搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ta和Re对Ni/Ni3Al相界面断裂强度和蠕变强度的影响

胡雪兰 孙小清 王梦媛 王亚如

引用本文:
Citation:

Ta和Re对Ni/Ni3Al相界面断裂强度和蠕变强度的影响

胡雪兰, 孙小清, 王梦媛, 王亚如

Effect of Ta and Re on the fracture strength and creep strength of Ni/Ni3Al interface

Hu Xue-Lan, Sun Xiao-Qing, Wang Meng-Yuan, Wang Ya-Ru
PDF
HTML
导出引用
  • 采用基于密度泛函理论和广义梯度近似的第一原理方法, 探究Ta元素和Re元素在Ni/Ni3Al相界面中的相互作用及其对界面强度的影响. 计算表明: 在绝大多数化学计量比范围内, Ta原子优先占据γ相中的顶点Ni位, Re原子优先占据γ'相中的Al位, Re原子和Ta原子共合金化时掺杂位置不发生改变. 通过格里菲斯断裂功、不稳定堆垛层错能及空位迁移能的计算, 得出Ta和Re合金化都可以增强界面的格里菲斯断裂能, 提高界面的结合强度, 两种合金化元素均提高了体系的不稳定堆垛层错能, 即提高了界面阻碍位错运动的能力和抵抗变形的能力, 其中Re的单独合金化效果更好. 两种元素的掺杂提高了界面上空位迁移的势垒, 阻碍了空位的发射和吸收, 进而提高了合金的蠕变能力.
    The first principle method based on density functional theory and generalized gradient approximation is used to investigate the interaction of Ta and Re elements at Ni/Ni3Al interface and their influence on the interface strength. According to the calculations of the dissolution energy of these two alloying elements at 7 different positions, it can be concluded that in most of the stoichiometric ranges, Ta atoms preferentially occupy Ni sites in the γ phase, while Re atoms occupy preferentially Al sites in γ' phase. The doping positions do not change when these two atoms are co-alloyed. The calculation of Griffith fracture work of Ni/Ni3Al interface system shows that the doping of Ta atoms can improve the interface fracture strength of the phase boundary region between the γ/γ' coherent atomic layer and γ atomic layer. The interface is easier to fracture in the phase boundary area between γ/γ' coherent atomic layer and γ' atomic layer after Ta atoms have been doped. The doping of Re atoms can improve the interface fracture strength of the phase boundary region between γ/γ' coherent atomic layer and γ' atomic layer. The interface is easier to break in the phase boundary area between γ/γ' coherent atomic layer and γ atomic layer. The calculation results of the unstable stacking fault energy under the interface slip system $ [110](001) $ before and after Ta and Re alloying show that the doping of these two types of atoms increases the value of the unstable stacking fault energy of the interface, and the slip system$ [110](001)$ becomes difficult to start, which enhances the ability of the interface to block the movement of dislocations, thus enhancing the creep strength of the nickel base superalloy. When doping Re atoms, the effect is greater, and the unstable stacking fault energy of the interface increases by 11.1%, which is better for improving the creep strength of the system. By studying the influence of alloying atoms on the path of vacancy migration and the energy barrier, it is concluded that the doping of Ta and Re atoms can increase the vacancy formation energy and the potential barrier of vacancy migration at the interface. The doping of Re atoms increases the migration energy barriers on both sides of the interface, and the doping of Ta atoms increases the migration energy barriers of γ phase. The increase of the migration barrier hinders the emission and absorption of vacancies, thereby improving the creep capability of the alloy.
      通信作者: 胡雪兰, huxlemma@163.com
    • 基金项目: 中央高校基本科研业务费(批准号: 3122018Z004)资助的课题
      Corresponding author: Hu Xue-Lan, huxlemma@163.com
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. 3122018Z004)
    [1]

    方昌德 2004 航空发动机 30 1

    Fang C D 2004 Aeroengine 30 1

    [2]

    Diranda L, Cormierb J, Jacquesa A, Jean-Philippe C, Schenka T, Ferrya O 2013 Mater. Charact. 77 32Google Scholar

    [3]

    Yamabe-Mitarai Y, Ro Y, Harada H, T Maruko 1998 Metall. Mater. Trans. A 29 537Google Scholar

    [4]

    Shang S L, Kim D E, Zacherl C L, Y Wang, Y Du, Z K Liu 2012 J. Appl. Phys 112 053515Google Scholar

