搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三个耦合量子点的四端混合驱动制冷机

刘行 徐帅 高金柱 何济洲

引用本文:
Citation:

基于三个耦合量子点的四端混合驱动制冷机

刘行, 徐帅, 高金柱, 何济洲

Four-terminal hybrid driven refrigerator based on three coupled quantum dots

Liu Xing, Xu Shuai, Gao Jin-Zhu, He Ji-Zhou
PDF
HTML
导出引用
  • 本文提出了一种具有三个电容耦合量子点的四端混合驱动制冷机模型, 该模型可以通过最高温的热库注入的热能和偏置电压输入的功率共同驱动来实现对低温库的制冷. 基于主方程理论, 分别导出了弱电容耦合和强电容耦合情况下三个量子点与四个库之间的电荷流和热流的表达式. 数值模拟了制冷率与制冷系数之间的热力学性能特征曲线, 在最大制冷率条件下对制冷机的主要性能参数进行了优化. 最后, 比较了该制冷机在强电容耦合和弱电容耦合情况下的性能.
    In this paper, a four-terminal hybrid driven refrigerator model with three capacitively coupled quantum dots is proposed, which can be driven by the energy current injected from the highest temperature thermal reservoir and the power input to achieve the refrigeration of the low temperature reservoir. Based on the master equation we derive the expressions for charge current and heat current between three quantum dots and thermal reservoirs in the weak/strong capacitive coupling case, respectively. We numerically analyze the thermodynamic performance characteristics of the refrigerator between the cooling rate and the coefficient of performance, and the main performance parameters of the refrigerator are optimized under the condition of the maximum cooling rate. Finally, we compare the performance of this refrigerator in the strong capacitive coupling case with that in the weak capacitive coupling case.
      通信作者: 何济洲, hjzhou@ncu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11875034) 资助的课题.
      Corresponding author: He Ji-Zhou, hjzhou@ncu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11875034) .
    [1]

    Chen L, Ding Z, Sun F 2011 Energy 36 4011Google Scholar

    [2]

    Sánchez R, Büttiker M 2011 Phys. Rev. B 83 085428Google Scholar

    [3]

    Thierschmann H, Sánchez R, Sothmann B, Arnold F, Heyn C, Hansen W, Buhmann H, Molenkamp L W 2015 Nat. Nanotechnol 10 854Google Scholar

    [4]

    Zhang Y C, Lin G X, Chen J C 2015 Phys. Rev. E 91 052118Google Scholar

    [5]

    Zhang Y C, Huang C K, Lin G X, Chen J C 2015 Energy 85 200Google Scholar

    [6]

    Zhang Y C, Wang Y, Huang C K, Lin G X, Chen J C 2016 Energy 95 593Google Scholar

    [7]

    Aniket S. 2020 J. Appl. Phys 127 234903Google Scholar

    [8]

    Anamika B, Surojit H, Shailendra K, Varshney, Gourab D, Aniket S 2021 Phys. Rev. E 103 012131Google Scholar

    [9]

    Kano S, Fujii M 2017 Nanotechnology 28 095403Google Scholar

    [10]

    Lim J S, Sánchez D, López R 2018 N. J. Phys. 20 023038Google Scholar

    [11]

    Daré A M, Lombardo P 2017 Phys. Rev. B 96 115414Google Scholar

    [12]

    Su H, Shi Z C, He J Z 2015 Chin. Phys. Lett. 32 100501Google Scholar

    [13]

    苏豪, 王家伟, 赵沁园, 何济洲 2016 中国科学: 技术科学 46 1296Google Scholar

    Su H, Wang J W, Zhao Q Y, He J Z 2016 Sci. Sin-Tech. 46 1296Google Scholar

    [14]

    Shi Z C, Qin W F, He J Z 2016 Mod. Phys. Lett. B 30 1650397Google Scholar

    [15]

    Roche B, Roulleau P, Jullien T, Jompol, Y, Farrer I, Ritchie D A, Glattli D C. 2015 Nat. Commun 6 6738Google Scholar

    [16]

    Hartmann F, Pfeffer P, Höfling S, Kamp M, Worschech L. 2015 Phys. Rev. Lett. 114 146805Google Scholar

    [17]

    Josefsson M, Svilans A, Burke A, Hoffmann E, Fahlvik S, Thelander C, Leijnse M, Linke H 2018 Nat. Nanotechnol 13 920Google Scholar

    [18]

    Keller A J, Lim J S, Sánchez D, López R, Amasha S, Katine J A 2016 Phys. Rev. Lett. 117 066602Google Scholar

