搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大模场一维高阶厄米-高斯激光束产生

周王哲 李雪鹏 杨晶 杨天利 王小军 刘炳杰 王浩竹 杨俊波 彭钦军

引用本文:
Citation:

大模场一维高阶厄米-高斯激光束产生

周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军

Generation of one-dimensional high-order Hermite-Gaussian laser beams with large mode volume

Zhou Wang-Zhe, Li Xue-Peng, Yang Jing, Yang Tian-Li, Wang Xiao-Jun, Liu Bing-Jie, Wang Hao-Zhu, Yang Jun-Bo, Peng Qin-Jun
PDF
HTML
导出引用
  • 厄米-高斯光束在诸多前沿科学领域都有着重要的应用. 不同于目前普遍采用的晶体端面离轴泵浦方式, 本文提出了一种利用板条激光器产生厄米-高斯激光束的方法. 采用半导体激光阵列大面正交泵浦板条激光介质, 具有大模场特性. 根据预先设计的谐振腔模场, 在板条厚度和宽度方向分别采用尺寸可调的光阑限模. 由于高阶模式对谐振腔腔镜不对准的灵敏度弱于低阶模式, 可通过耦合输出镜倾斜量的控制, 实现不同阶数模式腔内损耗的差异化调控, 从而产生各阶次的高纯度厄米-高斯光束. 利用Nd:YAG板条激光器, 获得了0—9阶一维厄米-高斯光束, 其光强分布与理论值的相关系数$ \rho $高于0.95, 光束质量因子$ {M}^{2} $与理论值符合良好. 最高阶HG09模式的输出功率为 244 mW. 在此基础上, 进一步利用柱透镜对组成的像散模式转换器, 实现了各阶厄米-高斯光束向对应拉盖尔-高斯光束的转换. 结合板条放大器结构, 基于本方案产生的厄米-高斯光束具备功率定标放大的前景.
    Hermite-Gaussian (HG) beams have many important applications in the optical frontier, and the limited output power of the high-purity HG beams is partly due to the small gain volume of the mode. The commonly used off-axis end-pumped scheme offers a narrow gain volume whose diameter is about a hundred microns. In this work, a new method of generating the HG beams based on a slab resonator that has a large mode volume is proposed and experimentally demonstrated. According to the optical resonator theory, the intra-cavity modes in thickness and width direction of the slab resonator are restricted by inserting two size-adjustable apertures, respectively. The one-dimensional HG beam generation is mainly guaranteed by the size of the aperture along the thickness direction of the slab, which matches the diameter of the fundamental mode. The different order one-dimensional HG beams are obtained by refined intra-cavity mode modulation. Since the higher-order modes are less sensitive to the misalignment of the cavity mirror than the lower-order modes, and the manipulation of the modes-loss at different orders is achieved by combining the tilt control of the coupled output mirror and the size control of intra-cavity apertures. By adjusting the optical gain and loss in the resonant cavity, the single mode wins the competition of laser modes. Therefore, high-purity one-dimensional HG beams with 0 to 9 orders (HG00 to HG09) are generated. The pump module is comprised of a two-dimensional laser diode array which offers face-pumping to the large surface of the slab, therefore the width of the mode volume is extended to several millimeters. By further incorporating the 100mm-level long slab, the total gain volume is much larger than the counterpart in the off-axis pumping scheme. In this work, the output power of the highest order HG09 mode increases up to 244 mW. Owing to the large gain volume and uniform gain distribution caused by the face-pumped slab, the purity of high order HG modes is quite good. The correlation coefficient $ \rho $ between the measured intensity distribution and the theoretical value is larger than 0.95. The beam quality factor $ {M}^{2} $ is also in good agreement with the theoretical one. Finally, a conversion from Hermite-Gaussian beams to the donut-shaped Laguerre-Gaussian beams is realized by using an astigmatic mode converter. Hopefully, power scaling of the HG beam output is also expected by employing cascaded slab amplifiers, and the approach in this paper provides a novel solution for generation of high power HG beams.
      通信作者: 杨晶, yangjing@mail.ipc.ac.cn
      Corresponding author: Yang Jing, yangjing@mail.ipc.ac.cn
    [1]

    Kogelnik H, Li T 1996 Appl. Opt. 5 1550Google Scholar

    [2]

    Sayan Ö F, Gerçekcioğlu H, Baykal Y 2020 Opt. Commun. 458 124735Google Scholar

    [3]

    Meyrath T P, Schreck F, Hanssen J L, Chuu C S, Raizen M G 2005 Opt. Express 13 2843Google Scholar

    [4]

    Wadhwa J, Singh A 2019 Phys. Plasmas 26 062118Google Scholar

    [5]