    [5]

    Huang M, Zhu J 2016 Rare Metals 35 1Google Scholar

    [6]

    Chen K, Zhao L R, Tse J S 2004 Mater. Sci. Eng. A 365 80Google Scholar

    [7]

    Chen K, Zhao L R, Tse J S 2003 Acta Mater. 51 1079Google Scholar

    [8]

    Gong X F, Yang G X, Fu Y H, Xie Y Q, Zhuang J, Ning X J 2009 Comp. Mater. Sci. 47 320Google Scholar

    [9]

    彭黎, 刘云国, 杜付明, 文大东, 黄利群, 彭平 2012 中国有色金属学报 22 3356Google Scholar

    Peng L, Liu Y G, Du F M, Wen D D, Huang L Q, Peng P 2012 Chin. J. Nonferrous Met. 22 3356Google Scholar

    [10]

    陈律, 彭平, 湛建平, 田泽安, 韩绍昌 2008 中国有色金属学报 18 890Google Scholar

    Chen L, Peng P, Zhan J P, Tian Z A, Han S C 2008 Chin. J. Nonferrous Met. 18 890Google Scholar

    [11]

    彭平, 陈律, 周惦武, 田泽安, 韩绍昌, 金涛, 胡壮麒 2007 金属学报 43 137

    Peng P, Chen L, Zhou D W, Tian Z A, Han S C, Jin T, Hu Z Q 2007 Acta Metall. Sin. 43 137

    [12]

    Peng L, Peng P, Liu Y G, He S, Wei H, Jin T, Hu Z Q 2012 Comp. Mater. Sci. 63 292Google Scholar

    [13]

    Wen Y F, Sun J, Huang J 2012 Trans. Nonferrous Met. Soc. China 22 661Google Scholar

    [14]

    Zhu C, Yu T, Wang C, Wang D 2020 Comp. Mater. Sci. 175 109586Google Scholar

    [15]

    Zhao W, Sun Z, Gong S 2017 Acta Mater. 135 25Google Scholar

    [16]

    Sun M, Wang C Y 2016 Chin. Phys. B 25 067104Google Scholar

    [17]

    于松, 王崇愚, 于涛 2007 物理学报 56 3212Google Scholar

    Yu S, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 3212Google Scholar

    [18]

    黄彦彦, 周青华, 刘青, 蔡聪德 2018 稀有金属材料与工程 47 261

    Huang Y Y, Zhou Q H, Liu Q, Cai C D 2018 Rare Metal Mat. Eng. 47 261

    [19]

    Tian S, Wu J, Shu D, Su Y, Yu H, Qian B 2014 Mater. Sci. Eng. A 616 260Google Scholar

    [20]

    孙跃军, 尚勇, 姜晓琳 2013 机械工程材料 37 6

    Sun Y J, Shang Y, Jiang X L 2013 Mater. Mech. Eng. 37 6

    [21]

    Tian S, Yu X, Yang J, Zhao N, Xu Y, Hu Z 2004 Mater. Sci. Eng. A 379 141Google Scholar

    [22]

    Wang C, Wang C Y 2008 Surf. Sci. 602 2604Google Scholar

  • 图 1  两种取向关系下Ni/Ni3Al相界面晶胞结构 (a) (002) γ//(001) γ'取向界面晶胞结构; (b) (002) γ'//(001) γ取向界面晶胞结构

    Fig. 1.  Crystal cell structure of Ni/Ni3Al interface under two orientations: (a) (002) γ//(001) γ' oriented interface crystal cell structure; (b) (002) γ'//(001) γ oriented interface crystal cell structure

    图 2  Ni/Ni3Al相界面中7个不同占位的界面模型

    Fig. 2.  Interface models of seven different occupation sites in Ni/Ni3Al interface

    图 3  Ni/Ni3Al相界面中8个与Re原子相对位置不同的Ta原子占位

    Fig. 3.  Eight Ta atom occupation sites with different relative positions from Re atom in Ni/Ni3Al interface

    图 4  纯Ni/Ni3Al相界面的两种取向关系下的断裂示意图 (a)从Region 1处断裂; (b)从Region 2处断裂

    Fig. 4.  Two orientations and fracture diagram of pure Ni/Ni3Al interface: (a) Ni/Ni3Al interface breaks from Region 1; (b) Ni/Ni3Al interface breaks from Region 2

