搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维空腔流动波系建模及模态演化

罗勇 杨党国 武从海 李虎 张树海 吴军强

引用本文:
Citation:

三维空腔流动波系建模及模态演化

罗勇, 杨党国, 武从海, 李虎, 张树海, 吴军强

Waves model of three-dimensional cavity flow and its oscillation mode evolution

Luo Yong, Yang Dang-Guo, Wu Cong-Hai, Li Hu, Zhang Shu-Hai, Wu Jun-Qiang
PDF
HTML
导出引用
  • 高速空腔流动包含复杂波系结构, 这些复杂波系的传播和演化导致流动产生自持振荡而引起强噪声, 空腔噪声在频谱上包含多个具有离散频率的声模态, 深入理解各阶声模态的演化规律可为发展噪声控制方法提供理论基础. 通过分析亚声速和超声速情况下空腔两端的波系散射过程并考虑三维展向流动, 分别建立了针对亚声速和超声速空腔流动的三维波系模型. 三维波系模型包含了空腔中不同波系之间的非线性相互作用, 这种非线性作用可导致产生不同于Rossiter模态的其余频率成分. 基于三维空腔流动实验测量的压力信号数据, 对模型中的参数进行了线性估计, 采用快速傅里叶变换、双谱分析和小波变换等方法对压力信号进行了分析, 结果表明: 振荡主模态之间会产生非线性作用, 这种非线性作用产生了幅值较高的谐频, 主要的振荡模态之间存在模态切换现象, 且模态切换呈低频特征, 整体表现出随机性特性.
    The high-speed flow passing through an open cavity will generate complex wave structures. The propagation and evolution of these waves can lead to the self-sustained oscillation of the cavity flow and cause strong noise. The cavity noise may contain multiple acoustic modes with discrete frequencies in the spectrum. A clear understanding of the evolution of the oscillation mode will provide a theoretical basis for the study of the noise control method. By analyzing the waves scattering process at both ends of the cavity at subsonic speed and supersonic speed and considering the three-dimensional spanwise flow, the three-dimensional wave model for subsonic cavity flow and supersonic cavity flow are established respectively. The model involves the nonlinear interaction between different waves in the cavity, which may produce other components different from the Rossiter mode. Based on the pressure signal data measured from the experiments on cavity flow for Mach numbers 0.9 and 1.5, the parameters in the model are linearly estimated. The pressure signals are analyzed by using FFT, bispectral analysis, and continuous wavelet transform. The results show that there are nonlinear interactions between the main oscillation modes, thus producing strong harmonics. The mode-switch phenomenon is observed in both the subsonic case and the supersonic case. The mode-switching exhibits low-frequency behavior and shows randomness as a whole.
      通信作者: 李虎, lihu@cardc.cn
    • 基金项目: 国家自然科学基金(批准号: 12102450, 12172374, 11732016)、四川省科技计划项目(批准号: 2018JZ0076)和国家数值风洞工程(NNW)资助的课题.
      Corresponding author: Li Hu, lihu@cardc.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12102450, 12172374, 11732016), the Science and Technology Program of Sichuan Province, China (Grant No. 2018JZ0076), and the National Numerical Windtunnel project, China.
    [1]

    Dix R, Bauer R 2000 AIAA Paper 2000

    [2]

    Morton M 2007 AIAA Paper 2007

    [3]

    Gloerfelt X, Bogey C, Bailly C 2007 Cavity Noise (Paris: Arts et Métiers ParisTech)

    [4]

    Lawson S J, Barakos G N 2011 Prog. Aerosp. Sci 47 186Google Scholar

    [5]

    郭启龙 2017 博士学位论文 (绵阳: 中国空气动力研究与发展中心研究生部)

    Guo Q L 2017 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center Graduate School) (in Chinese)

    [6]

    Rossiter J E 1966 Aeron. Res. Counc. 3438

    [7]

    Powell A 1961 J. Acoust. Soc. Am 33 395Google Scholar

    [8]

    Krishnamurty K 1956 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [9]

    Heller H H, Holmes D G, Covert E E 1971 J. Sound Vib 18 545Google Scholar

    [10]

    Bilanin A J, Covert E E 1973 AIAA J 11 347Google Scholar

    [11]

    Block P J W 1976 NASA Tech. Note D

    [12]

