搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土含氧氢化物光致变色薄膜研究现状

李明 金平实 曹逊

引用本文:
Citation:

稀土含氧氢化物光致变色薄膜研究现状

李明, 金平实, 曹逊

Current research status of rare earth oxygenated hydride photochromic films

Li Ming, Jin Ping-Shi, Cao Xun
PDF
HTML
导出引用
  • 光致变色材料作为一种自适应型智能材料, 在智能窗户、光电传感器、光学存储等领域均有广泛的应用. 稀土含氧氢化物(REHxOy)薄膜作为一种新型光致变色材料, 自发现以来, 就以其高效可逆的变色性能、简单可重复的制备方法、快速的着褪色时间受到了大量的关注. 本文基于近年来针对稀土含氧氢化物光致变色薄膜的结构组成、变色机理、性能调控的研究现状进行了综述. REHxOy薄膜可以响应紫外光和可见光的激发, 对全光谱波段透过率进行大幅调节. 光致变色机理可归类为晶格收缩机制、氧交换机制、局部金属相变、氢迁移机制4种解释. 目前可以通过控制薄膜形貌、设计化学组分、提高衬底适配、多层膜结构设计等方式进行性能调控. 最后对薄膜之后的研究重点进行了展望.
    Photochromic material, as an adaptive smart material, has a wide range of applications in smart windows, photoelectric sensors, optical storage, etc. Oxygen-containing rare-earth metal hydride (REHxOy) film, a new type of photochromic material, has attracted the attention of researchers for its efficient and reversible color-changing properties, simple and reproducible preparation methods, and fast darkening-bleaching time. In this paper we review the current research status of structural composition, color change mechanism, and property modulation of oxygen-containing rare-earth metal hydride films. Exposure to visible light and ultraviolet (UV) light can lead the optical transmission of visible and infrared (IR) light to degrade. The photochromic mechanisms can be grouped into four mechanisms: lattice contraction mechanism, oxygen exchange mechanism, local metal phase change, and hydrogen migration mechanism. Currently, performance can be tuned by controlling film morphology, designing chemical components, improving substrate adaptation, multilayer film structure design, etc. Finally, the future research focus of thin film is prospected.
      通信作者: 曹逊, cxun@mail.sic.ac.cn
    • 基金项目: 中国科学院ANSO国际合作专项(批准号: ANSO-CR-KP-2021-01)和国家自然科学基金(批准号: 51972328, 62175248)资助的课题.
      Corresponding author: Cao Xun, cxun@mail.sic.ac.cn
    • Funds: Project supported by ANSO International Cooperation Project of Chinese Academy of Sciences (Grant No. ANSO-CR-KP-2021-01) and the National Natural Science Foundation of China (Grant Nos. 51972328, 62175248).
    [1]

    Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, Pooi S L, Long Y 2019 Adv. Energy Mater. 9 1902066Google Scholar

    [2]

    Ma Y, Yu Y, She P, Lu J, Liu S, Huang W, Zhao Q 2020 Sci. Adv. 6 2386Google Scholar

    [3]

    Barachevsky V A, Strokach Y P, Krayushkin M M 2007 J. Phys. Org. Chem. 20 1007Google Scholar

    [4]

    Qin M, Huang Y, Li F, Song Y 2015 J. Mater. Chem. C 3 9265Google Scholar

    [5]

    Gavrilyuk A I 2013 Appl. Surf. Sci. 273 735Google Scholar

    [6]

    Eglitis R, Zukuls A, Viter R 2020 Photochem. Photobiol. Sci. 19 1072Google Scholar

    [7]

    Zhu Y, Yao Y, Chen, Zhang Z, Zhang P, Cheng Z, Gao Y 2022 Sol. Energy Mater. Sol. Cells 239 111664Google Scholar

    [8]

    Tang W 2022 Chem. Eng. J. 435 134670Google Scholar

    [9]

    Huiberts J N, Griessen R, Rector J H, Wijngaarden R J, Dekker J P 1996 Nature 380 231Google Scholar

    [10]

    Hoekstra A F T, Roy A S, Rosenbaum T F, Griessen R 2001 Phys. Rev. Lett. 86 5349Google Scholar

    [11]

    Ngene P, Longo A, Moojj L 2017 Nat. Commun. 8 1846Google Scholar

    [12]

    Ohumura A, Machida A, Watanuki T 2007 Appl. Phys. Lett. 91 151904Google Scholar

    [13]