    [19]

    Sothmann B, Sánchez R, Jordan A N, Büttiker M 2013 N. J. Phys. 15 095021Google Scholar

    [20]

    Choi Y, Jordan A N 2015 Physica E:Low-dimensional Systems Nanostruct 74 465Google Scholar

    [21]

    Lin Z B, Yang Y Y, Fu J, Li W, He J Z 2019 Chin. Phys. Lett. 36 060501Google Scholar

    [22]

    Lin Z B, Li W, Yang Y Y, He J Z 2020 Phys. Rev. E 101 022117Google Scholar

    [23]

    Sothmann B, Sánchez R, Jordan A N 2014 Europhys. Lett. 107 47003Google Scholar

    [24]

    Sánchez R, Sothmann B, Jordan A N 2015 Phys. Rev. Lett. 114 146801Google Scholar

    [25]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard I W A, Heath J R 2008 Nature 451 168Google Scholar

    [26]

    Yang Y Y, Xu S, Li W, He J Z 2020 Phys. Scr. 95 095001Google Scholar

    [27]

    Yang Y Y, Xu S, He J Z 2020 Chin. Phys. Lett. 37 120502Google Scholar

    [28]

    Su S, Zhang Y, Chen J, Shih T M 2016 Sci. Reports 6 21425Google Scholar

    [29]

    Shi Z C, Fu J, Qin W F, He J Z 2017 Chin. Phys. Lett. 34 110501Google Scholar

    [30]

    Jiang J H, Entin-Wohlman O, Imry Y 2013 New Journal of Physics 15 075021Google Scholar

    [31]

    Li C, Zhang Y, He J 2013 Chin. Phys. Lett. 30 100501Google Scholar

    [32]

    Rutten B, Esposito M, Cleuren B 2009 Phys. Rev. B 80 235122Google Scholar

    [33]

    Cleuren B, Rutten B, Van den Broeck C 2012 Phys. Rev. Lett. 108 120603Google Scholar

    [34]

    施志诚, 何济洲, 肖宇玲 2015 中国科学: 物理学 力学 天文学 45 050502Google Scholar

    Shi Z C, He J Z, Xiao Y L 2015 Sci. Sin-Phys. Mech. Astron. 45 050502Google Scholar

    [35]

    Li C, Zhang Y, Wang J, He J 2013 Phys. Rev. E 88 062120Google Scholar

    [36]

    Wang J H, Lai Y M, Ye Z L, He J Z, Ma Y L, Liang Q H 2015 Phys. Rev. E 91 050102Google Scholar

    [37]

    李唯, 符婧, 杨贇贇, 何济洲 2019 物理学报 68 220501Google Scholar

    Li W, Fu J, Yang Y Y, He J Z 2019 Acta Phys. Sin. 68 220501Google Scholar

    [38]

    Whitney R S, Sánchez R, Haupt F, Splettstoesser J 2016 Phys. E 82 176Google Scholar

    [39]

    Fu T, Du J Y, Su S H, Su G Z, Chen J C 2021 Eur. Phys. J. Plus 136 1059Google Scholar

    [40]

    Xi M M, Wang R Q, Lu J C, Chen T Y, Jiang J H 2021 Chin. Phys. Lett 38 088801Google Scholar

    [41]

    苏山河, 张艳超, 彭万里, 苏国珍, 陈金灿 2021 中国科学: 物理学 力学 天文学 51 112Google Scholar

    Su S H, Zhang Y C, Peng W L, Su G Z, Chen J C 2021 Sci. Sin-Phys. Mech. Astron. 51 112Google Scholar

  • 图 1  (a) 基于三量子点耦合的四端制冷机的示意图; (b) (a)中装置的等效电路图

    Fig. 1.  (a) Schematic diagram of a four terminal refrigerator based on three coupled quantum dots, and (b) is the equivalent circuit diagram of the device in (a).

    图 2  图1描述的八种量子态的跃迁过程

    Fig. 2.  The transition processes of eight quantum states described in Fig. 1.

    图 3  当耗散系数为$ \lambda = 0 $时, (a) 输入功率$ P $以及(b)—(d)各量子点与对应库之间的热流JH, JC, JLR随温差$ \Delta T $和偏置电压$ e\Delta V $变化的三维投影图

    Fig. 3.  The three-dimensional projection graphs for (a) input power $ P $ and (b)–(d) the heat flow JH, JC, JLR varying with the temperature difference $ \Delta T $ and the bias voltage $ e\Delta V $ under the dissipation factor $ \lambda = 0 $.