    Kerschen E, Tumin A 2003 AIAA Paper 2003

    [13]

    Alvarez J, Kerschen E, Tumin A 2004 AIAA Paper 2004

    [14]

    Ahuja K K, Mendoza J 1995 NASA C. R. 4653

    [15]

    Mendoza J, Ahuja K K 1995 AIAA Paper 95

    [16]

    Kegerise M A, Spina E F, Garg S, Cattafesta III L N 2004 Phys. Fluids 16 678Google Scholar

    [17]

    Brès G A, Colonius T 2008 J. Fluid Mech 599 309Google Scholar

    [18]

    Rowley C W, Colonius T, Basu A J 2002 J. Fluid Mech 455 315Google Scholar

    [19]

    Luo Y, Li H, Han S, Zhang S H 2021 Adv. Appl. Math. Mech 13 942Google Scholar

    [20]

    韩帅斌, 罗勇, 李虎, 武从海, 张树海 2022 力学学报 54 359

    Han S B, Luo Y, Li H, Wu C H, Zhang S H 2022 Chin. J. Theor. Appl. Mech. 54 359 (in Chinese)

    [21]

    韩帅斌, 罗勇, 张树海 2019航空工程进展 10 691

    Han S B, Luo Y, Zhang S H 2019 Adv. Aero. Sci. Eng. 10 691 (in Chinese)

    [22]

    Cattafesta III L N, Garg S, Kegerise M, Jones G S 1998 AIAA Paper 98

    [23]

    Gloerfelt X, Bogey C, Bailly C 2003 Int. J. Aeroacoust 2 193Google Scholar

    [24]

    Thangamani V 2019 AIAA J 57 1Google Scholar

    [25]

    Luo Y, Wu C H, Yuan S Q, Tian H, Li H, Zhang S H 2021 32nd Congress of the International Council of the Aeronautical Sciences

    [26]

    Kegerise M A 1999 Ph. D. Dissertation University

    [27]

    Neary M D, Stephanoff K D 1987 Phys. Fluids 30 2936Google Scholar

    [28]

    杨党国, 刘俊, 王显圣, 施傲, 周方奇, 郑晓东 2018 空气动力学学报 36 432

    Yang D G, Liu J, Wang X S, Shi A, Zhou F Q, Zheng X D 2018 Acta Aerodyn. Sin. 36 432 (in Chinese)

    [29]

    Nikias C L, Raghuveer M R 1987 Proc. IEEE 75 869Google Scholar

    [30]

    胡广书 2013 现代信号处理 (第二版) (北京: 清华大学出版社)

    Hu G S 2013 Modern Signal Processing (2nd Ed. ) (Beijing: Tsinghua University Press) (in Chinese)

  • 图 1  亚声速空腔中波系结构示意图

    Fig. 1.  Schematic diagram of wave structures of the subsonic cavity flow.

    图 2  超声速空腔中波系结构示意图

    Fig. 2.  Schematic diagram of wave structures of the supersonic cavity flow.

    图 3  三维空腔实验模型示意图(单位: mm)

    Fig. 3.  Schematic diagram of experimental cavity model (unit: mm).

    图 4  M = 1.5, 空腔底部压力信号总声压级两次重复性实验结果对比

    Fig. 4.  M = 1.5, comparison of two repeatable experiment results of OASPL of pressure signal at the bottom of cavity.

    图 5  空腔前壁测点压力信号声压级频谱(灰色竖线为(21)式预测值) (a) M = 0.9; (b) M = 1.5

    Fig. 5.  The spectra of the pressure perturbation signals at the front wall of the cavity for two cases (the gray vertical line is the predicted frequencies by Eq. (21)): (a) M = 0.9; (b) M = 1.5.

    图 6  M = 1.5, 空腔前壁测点压力信号双谱分析相关系数 (a) 相关系数云图; (b) 局部放大

    Fig. 6.  M = 1.5, bicoherence spectrum of the pressure perturbation signals at the front wall of the cavity: (a) Contours of the correlation coefficient; (b) locally zoomed region of panel (a).

    图 7  两个马赫数的空腔前壁测点压力信号的连续小波变换结果 (a) M = 0.9 (注: 等值线范围(200, 3700)); (b) M = 1.5 (注: 等值线范围(300, 6000))

    Fig. 7.  The CWT results of the pressure perturbation signals at the front wall of the cavity for two Mach numbers: (a) M = 0.9 (contour levels between 200 to 3700); (b) M = 1.5 (contour levels between 300 to 6000).