    Mongstad T, Platzer-Bjorkman C, Maehlen J, Lennard P A M, Yevheniy P, Dam B, Marstein E, Karazhanov S Z 2011 Sol. Energy Mater. Sol. Cells 95 3596Google Scholar

    [14]

    Nafezarefi F, Schreuders H, Dam B 2017 Appl. Phys. Lett. 111 103903Google Scholar

    [15]

    Colombi G, Dekrom T, Chaykina D 2021 ACS Photonics 8 709Google Scholar

    [16]

    Baba E M, Montero J, Moldarev D, Moro M V, Wolff M, Primetzhofer D, Sartori S, Zayim E, Karazhanov S Z 2020 Molecules 25 3181Google Scholar

    [17]

    Moldarev D, Moro M V, You C C, Elbruz M B, Karazhanov S Z 2018 Phys. Rev. Mater. 2 115203Google Scholar

    [18]

    Chai J, Shao Z, Wang H, Ming C, Oh W, Ye T, Zhang Y, Cao X, Ping Jin, Sun Y 2020 Sci. China Mater. 63 1579Google Scholar

    [19]

    Colombi G, Cornelius S, Longo A 2020 J. Phys. Chem. C 124 13541Google Scholar

    [20]

    Pishtshev A, Strougovshchikov E, Karazhanov S 2019 Cryst. Growth Des. 19 2574Google Scholar

    [21]

    Chaykin D, Nafezarefi F, Colombi G, Cornelius S, Lars J 2022 J. Phys. Chem. C 126 2276Google Scholar

    [22]

    Montero J, Martinsen F A, Lelis M, Karazhanov S Z, Hauback B C, Marstein E S 2018 Sol. Energy Mater. Sol. Cells 177 106

    [23]

    Pishtshev A, Karazhanov S Z 2014 Solid State Commun. 194 39Google Scholar

    [24]

    You C C, Moldarev D, Mongstada T, Primetzhofer D, Wolffb M, Marsteina E S, Karazhanov S Z 2017 Sol. Energy Mater. Sol. Cells. 166 185Google Scholar

    [25]

    You C C, Mongstad T, Marstein E S, Karazhanov S Z 2019 Materialia 6 100307Google Scholar

    [26]

    Kantre K, Moro M V, Moldarev D 2020 Scr. Mater. 186 352Google Scholar

    [27]

    Mongstad T, Subrahmanyam A, Karazhanov S 2014 Sol. Energy Mater. Sol. Cells 128 270Google Scholar

    [28]

    Komatsu Y, Sato R, Wilde M, Nishio K, Katase T, Matsumura D, Saitoh H, Miyauchi M, Adelman J R, McFadden R M L, MacFarlane W A, Sugiyama J, Komatsu T H Y 2022 Chem. Mater. 34 3616Google Scholar

    [29]

    Montero J, Galeckas A, Karazhanov S Z 2018 Phys. Status Solidi B 255 1800139Google Scholar

    [30]

    You C C, Karazhanov S Z 2020 J. Appl. Phys. 128 013106Google Scholar

    [31]

    Shao Z, Cao X, Zhang Q, Long S, Chang T, Xu F, Jin P. 2019 Sol. Energy Mater. Sol. Cells 200 110044Google Scholar

    [32]

    Moro M V 2019 Sol. Energy Mater. Sol. Cells 201 110119Google Scholar

    [33]

    Baba E M, Weiser P M, Karazhanov S 2021 Phys. Status Solidi RRL Rapid Res. Lett. 15 2000459Google Scholar

    [34]

    Zhang Q, Xie L, Zhu Y, Tao Y, Li R, Xua J, Bao S, Jin P 2019 Sol. Energy Mater. Sol. Cells 20 109930

    [35]

    Dam B, Remhof A, Heijna M C R, Rector J H, Borsa D, Kerssemakers J W J 2003 J. Alloys Compd. 356–357 526Google Scholar

    [36]

    田民波, 李正操 2011 薄膜技术与薄膜材料 (北京: 清华大学出版社) 第251页

    Tian M B, Li Z C 2011 Thin Film Technology and Thin-Film Materials (Beijing: Tsinghua University Press) p251 (in Chinese)

    [37]

    Maehlen J P, Mongstad T T, You C C, Karazhanov S 2013 J. Alloys Compd. 580 119Google Scholar

    [38]