    Ghotra H S, Jaroszynski D, Ersfeld B, Saini N S, Yoffe S, Kant N 2018 Laser Part. Beams 36 154Google Scholar

    [6]

    Beijersbergen M W, Allen L, van der Veen H E L O, Woerdman J P 1993 Opt. Commun. 96 123Google Scholar

    [7]

    Chu S C, Ohtomo T, Otsuka K 2008 Appl. Opt. 47 2583Google Scholar

    [8]

    Ohtomo T, Chu S C, Otsuka K 2008 Opt. Express 16 5082Google Scholar

    [9]

    Shen Y, Meng Y, Fu X, Gong M 2018 Opt. Lett. 43 291Google Scholar

    [10]

    Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403Google Scholar

    [11]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [12]

    Romero J, Leach J, Jack B, Dennis M R, Franke-Arnold S, Barnett S M, Padgett M J 2011 Phys. Rev. Lett. 106 100407Google Scholar

    [13]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P G 2014 Appl. Phys. Lett. 104 231110Google Scholar

    [14]

    Hamazaki J, Morita R, Chujo K, Kobayashi Y, Tanda S, Omatsu T 2010 Opt. Express 18 2144Google Scholar

    [15]

    Gu Y, Gbur G 2010 Opt. Commun. 283 1209Google Scholar

    [16]

    Ohtomo T, Kamikariya K, Otsuka K, Chu S C 2007 Opt. Express 15 10705Google Scholar

    [17]

    连天虹, 王石语, 寇科, 刘芸 2020 物理学报 69 114202Google Scholar

    Lian T H, Wang S Y, Kou K, Liu Y 2020 Acta Phys. Sin. 69 114202Google Scholar

    [18]

    Chu S C, Chen Y T, Tsai K F, Otsuka K 2012 Opt. Express 20 7128Google Scholar

    [19]

    Delaubert V, Shaddock D A, Lam P K, Buchler B C, Bachor H A, McClelland D E 2002 J. Opt. A: Pure Appl. Opt. 4 393Google Scholar

    [20]

    Ma L, Guo H, Sun H, Liu K, Su B, Gao J 2020 Photonics Res. 8 1422Google Scholar

    [21]

    Hu A, Lei J, Chen P, Wang Y, Li S 2014 Appl. Opt. 53 7845Google Scholar

    [22]

    Li S, Guo Y D, Chen Z Z, Zhang L, Gong K L, Zhang Z F, Xu Z Y 2019 Chin. Phys. Lett. 36 044204Google Scholar

    [23]

    Boyd G D, Gordon J P 1961 Bell Syst. Tech. J. 40 489Google Scholar

    [24]

    Carter W H 1980 Appl. Opt. 19 1027Google Scholar

    [25]

    Zhang L, Guo Y D, Chen Z Z, Gong K L, Xu J L, Yuan L, Lin Y Y, Meng S, Li Y, Shao C F, Li S, Zhang Z F, Bo Y, Peng Q J, Cui D F, Xu Z Y 2019 IEEE Photonics Technol. Lett. 31 405Google Scholar

    [26]

    McCumber D E 1965 Bell Syst. Tech. J. 44 333Google Scholar

    [27]

    Freiberg R J, Halsted A S 1969 Appl. Opt. 8 355Google Scholar

    [28]

    Benesty J, Chen J, Huang Y, Cohen I 2009 Noise Reduction in Speech Processing (Berlin: Springer) pp1–4

    [29]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Physical Review A 45 8185

    [30]

    丁攀峰, 蒲继雄 2011 物理学报 60 094204Google Scholar

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204Google Scholar

  • 图 1  大面泵浦Nd:YAG板条激光器产生一维厄米-高斯模式输出装置示意图

    Fig. 1.  Experimental setup for the generation of one-dimensional Hermite-Gaussian modes based on face-pumped Nd:YAG slab laser.

    图 2  测量的高阶HG模式光斑强度分布及其沿中心轴线强度与理论强度的比较, $ \rho $是各阶模式实验值与理论值的相关系数

    Fig. 2.  Measured intensity distributions of different high order HG mode, corresponding intensity distribution curves along the central axis and the calculation curves. $ \rho $ is the correlation coefficient between the experimental and theoretical values of each mode.

    图 3  (a)—(c) 测量的典型 HG 模式光斑直径与传输距离的关系; (d) 不同HG模式光束质量$ {M}^{2} $因子测量值与理论计算值对比

    Fig. 3.  (a)–(c) Beam diameter of typical HG modes versus the transmission distance; (d) the comparison of experimental and theoretical values of the beam quality factor $ {M}^{2} $ for different HG modes.