    图 4  当耗散系数为$ \lambda = 0 $$ \lambda = 0.26 $时, 装置A和装置B各自对应的工作区域

    Fig. 4.  The corresponding working areas of device A and device B when the dissipation factor is (a) $ \lambda = 0 $ and (b) $ \lambda = 0.26 $, respectively.

    图 5  在不同耗散系数下, 装置作为混合驱动制冷机时的总熵产率随温差$ \Delta T $和偏置电压$ e\Delta V $变化的三维曲线

    Fig. 5.  The three-dimensional curves of total entropy production rate varying with temperature difference $ \Delta T $ and bias voltage $ e\Delta V $ when the device is used as a hybrid-driven refrigerator under different dissipation factor.

    图 6  在不同耗散系数下, 制冷率和制冷系数随充电能$ {U_{{\text{MH}}}} $$ {U_{{\text{MC}}}} $变化的三维图

    Fig. 6.  The three-dimensional diagrams of the cooling rate and the COP varying with charging energy $ {U_{{\text{MH}}}} $ and $ {U_{{\text{MC}}}} $ under different dissipation factor.

    图 7  在不同的耗散系数下, 制冷率和制冷系数随充电能$ {U_{{\text{MH}}}} $和偏置电压$ eV $变化的三维图

    Fig. 7.  The three-dimensional diagrams of the cooling rate and the COP varying with charging energy $ {U_{{\text{MH}}}} $ and bias voltage $ e\Delta V $ under different dissipation factor.

    图 8  在给定条件$ \Delta T = 2\gamma /{k_{\text{B}}} $下, (a) 优化的制冷率$ {J_{{\text{Copt}}}} $和(b)优化制冷率对应的制冷系数以及(c)对应的充电能$ {U_{{\text{MC}}}} $随耗散系数$ \lambda $的变化曲线

    Fig. 8.  The curves of (a) the optimized cooling rate $ {J_{{\text{Copt}}}} $ and (b) the COP corresponding to optimized cooling rate and (c) the corresponding charging energy $ {U_{{\text{MC}}}} $ as a function of dissipation factor $ \lambda $ under the given condition $ \Delta T = 2\gamma /{k_{\text{B}}} $.

    图 9  (a) 最大制冷率$ {J_{{\text{C}}\max }} $和最大制冷率对应的COP$ {\eta _{\text{J}}} $; (b) 最佳充电能量$ {U_{{\text{MC}}}} $随温差$ \Delta T $的变化曲线

    Fig. 9.  The curves of (a) the maximum cooling rate $ {J_{{\text{C}}\max }} $ and the COP corresponding to maximum cooling rate $ {\eta _{\text{J}}} $ and (b) the optimal charging energy $ {U_{{\text{MC}}}} $ as a function of temperature difference $ \Delta T $.

    图 10  在强耦合$ {U_{{\text{HC}}}} $的情况下, 当$ \lambda = 0 $时, (a) 制冷率$ {J_{\text{C}}} $和(b)制冷系数$ {\eta _{{\text{COP}}}} $随着$ {U_{{\text{MH}}}} $$ {U_{{\text{MC}}}} $变化的三维图

    Fig. 10.  In the case of strong coupling $ {U_{{\text{HC}}}} $, when $ \lambda = 0 $, the three-dimensional diagrams for (a) cooling rate $ {J_{\text{C}}} $ and (b) the COP varying with $ {U_{{\text{MH}}}} $ and $ {U_{{\text{MC}}}} $.

  • [1]

    Chen L, Ding Z, Sun F 2011 Energy 36 4011Google Scholar

    [2]

    Sánchez R, Büttiker M 2011 Phys. Rev. B 83 085428Google Scholar

    [3]

    Thierschmann H, Sánchez R, Sothmann B, Arnold F, Heyn C, Hansen W, Buhmann H, Molenkamp L W 2015 Nat. Nanotechnol 10 854Google Scholar

    [4]

    Zhang Y C, Lin G X, Chen J C 2015 Phys. Rev. E 91 052118Google Scholar

    [5]

    Zhang Y C, Huang C K, Lin G X, Chen J C 2015 Energy 85 200Google Scholar

    [6]

    Zhang Y C, Wang Y, Huang C K, Lin G X, Chen J C 2016 Energy 95 593Google Scholar

    [7]

    Aniket S. 2020 J. Appl. Phys 127 234903Google Scholar

    [8]

    Anamika B, Surojit H, Shailendra K, Varshney, Gourab D, Aniket S 2021 Phys. Rev. E 103 012131Google Scholar

