搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性

李高芳 殷文 黄敬国 崔昊杨 叶焓静 高艳卿 黄志明 褚君浩

引用本文:
Citation:

太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性

李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩

Conductivity in sulfur doped gallium selenide crystals measured by terahertz time-domain spectroscopy

Li Gao-Fang, Yin Wen, Huang Jing-Guo, Cui Hao-Yang, Ye Han-Jing, Gao Yan-Qing, Huang Zhi-Ming, Chu Jun-Hao
PDF
HTML
导出引用
  • 本文采用透射式太赫兹时域光谱技术研究0.3—2.5 THz范围内本征GaSe, S掺杂质量分数为2.5 % GaSe(GaSe: S(2.5%))和S掺杂质量分数为7% GaSe(GaSe: S(7%))晶体的电导率特性, 并利用Drude-Smith-Lorentz模型对复电导率进行拟合. 研究发现GaSe晶体的电导率实部随S掺杂浓度的增大而减小, 主要是由于S掺杂使GaSe晶体的费米能级逐渐向电荷中性能级转移, 载流子浓度下降引起的. 本征GaSe和GaSe: S(2.5%)在约0.56 THz处有明显的晶格振动峰, 而GaSe: S(7%) 在0.56 THz附近无晶格振动峰, 这主要是由于S掺杂提高了晶体的结构硬度, 减弱了晶体的层间刚性振动. 且3个样品均在约1.81 THz处存在明显的窄晶格振动峰, 强度随S掺杂浓度的增大先减小再增大, 主要是由于S掺杂降低了GaSe的局部结构缺陷, 减弱了窄晶格振动峰强度, 而过量的S掺杂生成β型GaS晶体, 进而增加晶体的局部结构缺陷, 窄晶格振动峰强度随之增强. GaSe晶体约在1.07 THz和2.28 THz处的宽晶格振动峰强度随S掺杂浓度的增大而减弱甚至消失, 主要是由于S掺杂产生替位杂质(S取代Se)和GaS间隙杂质, 降低了基频声子振动强度, 从而减弱了晶体二阶声子差模引起的晶格振动. 结果表明, S掺杂可以有效抑制GaSe晶体的晶格振动, 降低电导率, 减少在THz波段的功率损耗. 此研究为低损耗THz器件的设计和制作提供重要的数据支撑和理论依据.
    In this work, the conductivity of intrinsic GaSe, S doped 2.5 mass% GaSe (GaSe: S(2.5%)), and S doped 7 mass% GaSe (GaSe: S(7%)) crystals, in a frequency range of 0.3–2.5 THz, is measured by transmission terahertz time-domain spectroscopy, and fitted with Drude-Smith-Lorentz model which is introduced by lattice vibration effect. It is found that the real part of conductivity decreases with the augment of S doping, which is caused by the gradual shift of the Fermi energy level of GaSe crystals to the charge neutrality level due to the generation of substitution impurities and gap impurities by S doping, resulting in the reduction of carrier concentration. The intrinsic GaSe and GaSe: S(2.5%) have a clear lattice vibration peak at about 0.56 THz, while GaSe: S(7%) has no lattice vibration peak near 0.56 THz, which is mainly due to the S doping increasing the structural hardness of the crystal and reducing the interlayer rigidity vibration of the crystal. All three samples have the obvious narrow lattice vibration peaks at about 1.81 THz, and the intensities that first decrease and then increase with the augment of S doping, which is mainly due to the fact that a small amount of S doping can reduce the local structural defects of GaSe and weaken the intensity of the narrow lattice vibration peak, while excessive S doping can generate the β-type GaS crystal, increase the local structural defects of the crystals and the intensity of the narrow lattice vibration peak. With the increase of S doping, the intensity of the broad lattice vibration peak of GaSe crystal weakens or even disappears at about 1.07 THz and 2.28 THz, mainly due to the S doping resulting in the substitution of S for impurities and GaS gap impurities, which reduces the fundamental frequency phonon vibration intensity, thereby weakening the lattice vibration caused by the second-order phonon difference mode of the crystal. The results show that the appropriate concentration of S doping can effectively suppress the lattice vibration of GaSe crystal and reduce the conductivity and power loss in the THz band. This study provides important data support and theoretical basis for the design and fabrication of low loss THz devices.
      通信作者: 黄志明, zmhuang@mail.sitp.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 62205194, 52177185)和上海市自然科学基金(批准号: 17ZR1411500)资助的课题.
      Corresponding author: Huang Zhi-Ming, zmhuang@mail.sitp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62205194, 52177185) and Shanghai Natural Science Foundation of China (Grant No. 17ZR1411500).
    [1]