    图 8  M = 0.9, 一阶、二阶模态小波变换系数随时间演化情况 (a) 一阶模态系数; (b) 二阶模态系数

    Fig. 8.  M = 0.9, the amplitude of the CWT coefficients of the dominant modes extracted from the CWT result: (a) Coefficient of the first mode; (b) Coefficient of the second mode.

    图 9  一阶、二阶模态小波变换系数的FFT频谱 (a) 一阶模态系数FFT; (b) 二阶模态系数FFT

    Fig. 9.  The FFT results of the CWT coefficients of the dominant modes in Fig. 8: (a) FFT of the coefficient of the first mode; (b) FFT of the coefficient of the second mode.

    图 10  一阶、二阶模态小波变换系数的PDF

    Fig. 10.  The probability density estimate of the CWT coefficients of the dominant modes in Fig. 8.

    表 1  不同马赫数下的实验参数

    Table 1.  The experimental parameters for different cases

    CaseMach numberPressure/
    Pa
    Temperature/KReynold number(ReL)
    10.967938.3247.853.41 × 106
    21.538080.2198.624.28 × 106
    下载: 导出CSV

    表 2  不同马赫数下的主导峰值频率

    Table 2.  The frequencies of the most energetic peaks for different cases.

    Casef1f2f3f4f5f6f7
    133094015002112273533443925
    248012642042287136734468
    下载: 导出CSV
  • [1]

    Dix R, Bauer R 2000 AIAA Paper 2000

    [2]

    Morton M 2007 AIAA Paper 2007

    [3]

    Gloerfelt X, Bogey C, Bailly C 2007 Cavity Noise (Paris: Arts et Métiers ParisTech)

    [4]

    Lawson S J, Barakos G N 2011 Prog. Aerosp. Sci 47 186Google Scholar

    [5]

    郭启龙 2017 博士学位论文 (绵阳: 中国空气动力研究与发展中心研究生部)

    Guo Q L 2017 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center Graduate School) (in Chinese)

    [6]

    Rossiter J E 1966 Aeron. Res. Counc. 3438

    [7]

    Powell A 1961 J. Acoust. Soc. Am 33 395Google Scholar

    [8]

    Krishnamurty K 1956 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [9]

    Heller H H, Holmes D G, Covert E E 1971 J. Sound Vib 18 545Google Scholar

    [10]

    Bilanin A J, Covert E E 1973 AIAA J 11 347Google Scholar

    [11]

    Block P J W 1976 NASA Tech. Note D

    [12]

    Kerschen E, Tumin A 2003 AIAA Paper 2003

    [13]

    Alvarez J, Kerschen E, Tumin A 2004 AIAA Paper 2004

    [14]

    Ahuja K K, Mendoza J 1995 NASA C. R. 4653

    [15]

    Mendoza J, Ahuja K K 1995 AIAA Paper 95

    [16]

    Kegerise M A, Spina E F, Garg S, Cattafesta III L N 2004 Phys. Fluids 16 678Google Scholar

    [17]

    Brès G A, Colonius T 2008 J. Fluid Mech 599 309Google Scholar

    [18]

    Rowley C W, Colonius T, Basu A J 2002 J. Fluid Mech 455 315Google Scholar

    [19]

    Luo Y, Li H, Han S, Zhang S H 2021 Adv. Appl. Math. Mech 13 942Google Scholar

    [20]

    韩帅斌, 罗勇, 李虎, 武从海, 张树海 2022 力学学报 54 359

    Han S B, Luo Y, Li H, Wu C H, Zhang S H 2022 Chin. J. Theor. Appl. Mech. 54 359 (in Chinese)

    [21]

    韩帅斌, 罗勇, 张树海 2019航空工程进展 10 691

    Han S B, Luo Y, Zhang S H 2019 Adv. Aero. Sci. Eng. 10 691 (in Chinese)

    [22]

    Cattafesta III L N, Garg S, Kegerise M, Jones G S 1998 AIAA Paper 98

    [23]

    Gloerfelt X, Bogey C, Bailly C 2003 Int. J. Aeroacoust 2 193Google Scholar

    [24]

