [21]

    Cao K, Feng S, Han Y, Gao L, Hue Ly T, Xu Z, Lu Y 2020 Nat. Commun 11 1Google Scholar

    [22]

    Fang Z, Li X, Shi W, Li Z, Guo Y, Chen Q, Peng L, Wei X 2020 J. Phys. Chem. C 124 23419Google Scholar

    [23]

    Reina A, Son H, Jiao L, Fan B, Dresselhaus M S, Liu Z, Kong J 2008 J. Phys. Chem. C 112 17741Google Scholar

    [24]

    Yang X, Li X, Deng Y, Wang Y, Liu G, Wei C, Li H, Wu Z, Zheng Q, Chen Z 2019 Adv. Funct. Mater 29 1902427Google Scholar

    [25]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, Geim A K 2008 Science 320 1308Google Scholar

    [26]

    Kovalchick C, Molinari A, Ravichandran G 2014 J. Appl. Mech 81 4Google Scholar

    [27]

    Rivlin R S 1997 Collected Papers of RS Rivlin (New York: Springer Science & Business Media) p2611

    [28]

    Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G-H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater 12 554Google Scholar

    [29]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater 22 1385Google Scholar

    [30]

    Li S-L, Miyazaki H, Song H, Kuramochi H, Nakaharai S, Tsukagoshi K 2012 ACS Nano 6 7381Google Scholar

    [31]

    Xu D, Liechti K M, Ravi-Chandar K 2007 J. Colloid Interface Sci 315 772Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett 77 3865Google Scholar

    [33]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys 132 154104Google Scholar

    [34]

    Liu J, Zhang J 2020 Chem. Rev 120 2123Google Scholar

    [35]

    Li Y, Ching W 1985 Phys. Rev. B 31 2172Google Scholar

    [36]

    Shemella P, Nayak S K 2009 Appl. Phys. Lett 94 032101Google Scholar

    [37]

    Fan X, Zheng W, Chihaia V, Shen Z, Kuo J-L 2012 J. Phys.: Condens. Matter 24 305004Google Scholar

    [38]

    Nguyen T C, Otani M, Okada S 2011 Phys. Rev. Lett 106 106801Google Scholar

    [39]

    Gan Y, Zhao H 2014 Phys. Lett. A 378 2910Google Scholar

    [40]

    Gan Y, Zhao H 2016 Phys. Lett. A 380 745Google Scholar

    [41]

    Guo Y, Liu C, Yin Q, Wei C, Lin S, Hoffman T B, Zhao Y, Edgar J, Chen Q, Lau S P 2016 ACS Nano 10 8980Google Scholar

  • 图 1  (a) MoS2光学显微镜图像; (b) MoS2 纳米片AFM二维形貌图及横截面轮廓线; (c) MoS2纳米片拉曼光谱; (d) MoS2转移到叉指电极上的SEM图像

    Fig. 1.  (a) Optical diagram of MoS2; (b) AFM morphology image and cross-section profile of MoS2 nanosheet; (c) Raman spectra of MoS2 nanosheet; (d) SEM image of MoS2 transferred onto the interdigitated electrodes.

    图 2  (a) W探针和MoS2纳米片SEM图像; (b) MoS2/SiO2 vdWHs纳米压痕实验示意图

    Fig. 2.  (a) SEM image of W probe and MoS2 nanosheets; (b) schematic diagram of the nanoindentation on MoS2/SiO2 vdWHs.

    图 3  MoS2/SiO2 vdWHs纳米压痕过程典型的SEM图 (a) W探针压入形成W/MoS2/SiO2 vdWHs; (b) MoS2纳米片被W探针黏附从SiO2/Si基底剥离形成鼓包; (c) MoS2纳米片发生不完全穿透断裂; (d) MoS2纳米片解理撕裂后, 最终与SiO2/Si完全分离

    Fig. 3.  Typical SEM images of MoS2/SiO2 vdWHs nanoindentation processes: (a) W probe indentation to assemble W/MoS2/SiO2 vdWHs; (b) MoS2 peeled by W probe from SiO2/Si substrate to form bulge; (c) MoS2 incomplete penetration fracture; (d) MoS2 nanosheet teared along cleavage cracks and completely separated from SiO2/Si substrate.