    Plokkera M P, Eijta S W H, Nazirisa F, Schutb H, Nafezarefic F, Schreudersc H, Corneliusc S, Dam B 2018 Sol. Energy Mater. Sol. Cells 177 97Google Scholar

    [39]

    Eijta S W H, Kroma T W H, Chaykinab D, Schuta H, Colombib G, Eggerc W, Dickmannc M, Hugenschmidtd C, Dam B 2020 Acta Phys. Pol. A 137 205Google Scholar

    [40]

    Montero J, Martinsen F A, García-Tecedor M, Karazhanov S Z, Maestre D, Hauback B, Marstein E S 2017 Phys. Rev. B 95 201301Google Scholar

    [41]

    Baba E M, Montero J, Strugovshchikov E, Zayim E, Karazhanov S 2020 Phys. Rev. Mater. 4 025201Google Scholar

    [42]

    Moldarev D, Stolz L, Marcos V 2021 Phys. Status Solidi RRL Rapid Res. Lett. 15 2000608Google Scholar

    [43]

    Moldarev D, Stolz L, Moro M V, Aðalsteinsson S M, Chioar I A, Karazhanov S Z, Primetzhofer D, Wolff M 2021 J. Appl. Phys. 129 153101Google Scholar

    [44]

    Hans M, Tran T T, Aðalsteinsson S M, Moldarev D, Moro M V, Wolff M, Primetzhofer D 2020 Adv. Opt. Mater. 8 2000822Google Scholar

    [45]

    Chandran C V, Schreuders H, Dam B, Janssen J W G, Bart J, Kentgens A P M 2014 J. Phys. Chem. C 118 22935Google Scholar

    [46]

    Nafezarefi F, Cornelius S, Dam B 2019 Sol. Energy Mater. Sol. Cells 200 109923Google Scholar

    [47]

    Moldarev D, Wolff M, Baba E M, Moro M V, You C C, Primetzhofer D, Karazhanov S Z 2020 Materialia 11 100706Google Scholar

    [48]

    Mayer M, Eckstein W, Langhuth H, Schiettekatte F, Toussaint U 2011 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269 3006Google Scholar

    [49]

    陈赟斐, 魏峰, 王赫, 赵未昀, 邓元 2021 物理学报 70 207303Google Scholar

    Chen Y F, Wei F, Wang H, Zhao W H, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar

    [50]

    Chen J K, Mao W, Ge B, Wang J, Ke X Y, Wang V, Wang Y P, Döbeli M, Geng W T, Matsuzaki H, Shi J, Jiang Y 2019 Nat. Commun. 10 694Google Scholar

    [51]

    白刚, 韩宇航, 高存法 2022 物理学报 71 097701Google Scholar

    Bai G, Han Y H, Gao C F 2022 Acta Phys. Sin. 71 097701Google Scholar

    [52]

    You C C, Mongstad T, Maehlen J P 2015 Sol. Energy Mater. Sol. Cells 143 623Google Scholar

    [53]

    You C C, Mongstad T, Maehlen J P, Karazhanov S 2014 Appl. Phys. Lett. 105 031910Google Scholar

    [54]

    Moldarev D, Primetzhofer D, You C C, Karazhanov S Z, Montero J, Martinsen F, Mongstad T, Marstein E S, Wolff M 2018 Sol. Energy Mater. Sol. Cells 177 66Google Scholar

    [55]

    Strugovshchikov E, Pishtshev A, Karazhanov S 2021 Phys. Status Solidi B 258 2100179Google Scholar

    [56]

    拉毛, 包山虎, 莎仁 2018 化学学报 77 90Google Scholar

    La M, Bao S H, Sha R 2018 Acta Chim. Sin. 77 90Google Scholar

  • 图 1  REHxOy薄膜的光致变色机理、制备方法及应用展望

    Fig. 1.  Photochromic mechanism, preparation method and application prospect of REHxOy film.

    图 2  REHxOy薄膜(YHxOy和GdHxOy)的结构模型 (a)晶格能计算GdHxOy立方相结构模型; (b) DFT理论预测YHxOy 17种结构相图[19,20]

    Fig. 2.  Structural models of REHxOy (YHxOy and GdHxOy) films: (a) Lattice energy calculation GdHxOy cubic phase structure model; (b) DFT predicts 17 structural phase diagrams of YHxOy[19,20].