    杜辉, 陈巧, 刘婷, 贺毅, 金应荣 2022 材料导报 36 24

    Du H, Chen Q, Liu T, He Y, Jin Y R 2022 Mater. Rep. 36 24

    [2]

    Liao Y L, Shan Y X, Wu L M, Xiang Y J, Dai XY 2020 Adv. Opt. Mater. 8 1901862Google Scholar

    [3]

    Sotodeian M, Marandi M 2021 Sol. Energy 221 418Google Scholar

    [4]

    Kim S J, Kang B J, Puc U, Kim W T, Jazbinsek M, Rotermund F, Kwon O P 2021 Adv. Opt. Mater. 9 2101019Google Scholar

    [5]

    Niranjan M K 2021 Phys. Rev. B 103 195437Google Scholar

    [6]

    Guo J, Xie J J, Li D J, Yang G L, Chen F, Wang C R, Zhang L M, Andreev Y M, Kokh K A, Lanskii G V, Svetlichnyi V A 2015 Light-Sci. Appl. 4 e362Google Scholar

    [7]

    Sheng W, Tang F, Zhang Z L, Chen Y P, Peng X Y, Sheng Z M 2021 Opt. Express 29 8676Google Scholar

    [8]

    Song Q Y, Yuan X M, Lin Q G, Zhong H Z, Zeng X K, Cai Y, Lu X W, Zheng M J, Cao W H, Xu S X 2021 Opt. Express 29 43379Google Scholar

    [9]

    Sato Y, Nakajima M, Tang C, Watananbe K, Tanabe T, Oyama Y 2020 Opt. Express 28 20888Google Scholar

    [10]

    Sorifi S, Moun M, Kaushik S, Singh R 2020 ACS Appl. Electron. Mater. 2 670Google Scholar

    [11]

    Zhao Y F, Fuh H R, Coileain C O, et al. 2020 Adv. Mater. Technol-US 5 1901085Google Scholar

    [12]

    Chen J H, He X J, Sa B S, Zhou J, Xu C, Wen C L, Sun Z M 2019 Nanoscale 11 6431Google Scholar

    [13]

    Liu J, Li J W, Gu L X, Wu H, et al. 2022 Appl. Surf. Sci. 586 152774Google Scholar

    [14]

    Ku S A, Chu W C, Luo C W, et al. 2012 Opt. Express 20 5029Google Scholar

    [15]

    Bejani M, Pulci O, Barvestani J, Vala A S, Bechstedt F, Cannuccia E 2019 Phys. Rev. Mater. 3 124003Google Scholar

    [16]

    Huang C B, Mao M S, Wu H X, Wang Z Y, Ni Y B 2017 J. Cryst. Growth 483 318Google Scholar

    [17]

    Rak Z, Mahanti S D, Mandal K C, Fernelius N C 2010 Phys. Rev. B 82 155203Google Scholar

    [18]

    Huang C B, Ni Y B, Wu H X, Wang Z Y, Xiao R C, Qi M 2015 J. Inorg. Mater. 30 887Google Scholar

    [19]

    Molloy J F, Naftaly M, Andreev Y, Kokh K, Lanskii G, Svetlichnyi V 2014 Opt. Mater. Express 4 2451Google Scholar

    [20]

    Kokh K A, Molloy J F, Naftaly M, et al. 2015 Mater. Chem. Phys. 154 152Google Scholar

    [21]

