搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器

况丹 徐爽 史大为 郭建 喻志农

引用本文:
Citation:

基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器

况丹, 徐爽, 史大为, 郭建, 喻志农

High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles

Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong
PDF
HTML
导出引用
  • 近年来, 宽带隙半导体材料氧化镓在日盲紫外探测领域的应用引起了广泛关注. 本文基于溶液法制备了非晶氧化镓薄膜, 采用紫外光退火的方式降低了薄膜的制备温度, 并且通过铝颗粒修饰氧化镓薄膜表面, 提升了氧化镓紫外探测器的性能. 紫外退火的方式可将氧化镓薄膜的制备温度降至300 ℃, 有望实现柔性器件的制备. 当沉积铝膜厚度在3—5 nm时, 可获得分布均匀、直径为2—3 nm的铝颗粒, 经修饰的氧化镓薄膜表现出优秀的光电响应性能和日盲探测特性. 在254 nm光照下, 最大光暗电流比可达2.55×104, 在紫外波段的抑制比I254 nm/I365 nm为2.2×104. 最佳的探测器响应度和探测率分别为0.771 A/W和1.13×1011 Jones, 相比于未做修饰的氧化镓紫外探测器提升了约34倍和36倍. 然而, 铝纳米颗粒的修饰也会引入部分缺陷态, 导致氧化镓光电探测器响应下降时间的增大.
    Gallium oxide (Ga2O3) as a wide bandgap semiconductor material has attracted much attention in the field of solar blind ultraviolet photodetection recently. Localized surface plasmon resonance is considered an effective way to improve the performance of optoelectronic devices by decorating the materials with metal particles. Al nanoparticle is a potential candidate for ultraviolet photodetectors because its suitable resonance wavelength is located in the ultraviolet wavelength range. In this work, the preparation temperature of the Ga2O3 thin film is reduced by ultraviolet photo-annealing, and the amorphous Ga2O3 thin film is prepared by using the solution method. In addition, aluminum (Al) nanoparticles are used to decorate the surface of Ga2O3 thin film through thermal evaporation of aluminum film and then annealing, which improves the optoelectrical performance in the solar-blind wavelength spectrum. The X-ray diffraction (XRD) is employed to demonstrate the amorphous Ga2O3 thin film. The surface roughness and the diameters of Al nanoparticles are analyzed by atomic force microscope (AFM). When the thickness of the deposited Al layer is about 3–5 nm, Al particles with the diameters in a range of 2–3 nm can be obtained. When the thickness of the deposited Al layer is more than 7 nm, Al nanoparticles turn into the particles with non-identical diameters and distribute in the form of agglomeration. Transmittance spectrum and absorption spectrum are employed to characterize the optical properties. The bandgaps of different samples are obtained, and the results are consistent with the theoretical ones. The Ga2O3 thin film shows excellent optoelectrical performance and solar blind rejection ratio. Under 254 nm illumination, the maximum photo-to-dark current ratio is 2.55×104, and the rejection ratio of I254 nm/I365 nm is 2.2×104. The best responsivity and detectivity of prepared samples are 0.771 A/W and 1.13×1011 Jones, which are about 34 times and 36 times higher than those without Al decoration. The improvement is attributed to the scattering effect of surface Al nanoparticles for illumination, which enhances the Ga2O3 thin film absorption of solar blind ultraviolet light. Meanwhile, owing to the localized surface plasma resonance, the local electromagnetic fields generated near the Al nanoparticles promote the transfer of carriers in the film. Furthermore, the point about how the Al nanoparticles decorated on the surface of Ga2O3 thin film influence the time response is also discussed in this work. As a result, the introduction of defect states will lead to an increase of fall time due to the Al deposition. In this work, the effect of Al nanoparticles decoration on the optoelectrical performance of amorphous Ga2O3 thin film solar blind ultraviolet photodetectors is studied based on a simple preparation, which provides a possible pathway for developing the flexible solar blind electronic devices in the future.
      通信作者: 喻志农, znyu@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61874009)资助的课题.
      Corresponding author: Yu Zhi-Nong, znyu@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61874009).
    [1]

    Chen H, Liu K, Hu L, Al-Ghamdi A A, Fang X 2015 Mater. Today 18 493Google Scholar

    [2]

    Razeghi M 2002 Proc. IEEE 90 1006Google Scholar

    [3]

    Sang L, Liao M, Sumiya M 2013 Sensors (Basel) 13 10482Google Scholar

    [4]

    Liao M, Wang X, Teraji T, Koizumi S, Koide Y 2010 Phys. Rev. B 81 033304Google Scholar