    图 4  输入厄米-高斯模式产生拉盖尔-高斯模式输出装置的构造

    Fig. 4.  Experimental setup for generating Laguerre-Gaussian mode by inputting Hermite - Gaussian modes.

    图 5  测量的各阶LG模式的光斑, $ {r}_{n}/{r}_{1} $ 是 LG0n 与 LG01 模式光斑半径比值

    Fig. 5.  Measured beam spots of different LG modes, $ {r}_{n}/{r}_{1} $ is the spot radius ratio between LG0n and LG01 mode.

    表 1  各阶HG模式半径的计算理论值(${w}_{ {n}\rm{s}}$), 对应的光阑实际宽度($ {D}_{x} $, $ {D}_{y} $), OC的俯仰角($ \theta $)和功率(P)

    Table 1.  Calculated radius ($ {w}_{n\rm{s}} $) of different order HG mode, the corresponding width of the aperture ($ {D}_{x}, {D}_{y} $), pitch angle (θ) of OC and power (P).

    ModeHG00HG01HG02HG03HG04HG05HG06HG07HG08HG09
    Dx/mm1.5
    wns/mm0.520.901.161.381.561.721.872.012.142.27
    Dy/mm1.52.02.42.73.23.54.04.24.55.0
    θ/μrad0101.523.618.296.132.796.176.258.1142.7
    P/mW213215223232239235241237242244
    下载: 导出CSV
  • [1]

    Kogelnik H, Li T 1996 Appl. Opt. 5 1550Google Scholar

    [2]

    Sayan Ö F, Gerçekcioğlu H, Baykal Y 2020 Opt. Commun. 458 124735Google Scholar

    [3]

    Meyrath T P, Schreck F, Hanssen J L, Chuu C S, Raizen M G 2005 Opt. Express 13 2843Google Scholar

    [4]

    Wadhwa J, Singh A 2019 Phys. Plasmas 26 062118Google Scholar

    [5]

    Ghotra H S, Jaroszynski D, Ersfeld B, Saini N S, Yoffe S, Kant N 2018 Laser Part. Beams 36 154Google Scholar

    [6]

    Beijersbergen M W, Allen L, van der Veen H E L O, Woerdman J P 1993 Opt. Commun. 96 123Google Scholar

    [7]

    Chu S C, Ohtomo T, Otsuka K 2008 Appl. Opt. 47 2583Google Scholar

    [8]

    Ohtomo T, Chu S C, Otsuka K 2008 Opt. Express 16 5082Google Scholar

    [9]

    Shen Y, Meng Y, Fu X, Gong M 2018 Opt. Lett. 43 291Google Scholar

    [10]

    Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403Google Scholar

    [11]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [12]

    Romero J, Leach J, Jack B, Dennis M R, Franke-Arnold S, Barnett S M, Padgett M J 2011 Phys. Rev. Lett. 106 100407Google Scholar

    [13]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P G 2014 Appl. Phys. Lett. 104 231110Google Scholar

    [14]

    Hamazaki J, Morita R, Chujo K, Kobayashi Y, Tanda S, Omatsu T 2010 Opt. Express 18 2144Google Scholar

    [15]

    Gu Y, Gbur G 2010 Opt. Commun. 283 1209Google Scholar

    [16]

    Ohtomo T, Kamikariya K, Otsuka K, Chu S C 2007 Opt. Express 15 10705Google Scholar

    [17]

    连天虹, 王石语, 寇科, 刘芸 2020 物理学报 69 114202Google Scholar

    Lian T H, Wang S Y, Kou K, Liu Y 2020 Acta Phys. Sin. 69 114202Google Scholar

    [18]

    Chu S C, Chen Y T, Tsai K F, Otsuka K 2012 Opt. Express 20 7128Google Scholar

    [19]

    Delaubert V, Shaddock D A, Lam P K, Buchler B C, Bachor H A, McClelland D E 2002 J. Opt. A: Pure Appl. Opt. 4 393Google Scholar

    [20]

    Ma L, Guo H, Sun H, Liu K, Su B, Gao J 2020 Photonics Res. 8 1422Google Scholar

    [21]

    Hu A, Lei J, Chen P, Wang Y, Li S 2014 Appl. Opt. 53 7845Google Scholar

    [22]

    Li S, Guo Y D, Chen Z Z, Zhang L, Gong K L, Zhang Z F, Xu Z Y 2019 Chin. Phys. Lett. 36 044204Google Scholar

    [23]

    Boyd G D, Gordon J P 1961 Bell Syst. Tech. J. 40 489Google Scholar

    [24]

    Carter W H 1980 Appl. Opt. 19 1027Google Scholar

    [25]