    Huang J G, Huang Z M, Tong J C, Ouyang C, Chu J H, Andreev Y, Kokh K, Lanskii G, Shaiduko A 2013 Appl. Phys. Lett. 103 081104Google Scholar

    [22]

    Li G F, Huang R J, Huang J G, Zhang W J, Cui H Y, Xia N H, Huang Z M, Chu J H, Ma H Z 2021 Appl. Phys. Express 14 072004Google Scholar

    [23]

    Molloy J F, Naftaly M, Andreev Y M, Lanskii G V, Lapin I N, Potekaev A I, Kokh K A, Shabalina A V, Shaiduko A V, Svetlichnyi V A 2014 Crystengcomm 16 1995Google Scholar

    [24]

    刘泉澄, 张祺, 李桂琳, 何向阳, 邓琥, 尚丽平 2021 光学学报 41 238

    Liu Q C, Zhang Q, Li G L, He X Y, Deng H, Shang L P 2021 Acta Opt. Sin. 41 238

    [25]

    Yu B L, Zeng F, Kartazayev V, Alfano R R 2005 Appl. Phys. Lett. 87 182104Google Scholar

    [26]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 3) (San Dicgo: Academic Press) pp473–477

    [27]

    黄昆, 韩汝琦 1988 固体物理学 (北京: 高等教育出版社) 第440页

    Huang K, Han R Q 1988 The Physics of Solids (Beijing: Higher Education Press) p440 (in Chinese)

    [28]

    Naftaly M, Molloy J F, Andreev Y M, Kokh K A, Lanskii G V, Svetlichnyi V A 2015 Opt. Express 23 32820Google Scholar

    [29]

    Manfredotti C, Mancini A M, Rizzo A, Murri R, Vasanelli L 1978 Phys. Status Solidi A 48 293

    [30]

    Ma T H, Li Z Q, Zhang H C, Zhu C Q, Lei Z T, Yang C H 2021 Mater. Today Commu. 27 102212Google Scholar

    [31]

    Yoshida J, Nakashima S, Mitsuishi A 1973 Phys. Stat. Sol. 59 655Google Scholar

    [32]

    Kuroda N, Ueno O, Nishina Y 1987 Phys. Rev. B Condens. Matter. 35 3860Google Scholar

    [33]

    Zhang D W, Lv Z H, Sun L, Shao Z Z, Yuan J M 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves Pasadena, CA September 15–19, 2008 p267

    [34]

    Molas M R, Tyurnina A V, Zolyomi V, Ott A K, Terry D J, Hamer M J, Yelgel C, Babinski A, Nasibulin A G, Ferrari A C, Falko V I, Gorbachev R 2021 Faraday Discuss. 227 163Google Scholar

    [35]

    Niranjan M K 2021 Physical Review B 103 195437

    [36]

    Willis K J, Hagness S C, Knezevic I 2013 Appl. Phys. Lett. 102 122113Google Scholar

    [37]

    Jensen S A 2014 Ph. D. Dissertation (Van der Waals-Zeeman Institute) pp32–37

    [38]

    Das A C, Bhattacharya S, Jewariya M, Prabhu S S, Mandal K C, Ozaki T, Datta P K 2017 IEEE J. Sel. Top. Quant. 23 8400707Google Scholar

    [39]

    Jin Z M, Peng Y, Fang Y Q, et al. 2022 Light-SCI Appl. 11 209Google Scholar

    [40]

    Brudnyi V N, Kosobutsky A V, Sarkisov S Y 2010 Semiconductors 44 1158Google Scholar

    [41]

    Atuchin V V, Bereznaya S A, Beisel N F, et al. 2014 Mater. Chem. Phys. 146 12Google Scholar

    [42]

    Stefancu A, Lee S, Zhu L, Liu M, Lucacel R C, Cortes E, Leopold N 2021 Nano Lett. 21 6592Google Scholar

    [43]

    刘恩科, 朱秉升, 罗晋生 2017 半导体物理学 (北京: 电子工业出版社) 第93页

    Liu E K, Zhu B S, Luo J S 2017 The Physics of Semiconductors (Beijing: Publishing House of Electronics Industy) p93 (in Chinese)

  • 图 1  透射式THz-TDS系统实验装置示意图

    Fig. 1.  Schematic diagram of experimental setup of transmission THz-TDS system.