    图 3  氧浓度对薄膜带隙的影响 (a)梯度氧含量制备样品; (b)横向尺度上O/Y化学计量比; (c)横向尺度上带隙变化[24]

    Fig. 3.  Effect of oxygen concentration on the band gap of thin films: (a) Samples prepared with gradient oxygen content; (b) the O/Y stoichiometric ratio in the horizontal direction; (c) the band gap variation in the horizontal direction[24].

    图 4  YHxOy薄膜光学性能和电学性能 (a)光照前后样品透过率、反射率和光学密度的变化[13]; (b) Tauc-plot法计算样品直接带隙与间接带隙[29]; (c)光照前后样品的电阻变化[28]

    Fig. 4.  Optical and electrical properties of YHxOy films: (a) The changes in transmission, reflection, and optical density of YHxOy films before and after light exposure[13]; (b) the direct and indirect bandgap of YHxOy films[29]; (c) the changes in resistivity of YHxOy films under light induction[28].

    图 5  (a), (b)不同波长和强度光照下薄膜的光致变色响应[30]; (c), (d)不同温度下薄膜的光致变色响应[33]

    Fig. 5.  (a), (b) Photochromic response of thin films under different wavelengths and intensities of light[30]; (c), (d) photochromic response of samples at different temperatures[33].

    图 6  (a)同步X射线原位表征光照下样品晶格变化[37]; (b)光照之后拉曼光谱中出现金属相峰位[40]; (c)不同气氛下样品光照后的褪色速度[41]; (d)光致变色前后薄膜成分变化[32]

    Fig. 6.  (a) Simultaneous X-ray in situ characterization of sample lattice changes under illumination[37]; (b) appearance of metal phase peaks in Raman spectra after illumination[40]; (c) recovery rate of samples under different atmospheres after illumination[41]; (d) the change in film composition before and after photochromic[32].

    图 7  双相结构下光子诱导氢转移[44]

    Fig. 7.  Photon-induced hydrogen transfer in a two-phase structure[44].

    图 8  光照后“双聚氢”结构的形成[18]

    Fig. 8.  Formation of the dihydrogen structure after illumination[18]

    图 9  (a)不同衬底样品的光致变色响应[52]; (b) 不同厚度样品的光致变色响应[47]; (c)不同稀土元素样品的光致变色响应[14]; 不同溅射压力样品(d) YHxOy薄膜和(e) GdHxOy薄膜的光致变色响应[15], 以及(f)光致变色性能与化学组分之间的关系[15]

    Fig. 9.  (a) Photochromic response of samples with different substrates[52]; (b) photochromic response of samples with different thicknesses[47]; (c) photochromic response of different rare earth element samples[14]. The photochromic response of different sputtering pressure samples: (d) YHxOy film; (e) GdHxOy film[15]; (f) relationship between photochromic properties and chemical components[15].

    图 10  光学设计的高透过率和高发射率模型[55]

    Fig. 10.  High transmittance and high emissivity models for optical design[55].

    图 11  YHxOy与VO2复合薄膜的四态调控[31]

    Fig. 11.  Four-state modulation of spectral changes in YHxOy and VO2 composite films[31].

    表 1  部分有机无机光致变色材料总结[1]

    Table 1.  Summary of some organic and inorganic photochromic materials[1].

    Type of the materialName of materialPhotochromism principleMethod of bleachingColor change
    OrganicDiarylethenesPhotocyclization reactionExpose to visible lightColorless → red
    FulgidePhotochemical conrotatoryExpose to visible lightPale yellow → red
    SpriopyranHetetolytic cleavage/photocyclizationExpose to visible light/heatingColorless → purple
    NaphthopyarnHetetolytic cleavage/photocyclizationRemoving UVColorless → gray
    InorganicTMOsWO3Photon prompted redox reactionRemoving UVColorless → blue
    TiO2Photon prompted redox reactionRemoving UV and
    exposing to air
    Faint yellow → black
    MoO3Intercalation-deintercalation of univalent cationsRemoving UVWhite → blue
    Metal halidesLead chloride [Pb3Cl6(CV)]H2O]nLight-triggered electron transferRemoving UV/
    anneal in air
    Pale yellow → blue
    AgClLight-triggered reversible decompositionRemoving UVTransparent → brown
    下载: 导出CSV

    表 2  已有报道稀土元素的性质

    Table 2.  Properties of reported rare earth element.