    图 4  (a), (b) MoS2/SiO2和MoS2/W异质结构的原子结构示意图; (c) MoS2/SiO2和MoS2/W vdWHs界面结合能密度Eb与层间位移关系曲线, 插图是范德瓦耳斯相互作用导致MoS2/SiO2界面分离示意图

    Fig. 4.  (a), (b) The original atomic structure schematics of MoS2/SiO2 and MoS2/W vdWHs; (c) the binding energy density Eb-interlayer displacement curves of MoS2/SiO2 and MoS2/W vdWHs, the inset is schematic for MoS2/SiO2 interface separation induced by vdW interaction.

    图 5  (a)—(e) 剥离撕裂至断裂的SEM图像; (f) 薄膜撕裂模型示意图; (g) MoS2理论分析和DFT模拟的应力应变曲线, 插图表明DFT计算中MoS2原子结构沿ab晶轴方向施加应变; (h) MoS2纳米片沿解理裂纹撕裂后的SEM图像, 插图是识别解理边缘判断MoS2纳米片的晶格方向

    Fig. 5.  (a)–(e) SEM images of the peeling, tear and fracture processes; (f) the film tear model diagram; (g) the experimental and DFT simulation stress-strains curve of MoS2, the inset represents basic unit of the atomic structure applied strains with a and b crystal axis directions. (h) SEM image of MoS2 nanosheet after teared along cleavage cracks, the inset is the lattice direction of MoS2 nanosheet is determined by identifying the cleavage edge.

  • [1]

    Liu Y, Weiss N O, Duan X, Cheng H-C, Huang Y, Duan X 2016 Nat. Rev. Mater 1 1Google Scholar

    [2]

    顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞 2016 物理学报 65 018102Google Scholar

    Gu P C, Zhang K L, Feng Y L, Wang F, Miao Y P, Han Y M, Zhang H X 2016 Acta Phys. Sin. 65 018102Google Scholar

    [3]

    Li T, Galli G 2007 J. Phys. Chem. C 111 16192Google Scholar

    [4]

    Castellanos‐Gomez A, Poot M, Steele G A, van Der Zant H S, Agraït N, Rubio-Bollinger G 2012 Adv. Mater 24 772Google Scholar

    [5]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem 5 263Google Scholar

    [6]

    Yim C, O'Brien M, McEvoy N, Winters S, Mirza I, Lunney J G, Duesberg G S 2014 Appl. Phys. Lett 104 103114Google Scholar

    [7]

    Sahoo S, Gaur A P, Ahmadi M, Guinel M J-F, Katiyar R S 2013 J. Phys. Chem. C 117 9042Google Scholar

    [8]

    Bertolazzi S, Krasnozhon D, Kis A 2013 ACS Nano 7 3246Google Scholar

    [9]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol 6 147Google Scholar

    [10]

    Chang K, Chen W 2011 ACS Nano 5 4720Google Scholar

    [11]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol 8 497Google Scholar

    [12]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [13]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol 7 699Google Scholar

    [14]

    Han Y, Zhou J, Wang H, Gao L, Feng S, Cao K, Xu Z, Lu Y 2021 Appl. Nanosci 11 1075Google Scholar

    [15]

    Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S 2014 Nano. Lett 14 5097Google Scholar

    [16]

    Li B, Yin J, Liu X, Wu H, Li J, Li X, Guo W 2019 Nat. Nanotechnol 14 567Google Scholar

    [17]

    Li B, Liu X, Guo W 2021 Nano. Res 14 692Google Scholar

    [18]

    Tao Q, Wu R, Li Q, Kong L, Chen Y, Jiang J, Lu Z, Li B, Li W, Li Z 2021 Nat. Commun 12 1Google Scholar

    [19]

    Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y, Zhang J, Zhang X 2014 Nat. Commun 5 1

    [20]

    Yang Y, Li X, Wen M, Hacopian E, Chen W, Gong Y, Zhang J, Li B, Zhou W, Ajayan P M 2017 Adv. Mater 29 1604201Google Scholar

    [21]

    Cao K, Feng S, Han Y, Gao L, Hue Ly T, Xu Z, Lu Y 2020 Nat. Commun 11 1Google Scholar

    [22]

    Fang Z, Li X, Shi W, Li Z, Guo Y, Chen Q, Peng L, Wei X 2020 J. Phys. Chem. C 124 23419Google Scholar

    [23]

    Reina A, Son H, Jiao L, Fan B, Dresselhaus M S, Liu Z, Kong J 2008 J. Phys. Chem. C 112 17741Google Scholar

    [24]

    Yang X, Li X, Deng Y, Wang Y, Liu G, Wei C, Li H, Wu Z, Zheng Q, Chen Z 2019 Adv. Funct. Mater 29 1902427Google Scholar