    图 2  (a)参考信号、GaSe、GaSe: S(2.5%) 和GaSe: S(7%) 的THz时域光谱图, 插图是3个样品THz时域光谱主峰的放大图; (b) 参考信号、GaSe、GaSe: S(2.5%) 和GaSe: S(7%) 的THz频谱图; (c) GaSe、GaSe: S(2.5%) 和GaSe: S(7%) 在THz波段的透射率

    Fig. 2.  (a) THz time-domain spectra of the reference signal GaSe, GaSe: S(2.5%), and GaSe: S (7%), the illustration is a magnified view of the main peak of THz time-domain spectrum of three samples; (b) THz spectra of the reference signal GaSe, GaSe: S(2.5%), and GaSe: S(7%); (c) transmissivity of GaSe, GaSe: S(2.5%), and GaSe: S(7%) in THz band.

    图 3  (a) GaSe、GaSe: S(2.5%) 和GaSe: S(7%) 在THz波段的折射率; (b) GaSe、GaSe: S(2.5%) 和GaSe: S(7%) 在THz波段的消光系数(实线是折射率和消光系数的拟合结果), 插图是GaSe和GaSe: S(2.5%) 消光系数的一阶导数; (c) GaSe、GaSe: S(2.5%) 和GaSe: S(7%) 的XRD图; (d) GaSe、GaSe: S(2.5%) 和GaSe: S(7%) (004)晶面的摇摆曲线图

    Fig. 3.  (a) Refractive indexes of GaSe, GaSe: S(2.5%), and GaSe: S(7%) in THz band; (b) extinction coefficients of GaSe, GaSe: S(2.5%), and GaSe: S(7%) in THz band (the solid lines are the results of refractive index and extinction coefficient fittings), the illustration is a first-order derivative of GaSe and GaSe: S(2.5%) extinction coefficients; (c) the X-ray diffraction pattern of GaSe, GaSe: S(2.5%), and GaSe: S(7%); (d) the rocking curve of the (004) face of GaSe, GaSe: S(2.5%), and GaSe: S(7%).

    图 4  GaSe, GaSe: S(2.5%) 和GaSe: S(7%) 在THz波段的吸收系数(实线是吸收系数的拟合结果)

    Fig. 4.  Absorption coefficients of GaSe, GaSe: S(2.5%), and GaSe: S(7%) in THz band (the solid lines are the results of absorption coefficients fittings).

    图 5  (a) GaSe、GaSe: S(2.5%)和GaSe: S(7%)在THz波段的电导率实部; (b) GaSe, GaSe: S(2.5%)和GaSe: S(7%)在THz波段的电导率虚部(实线是Drude-Smith-Lorentz模型拟合结果)

    Fig. 5.  (a) The real part of conductivity of GaSe, GaSe: S(2.5%), and GaSe: S(7%) in THz band; (b) the imaginary part of conductivity of GaSe, GaSe: S(2.5%), and GaSe: S(7%) in THz band (the solid lines are the results of an improved Drude-Smith-Lorentz model fitting).

    图 6  (a) GaSe, GaSe: S(2.5%)和GaSe: S(7%)的复折射率、吸收系数和复电导率在Drude-Smith-Lorentz模型下的等离子体频率和载流子恢复过程的复合时间及其平均值; (b) GaSe, GaSe: S(2.5%)和GaSe: S(7%)分别的复折射率、吸收系数和复折射率在Drude-Smith-Lorentz模型下的系统的恢复力或反向散射度c1及其平均值

    Fig. 6.  (a) The values of the plasma frequency, the complex time of the carrier recovery process and their average for GaSe, GaSe: S(2.5%), and GaSe: S(7%) under the Drude-Smith-Lorentz model of complex conductivity, complex refractivity and absorption coefficient; (b) the values of the recovery force or backscattering degree of the system and the average for GaSe, GaSe: S (2.5%), and GaSe: S(7%) under the Drude-Smith-Lorentz model of complex conductivity, complex refractivity and absorption coefficient

    表 1  复折射率的晶格振动强度和声子驰豫速率的拟合结果

    Table 1.  The fitting results of lattice vibration intensity and phonon relaxation rate of the complex refractivity.