    [9]

    Kano S, Fujii M 2017 Nanotechnology 28 095403Google Scholar

    [10]

    Lim J S, Sánchez D, López R 2018 N. J. Phys. 20 023038Google Scholar

    [11]

    Daré A M, Lombardo P 2017 Phys. Rev. B 96 115414Google Scholar

    [12]

    Su H, Shi Z C, He J Z 2015 Chin. Phys. Lett. 32 100501Google Scholar

    [13]

    苏豪, 王家伟, 赵沁园, 何济洲 2016 中国科学: 技术科学 46 1296Google Scholar

    Su H, Wang J W, Zhao Q Y, He J Z 2016 Sci. Sin-Tech. 46 1296Google Scholar

    [14]

    Shi Z C, Qin W F, He J Z 2016 Mod. Phys. Lett. B 30 1650397Google Scholar

    [15]

    Roche B, Roulleau P, Jullien T, Jompol, Y, Farrer I, Ritchie D A, Glattli D C. 2015 Nat. Commun 6 6738Google Scholar

    [16]

    Hartmann F, Pfeffer P, Höfling S, Kamp M, Worschech L. 2015 Phys. Rev. Lett. 114 146805Google Scholar

    [17]

    Josefsson M, Svilans A, Burke A, Hoffmann E, Fahlvik S, Thelander C, Leijnse M, Linke H 2018 Nat. Nanotechnol 13 920Google Scholar

    [18]

    Keller A J, Lim J S, Sánchez D, López R, Amasha S, Katine J A 2016 Phys. Rev. Lett. 117 066602Google Scholar

    [19]

    Sothmann B, Sánchez R, Jordan A N, Büttiker M 2013 N. J. Phys. 15 095021Google Scholar

    [20]

    Choi Y, Jordan A N 2015 Physica E:Low-dimensional Systems Nanostruct 74 465Google Scholar

    [21]

    Lin Z B, Yang Y Y, Fu J, Li W, He J Z 2019 Chin. Phys. Lett. 36 060501Google Scholar

    [22]

    Lin Z B, Li W, Yang Y Y, He J Z 2020 Phys. Rev. E 101 022117Google Scholar

    [23]

    Sothmann B, Sánchez R, Jordan A N 2014 Europhys. Lett. 107 47003Google Scholar

    [24]

    Sánchez R, Sothmann B, Jordan A N 2015 Phys. Rev. Lett. 114 146801Google Scholar

    [25]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard I W A, Heath J R 2008 Nature 451 168Google Scholar

    [26]

    Yang Y Y, Xu S, Li W, He J Z 2020 Phys. Scr. 95 095001Google Scholar

    [27]

    Yang Y Y, Xu S, He J Z 2020 Chin. Phys. Lett. 37 120502Google Scholar

    [28]

    Su S, Zhang Y, Chen J, Shih T M 2016 Sci. Reports 6 21425Google Scholar

    [29]

    Shi Z C, Fu J, Qin W F, He J Z 2017 Chin. Phys. Lett. 34 110501Google Scholar

    [30]

    Jiang J H, Entin-Wohlman O, Imry Y 2013 New Journal of Physics 15 075021Google Scholar

    [31]

    Li C, Zhang Y, He J 2013 Chin. Phys. Lett. 30 100501Google Scholar

    [32]

    Rutten B, Esposito M, Cleuren B 2009 Phys. Rev. B 80 235122Google Scholar

    [33]

    Cleuren B, Rutten B, Van den Broeck C 2012 Phys. Rev. Lett. 108 120603Google Scholar

    [34]

    施志诚, 何济洲, 肖宇玲 2015 中国科学: 物理学 力学 天文学 45 050502Google Scholar

    Shi Z C, He J Z, Xiao Y L 2015 Sci. Sin-Phys. Mech. Astron. 45 050502Google Scholar

    [35]

    Li C, Zhang Y, Wang J, He J 2013 Phys. Rev. E 88 062120Google Scholar

    [36]

    Wang J H, Lai Y M, Ye Z L, He J Z, Ma Y L, Liang Q H 2015 Phys. Rev. E 91 050102Google Scholar

    [37]

    李唯, 符婧, 杨贇贇, 何济洲 2019 物理学报 68 220501Google Scholar

    Li W, Fu J, Yang Y Y, He J Z 2019 Acta Phys. Sin. 68 220501Google Scholar

    [38]

    Whitney R S, Sánchez R, Haupt F, Splettstoesser J 2016 Phys. E 82 176Google Scholar

    [39]