    ElementAtomic massIon size/nmSputtering pressure/PaBand gap/eVΔT/%文献
    Y890.0900.42.637[14]
    Gd157.250.0940.62.2545[14]
    Dy162.50.0910.62.2533[14]
    Er167.260.0880.62.435[14]
    下载: 导出CSV
  • [1]

    Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, Pooi S L, Long Y 2019 Adv. Energy Mater. 9 1902066Google Scholar

    [2]

    Ma Y, Yu Y, She P, Lu J, Liu S, Huang W, Zhao Q 2020 Sci. Adv. 6 2386Google Scholar

    [3]

    Barachevsky V A, Strokach Y P, Krayushkin M M 2007 J. Phys. Org. Chem. 20 1007Google Scholar

    [4]

    Qin M, Huang Y, Li F, Song Y 2015 J. Mater. Chem. C 3 9265Google Scholar

    [5]

    Gavrilyuk A I 2013 Appl. Surf. Sci. 273 735Google Scholar

    [6]

    Eglitis R, Zukuls A, Viter R 2020 Photochem. Photobiol. Sci. 19 1072Google Scholar

    [7]

    Zhu Y, Yao Y, Chen, Zhang Z, Zhang P, Cheng Z, Gao Y 2022 Sol. Energy Mater. Sol. Cells 239 111664Google Scholar

    [8]

    Tang W 2022 Chem. Eng. J. 435 134670Google Scholar

    [9]

    Huiberts J N, Griessen R, Rector J H, Wijngaarden R J, Dekker J P 1996 Nature 380 231Google Scholar

    [10]

    Hoekstra A F T, Roy A S, Rosenbaum T F, Griessen R 2001 Phys. Rev. Lett. 86 5349Google Scholar

    [11]

    Ngene P, Longo A, Moojj L 2017 Nat. Commun. 8 1846Google Scholar

    [12]

    Ohumura A, Machida A, Watanuki T 2007 Appl. Phys. Lett. 91 151904Google Scholar

    [13]

    Mongstad T, Platzer-Bjorkman C, Maehlen J, Lennard P A M, Yevheniy P, Dam B, Marstein E, Karazhanov S Z 2011 Sol. Energy Mater. Sol. Cells 95 3596Google Scholar

    [14]

    Nafezarefi F, Schreuders H, Dam B 2017 Appl. Phys. Lett. 111 103903Google Scholar

    [15]

    Colombi G, Dekrom T, Chaykina D 2021 ACS Photonics 8 709Google Scholar

    [16]

    Baba E M, Montero J, Moldarev D, Moro M V, Wolff M, Primetzhofer D, Sartori S, Zayim E, Karazhanov S Z 2020 Molecules 25 3181Google Scholar

    [17]

    Moldarev D, Moro M V, You C C, Elbruz M B, Karazhanov S Z 2018 Phys. Rev. Mater. 2 115203Google Scholar

    [18]

    Chai J, Shao Z, Wang H, Ming C, Oh W, Ye T, Zhang Y, Cao X, Ping Jin, Sun Y 2020 Sci. China Mater. 63 1579Google Scholar

    [19]

    Colombi G, Cornelius S, Longo A 2020 J. Phys. Chem. C 124 13541Google Scholar

    [20]

    Pishtshev A, Strougovshchikov E, Karazhanov S 2019 Cryst. Growth Des. 19 2574Google Scholar

    [21]

    Chaykin D, Nafezarefi F, Colombi G, Cornelius S, Lars J 2022 J. Phys. Chem. C 126 2276Google Scholar

    [22]

    Montero J, Martinsen F A, Lelis M, Karazhanov S Z, Hauback B C, Marstein E S 2018 Sol. Energy Mater. Sol. Cells 177 106

    [23]

    Pishtshev A, Karazhanov S Z 2014 Solid State Commun. 194 39Google Scholar

    [24]

    You C C, Moldarev D, Mongstada T, Primetzhofer D, Wolffb M, Marsteina E S, Karazhanov S Z 2017 Sol. Energy Mater. Sol. Cells. 166 185Google Scholar

    [25]

    You C C, Mongstad T, Marstein E S, Karazhanov S Z 2019 Materialia 6 100307Google Scholar

    [26]

    Kantre K, Moro M V, Moldarev D 2020 Scr. Mater. 186 352Google Scholar

    [27]

    Mongstad T, Subrahmanyam A, Karazhanov S 2014 Sol. Energy Mater. Sol. Cells 128 270Google Scholar

    [28]