    物理参数GaSeGaSe: S(2.5%)GaSe: S(7%)
    $ {\omega _{o1}} $/THz0.560.56
    $ {S_1} $/(arb.units)0.00160.0015
    $ {\varGamma _1} $/THz0.04110.0413
    $ {\omega _{o2}} $/THz1.071.07
    $ {S_2} $/(arb.units)0.01120.0011
    $ {\varGamma _2} $/THz0.28820.6270
    $ {\omega _{o3}} $/THz1.811.811.81
    $ {S_3} $/(arb.units)0.00100.00080.0009
    $ {\varGamma _3} $/THz0.04120.06470.0573
    $ {\omega _{o4}} $/THz2.28
    $ {S_4} $/(arb.units)0.0042
    $ {\varGamma _4} $/THz0.3631
    下载: 导出CSV

    表 2  吸收系数的晶格振动强度和声子驰豫速率的拟合结果

    Table 2.  The fitting results of lattice vibration intensity and phonon relaxation rate of the absorption coefficient.

    物理参数GaSeGaSe: S(2.5%)GaSe: S(7%)
    $ {\omega _{o1}} $/THz0.560.56
    $ {S_1} $/(arb.units)0.00390.0021
    $ {\varGamma _1} $/THz0.41120.4513
    $ {\omega _{o2}} $/THz1.071.07
    $ {S_2} $/(arb.units)0.00810.0039
    $ {\varGamma _2} $/THz0.22290.2213
    $ {\omega _{o3}} $/THz1.811.811.81
    $ {S_3} $/(arb.units)0.00030.00010.0002
    $ {\varGamma _3} $/THz0.07660.07870.0777
    $ {\omega _{o4}} $/THz2.28
    $ {S_4} $/(arb.units)0.0048
    $ {\varGamma _4} $/THz0.4012
    下载: 导出CSV

    表 3  复电导率的晶格振动强度和声子驰豫速率的拟合结果

    Table 3.  The fitting results of lattice vibration intensity and phonon relaxation rate of the complex conductivity.

    物理参数GaSeGaSe: S(2.5%)GaSe: S(7%)
    $ {\omega _{o1}} $/THz0.560.56
    $ {S_1} $/(arb.units)0.00550.0052
    $ {\varGamma _1} $/THz1.14911.1495
    $ {\omega _{o2}} $/THz1.071.07
    $ {S_2} $/(arb.units)0.00440.0020
    $ {\varGamma _2} $/THz1.32961.3936
    $ {\omega _{o3}} $/THz1.811.811.81
    $ {S_3} $/(arb.units)0.00090.00070.0008
    $ {\varGamma _3} $/THz0.41220.43850.4245
    $ {\omega _{o4}} $/THz2.28
    $ {S_4} $/(arb.units)0.0018
    $ {\varGamma _4} $/THz1.9465
    下载: 导出CSV

    表 4  晶格振动强度和声子驰豫速率多次拟合结果各自的平均值

    Table 4.  The averages value of lattice vibration intensity and phonon relaxation rate from multiple fitting results.

    物理参数GaSeGaSe: S(2.5%)GaSe: S(7%)
    $ {\omega _{o1}} $/THz0.560.56
    $ {S_1} $/(arb.units)0.00370.0029
    $ {\varGamma _1} $/THz0.53380.5474
    $ {\omega _{o2}} $/THz1.071.07
    $ {S_2} $/(arb.units)0.00790.0023
    $ {\varGamma _2} $/THz0.61360.7473
    $ {\omega _{o3}} $/THz1.811.811.81
    $ {S_3} $/(arb.units)0.00070.00050.0006
    $ {\varGamma _3} $/THz0.17670.19400.1865
    $ {\omega _{o4}} $/THz2.28
    $ {S_4} $/(arb.units)0.0036
    $ {\varGamma _4} $/THz0.9036
    下载: 导出CSV
  • [1]