    [25]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, Geim A K 2008 Science 320 1308Google Scholar

    [26]

    Kovalchick C, Molinari A, Ravichandran G 2014 J. Appl. Mech 81 4Google Scholar

    [27]

    Rivlin R S 1997 Collected Papers of RS Rivlin (New York: Springer Science & Business Media) p2611

    [28]

    Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G-H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater 12 554Google Scholar

    [29]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater 22 1385Google Scholar

    [30]

    Li S-L, Miyazaki H, Song H, Kuramochi H, Nakaharai S, Tsukagoshi K 2012 ACS Nano 6 7381Google Scholar

    [31]

    Xu D, Liechti K M, Ravi-Chandar K 2007 J. Colloid Interface Sci 315 772Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett 77 3865Google Scholar

    [33]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys 132 154104Google Scholar

    [34]

    Liu J, Zhang J 2020 Chem. Rev 120 2123Google Scholar

    [35]

    Li Y, Ching W 1985 Phys. Rev. B 31 2172Google Scholar

    [36]

    Shemella P, Nayak S K 2009 Appl. Phys. Lett 94 032101Google Scholar

    [37]

    Fan X, Zheng W, Chihaia V, Shen Z, Kuo J-L 2012 J. Phys.: Condens. Matter 24 305004Google Scholar

    [38]

    Nguyen T C, Otani M, Okada S 2011 Phys. Rev. Lett 106 106801Google Scholar

    [39]

    Gan Y, Zhao H 2014 Phys. Lett. A 378 2910Google Scholar

    [40]

    Gan Y, Zhao H 2016 Phys. Lett. A 380 745Google Scholar

    [41]

    Guo Y, Liu C, Yin Q, Wei C, Lin S, Hoffman T B, Zhao Y, Edgar J, Chen Q, Lau S P 2016 ACS Nano 10 8980Google Scholar

  • [1] 肖聪, 姚望. 范德瓦耳斯体系中的量子层电子学. 物理学报, 2023, 72(23): 237302. doi: 10.7498/aps.72.20231323
    [2] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [3] 胡雪兰, 孙小清, 王梦媛, 王亚如. Ta和Re对Ni/Ni3Al相界面断裂强度和蠕变强度的影响. 物理学报, 2023, 72(6): 063101. doi: 10.7498/aps.72.20222103
    [4] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [5] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控. 物理学报, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [6] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱. 几种范德瓦耳斯铁电材料中新奇物性的研究进展. 物理学报, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [7] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [8] 邓霖湄, 司君山, 吴绪才, 张卫兵. 过渡金属二硫化物/三卤化铬范德瓦耳斯异质结的反折叠能带. 物理学报, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [9] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应. 物理学报, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [10] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性. 物理学报, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [11] 姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻. 二维平面和范德瓦耳斯异质结的可控制备与光电应用. 物理学报, 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [12] 邢海英, 郑智健, 张子涵, 吴文静, 郭志英. 应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究. 物理学报, 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [13] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [14] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟. 电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控. 物理学报, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [15] 曹宁通, 张雷, 吕路, 谢海鹏, 黄寒, 牛冬梅, 高永立. 酞菁铜与MoS2(0001)范德瓦耳斯异质结研究. 物理学报, 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
    [16] 孟振华, 李俊斌, 郭永权, 王义. 稀土元素的价电子结构和熔点、结合能的关联性. 物理学报, 2012, 61(10): 107101. doi: 10.7498/aps.61.107101
    [17] 刘磊, 林心皓, 李郁芬, 张建国, 崔云龙, 朱志远. 一类高对称结构碳布基球的键长和结合能. 物理学报, 1996, 45(12): 1999-2004. doi: 10.7498/aps.45.1999
    [18] 陈舜麟, 顾强, 王天民. Co3Ti与CoTi的晶体结构与结合能的计算及其脆性. 物理学报, 1995, 44(6): 936-942. doi: 10.7498/aps.44.936
    [19] 廖克俊, 王万录. 直流等离子体CVD法合成的金刚石膜的断裂强度研究. 物理学报, 1994, 43(9): 1559-1563. doi: 10.7498/aps.43.1559
    [20] 孙家钟, 蒋栋成. 非对称陀螺分子间的范德瓦耳斯引力问题. 物理学报, 1961, 17(12): 559-568. doi: 10.7498/aps.17.559
计量
  • 文章访问数:  2865
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-04
  • 修回日期:  2022-05-31
  • 上网日期:  2022-09-26
  • 刊出日期:  2022-10-05

/

返回文章
返回