    图 5  (a) [110](001)滑移系下的Ni/Ni3Al相界面晶胞以及(b)滑移矢量为50%时的滑移模型

    Fig. 5.  (a) Ni/Ni3Al interface unit cell in [110](001) slip system and (b) slip model when the slip vector is 50%

    图 6  纯Ni/Ni3Al相界面和各合金化界面在 [110](001)滑移系下$ {\gamma _{{\text{GSF}}}} $u变化的曲线

    Fig. 6.  Variation of $ {\gamma _{{\text{GSF}}}} $ of pure Ni/Ni3Al interface and alloying interface with u in [110](001) slip system

    图 7  纯界面以及合金化界面的空位迁移能垒 (a) 纯界面和Re合金化界面γ-cpNi到γ/γ'空位迁移能垒; (b) 纯界面和Re合金化界面γ-cpNi到γ-fcNi空位迁移能垒; (c) Ta合金化和Ta, Re共同合金化界面γ-fcNi到γ/γ'-Ni的空位迁移能垒; (d) 4种界面γ/γ'-Ni到γ'-Ni相的空位迁移能垒

    Fig. 7.  Vacancy migration energy barriers at pure interface and alloying interface: (a) Vacancy migration barriers from γ-cpNi to γ/γ' at pure interface and Re alloying interface; (b) vacancy migration barriers from γ-cpNi to γ- fcNi at pure interface and Re alloying interface; (c) vacancy migration barrier from γ- fcNi to γ/γ'-Ni at Ta alloying interface and Ta, Re co-alloying interface; (d) vacancy migration barriers from γ/γ'-Ni to γ'-Ni at 4 interfaces

    表 1  合金化Ni/Ni3Al-Ta界面和Ni/Ni3Al-Re界面的溶解能计算结果

    Table 1.  Calculation results of interface dissolution energy of the Ni/Ni3Al-Ta and Ni/Ni3Al-Re interface systems

    位置序号掺杂原
    子占位
    Ni/Ni3Al-Ta
    溶解能
    /(meV·atom–1)
    Ni/Ni3Al-Re
    溶解能
    /(meV·atom–1)
    1γ'-Ni–52.25–66.52
    2γ'-Al–56.53–66.65
    3γ/γ'-Ni–66.92–54.03
    4γ-fcNi–74.27–47.82
    5γ-cpNi–76.44–46.00
    6γ-fcNi–76.53
    7γ-cpNi–76.55
    下载: 导出CSV

    表 2  Re原子和Ta原子共同合金化后界面溶解能计算结果

    Table 2.  Calculation results of interface dissolution energy after co-alloying of Re atom and Ta atom

    Ta原子
    所在位置
    序号相对距离/Å溶解能/(meV·atom–1)
    γ/γ'-Ni12.4855.89
    24.3053.68
    γ-Ni34.3047.17
    43.5345.47
    54.9846.94
    γ'-Ni62.4867.89
    72.4867.64
    84.3066.15
    下载: 导出CSV

    表 3  两种取向关系下Ni/Ni3Al相界面合金化前后的格里菲斯断裂功

    Table 3.  Griffith work before and after Ni/Ni3Al interface alloying under two orientations

    界面体系格里菲斯断裂功/(J·m–2)
    Region 1Region 2
    Ni/Ni3Al4.1454.403
    Ni/Ni3Al-Ta4.0994.571
    Ni/Ni3Al-Re4.5744.323
    Ni/Ni3Al-Re-Ta4.5574.518
    下载: 导出CSV

    表 4  纯界面和合金化界面不同Ni空位位置的空位形成能

    Table 4.  Vacancy formation energy of different Ni positions at pure interface and alloying interface

    界面体系Ni空位位置
    γ'-Niγ/γ'-Niγ-fcNiγ-cpNi
    Ni/Ni3Al1.2881.3761.3601.321
    Ni/Ni3Al-Ta1.3221.3421.3551.467
    Ni/Ni3Al-Re1.3751.4751.4071.233
    Ni/Ni3Al-Ta-Re1.4891.5631.4601.511
    下载: 导出CSV
  • [1]

    方昌德 2004 航空发动机 30 1

    Fang C D 2004 Aeroengine 30 1

    [2]

    Diranda L, Cormierb J, Jacquesa A, Jean-Philippe C, Schenka T, Ferrya O 2013 Mater. Charact. 77 32Google Scholar