    杜辉, 陈巧, 刘婷, 贺毅, 金应荣 2022 材料导报 36 24

    Du H, Chen Q, Liu T, He Y, Jin Y R 2022 Mater. Rep. 36 24

    [2]

    Liao Y L, Shan Y X, Wu L M, Xiang Y J, Dai XY 2020 Adv. Opt. Mater. 8 1901862Google Scholar

    [3]

    Sotodeian M, Marandi M 2021 Sol. Energy 221 418Google Scholar

    [4]

    Kim S J, Kang B J, Puc U, Kim W T, Jazbinsek M, Rotermund F, Kwon O P 2021 Adv. Opt. Mater. 9 2101019Google Scholar

    [5]

    Niranjan M K 2021 Phys. Rev. B 103 195437Google Scholar

    [6]

    Guo J, Xie J J, Li D J, Yang G L, Chen F, Wang C R, Zhang L M, Andreev Y M, Kokh K A, Lanskii G V, Svetlichnyi V A 2015 Light-Sci. Appl. 4 e362Google Scholar

    [7]

    Sheng W, Tang F, Zhang Z L, Chen Y P, Peng X Y, Sheng Z M 2021 Opt. Express 29 8676Google Scholar

    [8]

    Song Q Y, Yuan X M, Lin Q G, Zhong H Z, Zeng X K, Cai Y, Lu X W, Zheng M J, Cao W H, Xu S X 2021 Opt. Express 29 43379Google Scholar

    [9]

    Sato Y, Nakajima M, Tang C, Watananbe K, Tanabe T, Oyama Y 2020 Opt. Express 28 20888Google Scholar

    [10]

    Sorifi S, Moun M, Kaushik S, Singh R 2020 ACS Appl. Electron. Mater. 2 670Google Scholar

    [11]

    Zhao Y F, Fuh H R, Coileain C O, et al. 2020 Adv. Mater. Technol-US 5 1901085Google Scholar

    [12]

    Chen J H, He X J, Sa B S, Zhou J, Xu C, Wen C L, Sun Z M 2019 Nanoscale 11 6431Google Scholar

    [13]

    Liu J, Li J W, Gu L X, Wu H, et al. 2022 Appl. Surf. Sci. 586 152774Google Scholar

    [14]

    Ku S A, Chu W C, Luo C W, et al. 2012 Opt. Express 20 5029Google Scholar

    [15]

    Bejani M, Pulci O, Barvestani J, Vala A S, Bechstedt F, Cannuccia E 2019 Phys. Rev. Mater. 3 124003Google Scholar

    [16]

    Huang C B, Mao M S, Wu H X, Wang Z Y, Ni Y B 2017 J. Cryst. Growth 483 318Google Scholar

    [17]

    Rak Z, Mahanti S D, Mandal K C, Fernelius N C 2010 Phys. Rev. B 82 155203Google Scholar

    [18]

    Huang C B, Ni Y B, Wu H X, Wang Z Y, Xiao R C, Qi M 2015 J. Inorg. Mater. 30 887Google Scholar

    [19]

    Molloy J F, Naftaly M, Andreev Y, Kokh K, Lanskii G, Svetlichnyi V 2014 Opt. Mater. Express 4 2451Google Scholar

    [20]

    Kokh K A, Molloy J F, Naftaly M, et al. 2015 Mater. Chem. Phys. 154 152Google Scholar

    [21]

    Huang J G, Huang Z M, Tong J C, Ouyang C, Chu J H, Andreev Y, Kokh K, Lanskii G, Shaiduko A 2013 Appl. Phys. Lett. 103 081104Google Scholar

    [22]

    Li G F, Huang R J, Huang J G, Zhang W J, Cui H Y, Xia N H, Huang Z M, Chu J H, Ma H Z 2021 Appl. Phys. Express 14 072004Google Scholar

    [23]