    Zhang L, Guo Y D, Chen Z Z, Gong K L, Xu J L, Yuan L, Lin Y Y, Meng S, Li Y, Shao C F, Li S, Zhang Z F, Bo Y, Peng Q J, Cui D F, Xu Z Y 2019 IEEE Photonics Technol. Lett. 31 405Google Scholar

    [26]

    McCumber D E 1965 Bell Syst. Tech. J. 44 333Google Scholar

    [27]

    Freiberg R J, Halsted A S 1969 Appl. Opt. 8 355Google Scholar

    [28]

    Benesty J, Chen J, Huang Y, Cohen I 2009 Noise Reduction in Speech Processing (Berlin: Springer) pp1–4

    [29]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Physical Review A 45 8185

    [30]

    丁攀峰, 蒲继雄 2011 物理学报 60 094204Google Scholar

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204Google Scholar

  • [1] 连天虹, 窦逸群, 周磊, 刘芸, 寇科, 焦明星. 热效应作用下高功率薄片涡旋激光器的模场结构. 物理学报, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [2] 谭超, 梁勇, 邹敏, 雷同, 陈龙, 唐平华, 刘明伟. 基于不同变系数和势场的分数系统中二次相位调控厄米-高斯光束动力学. 物理学报, 2024, 73(13): 134205. doi: 10.7498/aps.73.20240427
    [3] 周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军. 大模场一维高阶厄米-高斯激光束产生. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221422
    [4] 连天虹, 王石语, 寇科, 刘芸. 离轴抽运厄米-高斯模固体激光器. 物理学报, 2020, 69(11): 114202. doi: 10.7498/aps.69.20200086
    [5] 杨帅帅, 滕浩, 何鹏, 黄杭东, 王兆华, 董全力, 魏志义. 基于大基模体积的10 mJ飞秒钛宝石激光再生放大器. 物理学报, 2017, 66(10): 104209. doi: 10.7498/aps.66.104209
    [6] 徐天鸿, 姚辰, 万文坚, 朱永浩, 曹俊诚. 锥形太赫兹量子级联激光器输出功率与光束特性研究. 物理学报, 2015, 64(22): 224212. doi: 10.7498/aps.64.224212
    [7] 沈骁, 邹辉, 郑锐林, 郑加金, 韦玮. 增益导引-折射率反导引大模场光纤激光器抽运技术研究进展. 物理学报, 2015, 64(2): 024210. doi: 10.7498/aps.64.024210
    [8] 刘冬兵, 程晋明, 祁双喜, 王婉丽, 钱伟新. 部分空间相干和部分光谱相干厄米-高斯脉冲光束的焦场的相干特性. 物理学报, 2012, 61(24): 244202. doi: 10.7498/aps.61.244202
    [9] 李少华, 杨振军, 陆大全, 胡巍. 厄米-高斯光束在热非局域介质中传输的数值模拟研究. 物理学报, 2011, 60(2): 024214. doi: 10.7498/aps.60.024214
    [10] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器. 物理学报, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [11] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [12] 李玮, 陈建国, 冯国英, 黄宇, 李刚, 谢旭东, 杨火木, 周寿桓. 厄米-高斯光束的M2因子矩阵. 物理学报, 2009, 58(4): 2461-2466. doi: 10.7498/aps.58.2461
    [13] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [14] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究. 物理学报, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [15] 张恒利, 闫 莹, 杜克明. 激光二极管端面抽运Nd∶YVO4晶体连续输出板条激光器研究. 物理学报, 2008, 57(11): 6982-6986. doi: 10.7498/aps.57.6982
    [16] 李建龙, 吕百达. 厄米-高斯光束通过正弦和矩形浮雕光栅传输特性的比较研究. 物理学报, 2007, 56(10): 5772-5777. doi: 10.7498/aps.56.5772
    [17] 康小平, 何 仲, 吕百达. 矢量非傍轴厄米-拉盖尔-高斯光束的光束质量. 物理学报, 2006, 55(9): 4569-4574. doi: 10.7498/aps.55.4569
    [18] 但有全, 张 彬. 复宗量厄米-高斯光束的相干模表示. 物理学报, 2006, 55(2): 712-716. doi: 10.7498/aps.55.712
    [19] 彭润伍, 吕百达. 厄米-高斯光束的焦开关. 物理学报, 2003, 52(11): 2795-2802. doi: 10.7498/aps.52.2795
    [20] 焦文涛, 辛建国. 射频激励板条波导CO2激光器远场空间压窄单峰输出模式特性的实验研究. 物理学报, 1999, 48(10): 1875-1883. doi: 10.7498/aps.48.1875
计量
  • 文章访问数:  4143
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-15
  • 修回日期:  2022-09-15
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-01-05

/

返回文章
返回