    [3]

    Yamabe-Mitarai Y, Ro Y, Harada H, T Maruko 1998 Metall. Mater. Trans. A 29 537Google Scholar

    [4]

    Shang S L, Kim D E, Zacherl C L, Y Wang, Y Du, Z K Liu 2012 J. Appl. Phys 112 053515Google Scholar

    [5]

    Huang M, Zhu J 2016 Rare Metals 35 1Google Scholar

    [6]

    Chen K, Zhao L R, Tse J S 2004 Mater. Sci. Eng. A 365 80Google Scholar

    [7]

    Chen K, Zhao L R, Tse J S 2003 Acta Mater. 51 1079Google Scholar

    [8]

    Gong X F, Yang G X, Fu Y H, Xie Y Q, Zhuang J, Ning X J 2009 Comp. Mater. Sci. 47 320Google Scholar

    [9]

    彭黎, 刘云国, 杜付明, 文大东, 黄利群, 彭平 2012 中国有色金属学报 22 3356Google Scholar

    Peng L, Liu Y G, Du F M, Wen D D, Huang L Q, Peng P 2012 Chin. J. Nonferrous Met. 22 3356Google Scholar

    [10]

    陈律, 彭平, 湛建平, 田泽安, 韩绍昌 2008 中国有色金属学报 18 890Google Scholar

    Chen L, Peng P, Zhan J P, Tian Z A, Han S C 2008 Chin. J. Nonferrous Met. 18 890Google Scholar

    [11]

    彭平, 陈律, 周惦武, 田泽安, 韩绍昌, 金涛, 胡壮麒 2007 金属学报 43 137

    Peng P, Chen L, Zhou D W, Tian Z A, Han S C, Jin T, Hu Z Q 2007 Acta Metall. Sin. 43 137

    [12]

    Peng L, Peng P, Liu Y G, He S, Wei H, Jin T, Hu Z Q 2012 Comp. Mater. Sci. 63 292Google Scholar

    [13]

    Wen Y F, Sun J, Huang J 2012 Trans. Nonferrous Met. Soc. China 22 661Google Scholar

    [14]

    Zhu C, Yu T, Wang C, Wang D 2020 Comp. Mater. Sci. 175 109586Google Scholar

    [15]

    Zhao W, Sun Z, Gong S 2017 Acta Mater. 135 25Google Scholar

    [16]

    Sun M, Wang C Y 2016 Chin. Phys. B 25 067104Google Scholar

    [17]

    于松, 王崇愚, 于涛 2007 物理学报 56 3212Google Scholar

    Yu S, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 3212Google Scholar

    [18]

    黄彦彦, 周青华, 刘青, 蔡聪德 2018 稀有金属材料与工程 47 261

    Huang Y Y, Zhou Q H, Liu Q, Cai C D 2018 Rare Metal Mat. Eng. 47 261

    [19]

    Tian S, Wu J, Shu D, Su Y, Yu H, Qian B 2014 Mater. Sci. Eng. A 616 260Google Scholar

    [20]

    孙跃军, 尚勇, 姜晓琳 2013 机械工程材料 37 6

    Sun Y J, Shang Y, Jiang X L 2013 Mater. Mech. Eng. 37 6

    [21]

    Tian S, Yu X, Yang J, Zhao N, Xu Y, Hu Z 2004 Mater. Sci. Eng. A 379 141Google Scholar

    [22]

    Wang C, Wang C Y 2008 Surf. Sci. 602 2604Google Scholar

  • [1] 张磊, 陈起航, 曹硕, 钱萍. 基于第一性原理计算单层IrSCl和IrSI的载流子迁移率. 物理学报, 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [2] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [4] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究. 物理学报, 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [5] 周金萍, 李春梅, 姜博, 黄仁忠. Co和Ni过量影响Co2NiGa合金晶体结构及相稳定性的第一性原理研究. 物理学报, 2023, 72(15): 156301. doi: 10.7498/aps.72.20230626
    [6] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [7] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [8] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [9] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [10] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [11] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究. 物理学报, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [12] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [13] 陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒. Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算. 物理学报, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [14] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [15] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [16] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [17] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [18] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [19] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [20] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究. 物理学报, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
计量
  • 文章访问数:  3130
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 修回日期:  2022-12-30
  • 上网日期:  2023-02-01
  • 刊出日期:  2023-03-20

/

返回文章
返回