    Thangamani V 2019 AIAA J 57 1Google Scholar

    [25]

    Luo Y, Wu C H, Yuan S Q, Tian H, Li H, Zhang S H 2021 32nd Congress of the International Council of the Aeronautical Sciences

    [26]

    Kegerise M A 1999 Ph. D. Dissertation University

    [27]

    Neary M D, Stephanoff K D 1987 Phys. Fluids 30 2936Google Scholar

    [28]

    杨党国, 刘俊, 王显圣, 施傲, 周方奇, 郑晓东 2018 空气动力学学报 36 432

    Yang D G, Liu J, Wang X S, Shi A, Zhou F Q, Zheng X D 2018 Acta Aerodyn. Sin. 36 432 (in Chinese)

    [29]

    Nikias C L, Raghuveer M R 1987 Proc. IEEE 75 869Google Scholar

    [30]

    胡广书 2013 现代信号处理 (第二版) (北京: 清华大学出版社)

    Hu G S 2013 Modern Signal Processing (2nd Ed. ) (Beijing: Tsinghua University Press) (in Chinese)

  • [1] 郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才. 地基引力波探测激光干涉仪的真空残余气体噪声分析. 物理学报, 2024, 73(5): 050401. doi: 10.7498/aps.73.20231462
    [2] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器. 物理学报, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [3] 印必还, 何姿, 丁大志. 基于旋转多普勒效应的自旋目标转速估计方法. 物理学报, 2023, 72(17): 174203. doi: 10.7498/aps.72.20230807
    [4] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验. 物理学报, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [5] 罗小军, 石立华, 张琪, 邱实, 李云, 刘毅诚, 段艳涛. 一次人工触发闪电回击过程的光辐射色散特性分析. 物理学报, 2022, 71(17): 179201. doi: 10.7498/aps.71.20220479
    [6] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [7] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211425
    [8] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析. 物理学报, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [9] 万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆. 空频复用光纤中四波混频过程的解析分析方法. 物理学报, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [10] 葛明明, 王圣业, 王光学, 邓小刚. 基于混合雷诺平均/高精度隐式大涡模拟方法的高升力体气动噪声模拟. 物理学报, 2019, 68(20): 204702. doi: 10.7498/aps.68.20190777
    [11] 杨阳, 李秀坤. 水下目标声散射信号的时频域盲抽取. 物理学报, 2016, 65(16): 164301. doi: 10.7498/aps.65.164301
    [12] 田宝凤, 周媛媛, 王悦, 李振宇, 易晓峰. 基于独立成分分析的全波核磁共振信号噪声滤除方法研究. 物理学报, 2015, 64(22): 229301. doi: 10.7498/aps.64.229301
    [13] 鹿力成, 马力. 基于Warping变换的波导时频分析. 物理学报, 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [14] 刘亚奇, 刘成城, 赵拥军, 朱健东. 基于时频分析的多目标盲波束形成算法. 物理学报, 2015, 64(11): 114302. doi: 10.7498/aps.64.114302
    [15] 徐灵基, 杨益新, 杨龙. 水下线谱噪声源识别的波束域时频分析方法研究. 物理学报, 2015, 64(17): 174304. doi: 10.7498/aps.64.174304
    [16] 王文波, 汪祥莉. 噪声模态单元预判的经验模态分解脉冲星信号消噪. 物理学报, 2013, 62(20): 209701. doi: 10.7498/aps.62.209701
    [17] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究. 物理学报, 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [18] 刘诗序, 关宏志, 严海. 网络交通流动态演化的混沌现象及其控制. 物理学报, 2012, 61(9): 090506. doi: 10.7498/aps.61.090506
    [19] 杨红娟, 石玉仁, 段文山, 吕克璞. 非线性演化方程孤立波的同伦分析法求解. 物理学报, 2007, 56(6): 3064-3069. doi: 10.7498/aps.56.3064
    [20] 石玉仁, 汪映海, 杨红娟, 段文山. 高维非线性演化方程孤立波的同伦分析法求解. 物理学报, 2007, 56(12): 6791-6796. doi: 10.7498/aps.56.6791
计量
  • 文章访问数:  4360
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-06-07
  • 上网日期:  2022-09-26
  • 刊出日期:  2022-10-05

/

返回文章
返回