    Komatsu Y, Sato R, Wilde M, Nishio K, Katase T, Matsumura D, Saitoh H, Miyauchi M, Adelman J R, McFadden R M L, MacFarlane W A, Sugiyama J, Komatsu T H Y 2022 Chem. Mater. 34 3616Google Scholar

    [29]

    Montero J, Galeckas A, Karazhanov S Z 2018 Phys. Status Solidi B 255 1800139Google Scholar

    [30]

    You C C, Karazhanov S Z 2020 J. Appl. Phys. 128 013106Google Scholar

    [31]

    Shao Z, Cao X, Zhang Q, Long S, Chang T, Xu F, Jin P. 2019 Sol. Energy Mater. Sol. Cells 200 110044Google Scholar

    [32]

    Moro M V 2019 Sol. Energy Mater. Sol. Cells 201 110119Google Scholar

    [33]

    Baba E M, Weiser P M, Karazhanov S 2021 Phys. Status Solidi RRL Rapid Res. Lett. 15 2000459Google Scholar

    [34]

    Zhang Q, Xie L, Zhu Y, Tao Y, Li R, Xua J, Bao S, Jin P 2019 Sol. Energy Mater. Sol. Cells 20 109930

    [35]

    Dam B, Remhof A, Heijna M C R, Rector J H, Borsa D, Kerssemakers J W J 2003 J. Alloys Compd. 356–357 526Google Scholar

    [36]

    田民波, 李正操 2011 薄膜技术与薄膜材料 (北京: 清华大学出版社) 第251页

    Tian M B, Li Z C 2011 Thin Film Technology and Thin-Film Materials (Beijing: Tsinghua University Press) p251 (in Chinese)

    [37]

    Maehlen J P, Mongstad T T, You C C, Karazhanov S 2013 J. Alloys Compd. 580 119Google Scholar

    [38]

    Plokkera M P, Eijta S W H, Nazirisa F, Schutb H, Nafezarefic F, Schreudersc H, Corneliusc S, Dam B 2018 Sol. Energy Mater. Sol. Cells 177 97Google Scholar

    [39]

    Eijta S W H, Kroma T W H, Chaykinab D, Schuta H, Colombib G, Eggerc W, Dickmannc M, Hugenschmidtd C, Dam B 2020 Acta Phys. Pol. A 137 205Google Scholar

    [40]

    Montero J, Martinsen F A, García-Tecedor M, Karazhanov S Z, Maestre D, Hauback B, Marstein E S 2017 Phys. Rev. B 95 201301Google Scholar

    [41]

    Baba E M, Montero J, Strugovshchikov E, Zayim E, Karazhanov S 2020 Phys. Rev. Mater. 4 025201Google Scholar

    [42]

    Moldarev D, Stolz L, Marcos V 2021 Phys. Status Solidi RRL Rapid Res. Lett. 15 2000608Google Scholar

    [43]

    Moldarev D, Stolz L, Moro M V, Aðalsteinsson S M, Chioar I A, Karazhanov S Z, Primetzhofer D, Wolff M 2021 J. Appl. Phys. 129 153101Google Scholar

    [44]

    Hans M, Tran T T, Aðalsteinsson S M, Moldarev D, Moro M V, Wolff M, Primetzhofer D 2020 Adv. Opt. Mater. 8 2000822Google Scholar

    [45]

    Chandran C V, Schreuders H, Dam B, Janssen J W G, Bart J, Kentgens A P M 2014 J. Phys. Chem. C 118 22935Google Scholar

    [46]

    Nafezarefi F, Cornelius S, Dam B 2019 Sol. Energy Mater. Sol. Cells 200 109923Google Scholar

    [47]

    Moldarev D, Wolff M, Baba E M, Moro M V, You C C, Primetzhofer D, Karazhanov S Z 2020 Materialia 11 100706Google Scholar

    [48]

    Mayer M, Eckstein W, Langhuth H, Schiettekatte F, Toussaint U 2011 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269 3006Google Scholar

    [49]

    陈赟斐, 魏峰, 王赫, 赵未昀, 邓元 2021 物理学报 70 207303Google Scholar

    Chen Y F, Wei F, Wang H, Zhao W H, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar

    [50]

    Chen J K, Mao W, Ge B, Wang J, Ke X Y, Wang V, Wang Y P, Döbeli M, Geng W T, Matsuzaki H, Shi J, Jiang Y 2019 Nat. Commun. 10 694Google Scholar