    [5]

    Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 051102Google Scholar

    [6]

    Suzuki R, Nakagomi S, Kokubun Y, Arai N, Ohira S 2009 Appl. Phys. Lett. 94 222102Google Scholar

    [7]

    Yang J L, Liu K W, Shen D Z 2017 Chin. Phys. B 26 047308Google Scholar

    [8]

    Wu Z H, Qian L X, Sheng T, Zhang Y Y, Liu X Z 2019 IEEE International Conference on Electron Devices & Solid-state Circuits Xi'an China, June 12–14, 2019 p82

    [9]

    Chang K W, Wu J J 2005 Adv. Mater. 17 241Google Scholar

    [10]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [11]

    Yu F P, Ou S L, Wuu D S 2015 Opt. Mater. Express 5 1240Google Scholar

    [12]

    He H Y, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I, Rérat M 2006 Phys. Rev. B 74 195123Google Scholar

    [13]

    Gottschalch V, Merker S, Blaurock S, Kneiß M, Teschner U, Grundmann M, Krautscheid H 2019 J. Cryst. Growth 510 76Google Scholar

    [14]

    Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [15]

    Dong L P, Yu J G, Jia R X, Hu J C, Zhang Y M, Sun J W 2019 Opt. Mater. Express 9 1191Google Scholar

    [16]

    Qian L X, Wang Y, Wu Z H, Sheng T, Liu X Z 2017 Vacuum 140 106Google Scholar

    [17]

    Liu X Z, Guo P, Sheng T, Qian L X, Zhang W L, Li Y R 2016 Opt. Mater. 51 203Google Scholar

    [18]

    Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H, Schoenfeld W V 2017 Phys. Status Solidi A 214 1600688Google Scholar

    [19]

    Wang H, Chen H, Li L, Wang Y, Su L, Bian W, Li B, Fang X 2019 J. Phys. Chem. Lett. 10 6850Google Scholar

    [20]

    Mayer K M, Hafner J H 2011 Chem. Rev. 111 3828Google Scholar

    [21]

    Zhang Y, Lin N, Li Y, Wang X, Wang H, Kang J, Wilks R, Bar M, Mu R 2016 Sci. Rep. 6 23106Google Scholar

    [22]

    刘伦涛 2020 博士学位论文 (济南: 山东大学)

    Liu L T 2020 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [23]

    An Y, Chu X, Huang Y, Zhi Y, Guo D, Li P, Wu Z, Tang W 2016 Prog. Nat. Sci. 26 65Google Scholar

    [24]

    Shi X, Yang Z, Yin S, Zeng H 2016 Mater. Technol. 31 544Google Scholar

    [25]

    Chang Y T, Chuang T H, Tsai M W, Chen L C, Lee S C 2007 J. Appl. Phys. 101 054305Google Scholar

    [26]

    Rafique S, Han L, Zhao H 2016 Phys. Status Solidi A 213 1002Google Scholar

    [27]

    Cui S, Mei Z, Hou Y, Sun M, Chen Q, Liang H, Zhang Y, Bai X, Du X 2018 Sci Chin.-Phys. Mech. Astron. 61 107021Google Scholar

    [28]

    Zhao B, Wang F, Chen H Y, Zheng L X, Su L X, Zhao D X, Fang X S 2017 Adv. Funct. Mater. 27 1700264Google Scholar

    [29]

    Guo D Y, Su Y L, Shi H Z, Li P G, Zhao N, Ye J H, Wang S L, Liu A P, Chen Z W, Li C R, Tang W H 2018 ACS Nano 12 12827Google Scholar

    [30]

    Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar

  • 图 1  铝纳米颗粒修饰非晶Ga2O3探测器结构示意图

    Fig. 1.  Schematic device structure of the Al nanoparticles decorated amorphous Ga2O3 thin film photodetector.

    图 2  (a) Ga2O3薄膜XRD图谱; (b) Ga2O3薄膜XPS能谱

    Fig. 2.  (a) XRD patterns of Ga2O3 thin film; (b) XPS spectrum of Ga2O3 thin film.

    图 3  Ga2O3薄膜表面AFM图 (a) 未沉积铝颗粒; (b) 沉积3 nm铝; (c) 沉积5 nm铝; (d) 沉积7 nm铝

    Fig. 3.  The AFM images of Ga2O3: (a) Without Al Nanoparticles; (b) with 3 nm Al layer; (c) with 5 nm Al layer; (d) with 7 nm Al layer.

    图 4  (a) 不同铝厚度下Ga2O3薄膜透过率曲线以及(b) (αhv)2-hv 曲线

    Fig. 4.  (a) Transmittance spectra and (b) curves of (αhv)2-hv of Ga2O3 thin film with different Al thickness.