    Fu T, Du J Y, Su S H, Su G Z, Chen J C 2021 Eur. Phys. J. Plus 136 1059Google Scholar

    [40]

    Xi M M, Wang R Q, Lu J C, Chen T Y, Jiang J H 2021 Chin. Phys. Lett 38 088801Google Scholar

    [41]

    苏山河, 张艳超, 彭万里, 苏国珍, 陈金灿 2021 中国科学: 物理学 力学 天文学 51 112Google Scholar

    Su S H, Zhang Y C, Peng W L, Su G Z, Chen J C 2021 Sci. Sin-Phys. Mech. Astron. 51 112Google Scholar

  • [1] 郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛. 稀释制冷技术. 物理学报, 2024, 73(23): 230701. doi: 10.7498/aps.73.20241211
    [2] 李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊. 50 mK多级绝热去磁制冷机的实验研究. 物理学报, 2023, 72(19): 190702. doi: 10.7498/aps.72.20231102
    [3] 刘旭明, 潘长钊, 张宇, 廖奕, 郭伟杰, 俞大鹏. 4 K大冷量GM型脉冲管制冷机. 物理学报, 2023, 72(19): 190701. doi: 10.7498/aps.72.20230910
    [4] 俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍. 冷凝泵型稀释制冷机实验研究. 物理学报, 2023, 72(8): 080701. doi: 10.7498/aps.72.20222257
    [5] 徐帅, 杨贇贇, 刘行, 何济洲. 基于一维弹道导体的三端纳米线制冷机的性能优化. 物理学报, 2022, 71(2): 020501. doi: 10.7498/aps.71.20211077
    [6] 王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远. 用于亚开温区的极低温绝热去磁制冷机. 物理学报, 2021, 70(9): 090702. doi: 10.7498/aps.70.20202237
    [7] 付柏山, 廖奕, 周俊. 稀释制冷机及其中的热交换问题. 物理学报, 2021, 70(23): 230202. doi: 10.7498/aps.70.20211760
    [8] 何济洲, 徐帅. 基于一维弹道导体的三端纳米线制冷机的性能优化. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211077
    [9] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机. 物理学报, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [10] 张荣, 卢灿灿, 李倩文, 刘伟, 白龙. 线性不可逆热力学框架下一个无限尺寸热源而有限尺寸冷源的制冷机的性能分析. 物理学报, 2018, 67(4): 040502. doi: 10.7498/aps.67.20172010
    [11] 李振兴, 李珂, 沈俊, 戴巍, 高新强, 郭小惠, 公茂琼. 室温磁制冷技术的研究进展. 物理学报, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [12] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟. 物理学报, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [13] 崔尉, 王茺, 崔灿, 施张胜, 杨宇. 耦合锗量子点中空穴态对称特性研究. 物理学报, 2014, 63(22): 227301. doi: 10.7498/aps.63.227301
    [14] 汤乃云. 耦合量子点中空穴基态反键态特性研究. 物理学报, 2013, 62(5): 057301. doi: 10.7498/aps.62.057301
    [15] 何弦, 何济洲, 肖宇玲. 四能级量子制冷循环. 物理学报, 2012, 61(15): 150302. doi: 10.7498/aps.61.150302
    [16] 贺兵香, 何济洲, 缪贵玲. 纳米线异质结构对电子制冷机性能的影响. 物理学报, 2011, 60(4): 040509. doi: 10.7498/aps.60.040509
    [17] 贺兵香, 何济洲. 双势垒InAs/InP纳米线异质结热电子制冷机. 物理学报, 2010, 59(6): 3846-3850. doi: 10.7498/aps.59.3846
    [18] 谌雄文, 谌宝菊, 施振刚, 宋克慧. 嵌入T型耦合双量子点介观A-B环系统的显著Fano 效应. 物理学报, 2009, 58(4): 2720-2725. doi: 10.7498/aps.58.2720
    [19] 谌雄文, 贺达江, 吴绍全, 宋克慧. 嵌入平行量子点的非平衡介观环路的极化电流. 物理学报, 2006, 55(8): 4287-4291. doi: 10.7498/aps.55.4287
    [20] 吴绍全, 谌雄文, 孙威 立, 王顺金. 嵌入耦合量子点的介观Aharonov-Bohm环内的持续电流. 物理学报, 2004, 53(7): 2336-2341. doi: 10.7498/aps.53.2336
计量
  • 文章访问数:  3798
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-08
  • 修回日期:  2022-05-25
  • 上网日期:  2022-09-29
  • 刊出日期:  2022-10-05

/

返回文章
返回