    [51]

    白刚, 韩宇航, 高存法 2022 物理学报 71 097701Google Scholar

    Bai G, Han Y H, Gao C F 2022 Acta Phys. Sin. 71 097701Google Scholar

    [52]

    You C C, Mongstad T, Maehlen J P 2015 Sol. Energy Mater. Sol. Cells 143 623Google Scholar

    [53]

    You C C, Mongstad T, Maehlen J P, Karazhanov S 2014 Appl. Phys. Lett. 105 031910Google Scholar

    [54]

    Moldarev D, Primetzhofer D, You C C, Karazhanov S Z, Montero J, Martinsen F, Mongstad T, Marstein E S, Wolff M 2018 Sol. Energy Mater. Sol. Cells 177 66Google Scholar

    [55]

    Strugovshchikov E, Pishtshev A, Karazhanov S 2021 Phys. Status Solidi B 258 2100179Google Scholar

    [56]

    拉毛, 包山虎, 莎仁 2018 化学学报 77 90Google Scholar

    La M, Bao S H, Sha R 2018 Acta Chim. Sin. 77 90Google Scholar

  • [1] 余秀冬, 刘海顺, 薛琳, 张响, 杨卫明. 铁基非晶条带催化降解性能的退火晶化调控机理研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240249
    [2] 任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利. 氮化硼纳米管表面结构设计及其对环氧复合电介质性能调控机理. 物理学报, 2024, 73(2): 027703. doi: 10.7498/aps.73.20230708
    [3] 袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵. HfO2基铁电薄膜的结构、性能调控及典型器件应用. 物理学报, 2023, 72(9): 097703. doi: 10.7498/aps.72.20222221
    [4] 邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳. 三氧化钨晶体拓扑结构生长行为及其电致变色性能. 物理学报, 2022, 71(2): 028201. doi: 10.7498/aps.71.20211555
    [5] 张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜. 不同充放电模式影响还原氧化石墨烯电极储锂性能的实验分析. 物理学报, 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [6] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控. 物理学报, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [7] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221046
    [8] 邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳. WO3晶体拓扑结构生长行为及其电致变色性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211555
    [9] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文. 尺寸调控SnO2量子点的阻变性能及调控机理. 物理学报, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [10] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能. 物理学报, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [11] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [12] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控. 物理学报, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [13] 许文祥, 孙洪广, 陈文, 陈惠苏. 软物质系颗粒材料组成、微结构与传输性能之间关联建模综述. 物理学报, 2016, 65(17): 178101. doi: 10.7498/aps.65.178101
    [14] 康永强, 高鹏, 刘红梅, 张淳民, 石云龙. 单负材料组成一维光子晶体双量子阱结构的共振模. 物理学报, 2015, 64(6): 064207. doi: 10.7498/aps.64.064207
    [15] 姜礼华, 曾祥斌, 张笑. 高温退火处理下SiNx薄膜组成及键合结构变化. 物理学报, 2012, 61(1): 016803. doi: 10.7498/aps.61.016803
    [16] 刘其海, 胡冬生, 尹小刚, 王彦庆. 由单负材料组成的含有缺陷层的一维光子晶体结构中的缺陷模. 物理学报, 2011, 60(9): 094101. doi: 10.7498/aps.60.094101
    [17] 杨一鸣, 屈绍波, 王甲富, 徐卓. 由同时具有磁谐振和电谐振结构组成的左手材料. 物理学报, 2009, 58(2): 1031-1035. doi: 10.7498/aps.58.1031
    [18] 胡 恒, 潘龙法, 齐国生, 胡 华, 徐端颐. 光致变色多阶游程光存储研究. 物理学报, 2006, 55(4): 1759-1763. doi: 10.7498/aps.55.1759
    [19] 冯博学, 谢 亮, 王 君, 蒋生蕊, 陈光华. 射频溅射微晶NiOxHy膜电致变色性能及其机理研究. 物理学报, 2000, 49(10): 2066-2071. doi: 10.7498/aps.49.2066
    [20] 崔万秋, 沈志奇, 周德保. Li2Mo2-xWxO6多晶材料的结构、电学性能与导电机理的研究. 物理学报, 1993, 42(7): 1101-1109. doi: 10.7498/aps.42.1101
计量
  • 文章访问数:  3213
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 修回日期:  2022-06-29
  • 上网日期:  2022-10-25
  • 刊出日期:  2022-11-05

/

返回文章
返回