    图 5  未沉积铝和沉积不同厚度铝Ga2O3紫外探测器的I-V特性曲线 (a) 暗电流; (b) 254 nm光照下的光电流; (c) 365 nm光照下的光电流

    Fig. 5.  Electrical performance of Ga2O3 photodetectors with/without Al decoration: (a) Dark current; (b) photocurrent under 254 nm illumination; (c) photocurrent under 365 nm illumination.

    图 6  铝纳米颗粒/Ga2O3薄膜界面处的能带与电子转移机制

    Fig. 6.  Schematic illustration of the energy band and electron transfer mechanisms at Al nanoparticles/Ga2O3 interface.

    图 7  Ga2O3紫外探测器的时间响应曲线 (a) 未沉积铝; (b) 沉积3 nm铝; (c) 沉积5 nm铝; (d) 沉积7 nm铝

    Fig. 7.  Time response curves of Ga2O3 photodetectors: (a) Without Al; (b) with 3 nm Al layer; (c) with 5 nm Al layer; (d) with 7 nm Al layer.

    表 1  20 V偏压下沉积3 nm /5 nm /7 nm以及未沉积样品的电学参数

    Table 1.  Electrical parameters of samples with 3 nm /5 nm /7 nm Al and without Al under 20 V bias.

    铝层
    厚度/nm
    Idark/AI254 nm/AI365 nm/AI254 nm/IdarkI254 nm/I365 nmR254 nm/
    (A·W–1)
    R365 nm/
    (A·W–1)
    R254 nm/R365 nm$D_{\rm 254\;nm}^*$/Jones
    未沉积1.51×10–101.15×10–71.74×10–107.62×1026.61×1020.02284.56×10–649933.13×109
    31.52×10–103.88×10–61.79×10–102.55×1042.17×1040.7715.36×10–61.44×1051.13×1011
    51.34×10–103.32×10–61.51×10–102.48×1042.20×1040.6593.37×10–61.95×1051.03×1011
    73.33×10–106.88×10–54.46×10–72.07×1051.54×10213.6470.08841541.35×1012
    下载: 导出CSV
  • [1]

    Chen H, Liu K, Hu L, Al-Ghamdi A A, Fang X 2015 Mater. Today 18 493Google Scholar

    [2]

    Razeghi M 2002 Proc. IEEE 90 1006Google Scholar

    [3]

    Sang L, Liao M, Sumiya M 2013 Sensors (Basel) 13 10482Google Scholar

    [4]

    Liao M, Wang X, Teraji T, Koizumi S, Koide Y 2010 Phys. Rev. B 81 033304Google Scholar

    [5]

    Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 051102Google Scholar

    [6]

    Suzuki R, Nakagomi S, Kokubun Y, Arai N, Ohira S 2009 Appl. Phys. Lett. 94 222102Google Scholar

    [7]

    Yang J L, Liu K W, Shen D Z 2017 Chin. Phys. B 26 047308Google Scholar

    [8]

    Wu Z H, Qian L X, Sheng T, Zhang Y Y, Liu X Z 2019 IEEE International Conference on Electron Devices & Solid-state Circuits Xi'an China, June 12–14, 2019 p82

    [9]

    Chang K W, Wu J J 2005 Adv. Mater. 17 241Google Scholar

    [10]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [11]

    Yu F P, Ou S L, Wuu D S 2015 Opt. Mater. Express 5 1240Google Scholar

    [12]

    He H Y, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I, Rérat M 2006 Phys. Rev. B 74 195123Google Scholar

    [13]

    Gottschalch V, Merker S, Blaurock S, Kneiß M, Teschner U, Grundmann M, Krautscheid H 2019 J. Cryst. Growth 510 76Google Scholar

    [14]

    Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [15]

    Dong L P, Yu J G, Jia R X, Hu J C, Zhang Y M, Sun J W 2019 Opt. Mater. Express 9 1191Google Scholar

    [16]

    Qian L X, Wang Y, Wu Z H, Sheng T, Liu X Z 2017 Vacuum 140 106Google Scholar

    [17]

    Liu X Z, Guo P, Sheng T, Qian L X, Zhang W L, Li Y R 2016 Opt. Mater. 51 203Google Scholar

    [18]

    Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H, Schoenfeld W V 2017 Phys. Status Solidi A 214 1600688Google Scholar

    [19]

    Wang H, Chen H, Li L, Wang Y, Su L, Bian W, Li B, Fang X 2019 J. Phys. Chem. Lett. 10 6850Google Scholar

    [20]

    Mayer K M, Hafner J H 2011 Chem. Rev. 111 3828Google Scholar

    [21]

    Zhang Y, Lin N, Li Y, Wang X, Wang H, Kang J, Wilks R, Bar M, Mu R 2016 Sci. Rep. 6 23106Google Scholar

    [22]

    刘伦涛 2020 博士学位论文 (济南: 山东大学)

    Liu L T 2020 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [23]

    An Y, Chu X, Huang Y, Zhi Y, Guo D, Li P, Wu Z, Tang W 2016 Prog. Nat. Sci. 26 65Google Scholar

    [24]

    Shi X, Yang Z, Yin S, Zeng H 2016 Mater. Technol. 31 544Google Scholar

    [25]

    Chang Y T, Chuang T H, Tsai M W, Chen L C, Lee S C 2007 J. Appl. Phys. 101 054305Google Scholar

    [26]

    Rafique S, Han L, Zhao H 2016 Phys. Status Solidi A 213 1002Google Scholar

    [27]

    Cui S, Mei Z, Hou Y, Sun M, Chen Q, Liang H, Zhang Y, Bai X, Du X 2018 Sci Chin.-Phys. Mech. Astron. 61 107021Google Scholar

    [28]

    Zhao B, Wang F, Chen H Y, Zheng L X, Su L X, Zhao D X, Fang X S 2017 Adv. Funct. Mater. 27 1700264Google Scholar

    [29]

    Guo D Y, Su Y L, Shi H Z, Li P G, Zhao N, Ye J H, Wang S L, Liu A P, Chen Z W, Li C R, Tang W H 2018 ACS Nano 12 12827Google Scholar

    [30]

    Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar

  • [1] 许怡红, 范伟航, 王尘. 退火温度对磁控溅射掺锡氧化镓薄膜特性及其日盲光电探测器性能的影响. 物理学报, 2025, 74(2): 028104. doi: 10.7498/aps.74.20240972
    [2] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [3] 张雪, KimBokyung, LeeHyeonju, ParkJaehoon. 低温快速制备基于溶液工艺的高性能氧化铟薄膜及晶体管. 物理学报, 2024, 73(9): 096802. doi: 10.7498/aps.73.20240082
    [4] 张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志. 氧化镓悬臂式薄膜日盲探测器及其电弧检测应用. 物理学报, 2024, 73(9): 098501. doi: 10.7498/aps.73.20240186
    [5] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器. 物理学报, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [6] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响. 物理学报, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [7] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [8] 荆斌, 徐萌, 彭聪, 陈龙龙, 张建华, 李喜峰. 高负偏光照稳定性的溶液法像素级IZTO TFT. 物理学报, 2022, 71(13): 138502. doi: 10.7498/aps.71.20220154
    [9] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [10] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211536
    [11] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性. 物理学报, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [12] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [13] 张世玉, 喻志农, 程锦, 吴德龙, 栗旭阳, 薛唯. 退火温度和Ga含量对溶液法制备InGaZnO薄膜晶体管性能的影响. 物理学报, 2016, 65(12): 128502. doi: 10.7498/aps.65.128502
    [14] 林长鹏, 刘新健, 饶中浩. 铝纳米颗粒的热物性及相变行为的分子动力学模拟. 物理学报, 2015, 64(8): 083601. doi: 10.7498/aps.64.083601
    [15] 高松, 赵谡玲, 徐征, 杨一帆, 刘志民, 谢小漪. 氧化锌纳米颗粒薄膜的近紫外电致发光特性研究. 物理学报, 2014, 63(15): 157702. doi: 10.7498/aps.63.157702
    [16] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [17] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [18] 张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新. 60Coγ射线对高铝组分Al0.5Ga0.5N基p-i-n日盲型光探测器理想因子的影响. 物理学报, 2013, 62(7): 076106. doi: 10.7498/aps.62.076106
    [19] 潘惠平, 成枫锋, 李琳, 洪瑞华, 姚淑德. 蓝宝石衬底上生长的Ga2+xO3-x薄膜的结构分析. 物理学报, 2013, 62(4): 048801. doi: 10.7498/aps.62.048801
    [20] 罗翀, 孟志国, 王烁, 熊绍珍. 溶液法铝诱导晶化制备多晶硅薄膜. 物理学报, 2009, 58(9): 6560-6565. doi: 10.7498/aps.58.6560
计量
  • 文章访问数:  4103
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-22
  • 修回日期:  2022-11-18
  • 上网日期:  2022-11-19
  • 刊出日期:  2023-02-05

/

返回文章
返回