    Molloy J F, Naftaly M, Andreev Y M, Lanskii G V, Lapin I N, Potekaev A I, Kokh K A, Shabalina A V, Shaiduko A V, Svetlichnyi V A 2014 Crystengcomm 16 1995Google Scholar

    [24]

    刘泉澄, 张祺, 李桂琳, 何向阳, 邓琥, 尚丽平 2021 光学学报 41 238

    Liu Q C, Zhang Q, Li G L, He X Y, Deng H, Shang L P 2021 Acta Opt. Sin. 41 238

    [25]

    Yu B L, Zeng F, Kartazayev V, Alfano R R 2005 Appl. Phys. Lett. 87 182104Google Scholar

    [26]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 3) (San Dicgo: Academic Press) pp473–477

    [27]

    黄昆, 韩汝琦 1988 固体物理学 (北京: 高等教育出版社) 第440页

    Huang K, Han R Q 1988 The Physics of Solids (Beijing: Higher Education Press) p440 (in Chinese)

    [28]

    Naftaly M, Molloy J F, Andreev Y M, Kokh K A, Lanskii G V, Svetlichnyi V A 2015 Opt. Express 23 32820Google Scholar

    [29]

    Manfredotti C, Mancini A M, Rizzo A, Murri R, Vasanelli L 1978 Phys. Status Solidi A 48 293

    [30]

    Ma T H, Li Z Q, Zhang H C, Zhu C Q, Lei Z T, Yang C H 2021 Mater. Today Commu. 27 102212Google Scholar

    [31]

    Yoshida J, Nakashima S, Mitsuishi A 1973 Phys. Stat. Sol. 59 655Google Scholar

    [32]

    Kuroda N, Ueno O, Nishina Y 1987 Phys. Rev. B Condens. Matter. 35 3860Google Scholar

    [33]

    Zhang D W, Lv Z H, Sun L, Shao Z Z, Yuan J M 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves Pasadena, CA September 15–19, 2008 p267

    [34]

    Molas M R, Tyurnina A V, Zolyomi V, Ott A K, Terry D J, Hamer M J, Yelgel C, Babinski A, Nasibulin A G, Ferrari A C, Falko V I, Gorbachev R 2021 Faraday Discuss. 227 163Google Scholar

    [35]

    Niranjan M K 2021 Physical Review B 103 195437

    [36]

    Willis K J, Hagness S C, Knezevic I 2013 Appl. Phys. Lett. 102 122113Google Scholar

    [37]

    Jensen S A 2014 Ph. D. Dissertation (Van der Waals-Zeeman Institute) pp32–37

    [38]

    Das A C, Bhattacharya S, Jewariya M, Prabhu S S, Mandal K C, Ozaki T, Datta P K 2017 IEEE J. Sel. Top. Quant. 23 8400707Google Scholar

    [39]

    Jin Z M, Peng Y, Fang Y Q, et al. 2022 Light-SCI Appl. 11 209Google Scholar

    [40]

    Brudnyi V N, Kosobutsky A V, Sarkisov S Y 2010 Semiconductors 44 1158Google Scholar

    [41]

    Atuchin V V, Bereznaya S A, Beisel N F, et al. 2014 Mater. Chem. Phys. 146 12Google Scholar

    [42]

    Stefancu A, Lee S, Zhu L, Liu M, Lucacel R C, Cortes E, Leopold N 2021 Nano Lett. 21 6592Google Scholar

    [43]

    刘恩科, 朱秉升, 罗晋生 2017 半导体物理学 (北京: 电子工业出版社) 第93页

    Liu E K, Zhu B S, Luo J S 2017 The Physics of Semiconductors (Beijing: Publishing House of Electronics Industy) p93 (in Chinese)

  • [1] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [2] 方雨青, 金钻明, 陈海洋, 阮舜逸, 李炬赓, 曹世勋, 彭滟, 马国宏, 朱亦鸣. 高通量制备的SmxPr1–xFeO3晶体中反铁磁自旋模式和晶体场跃迁的太赫兹光谱. 物理学报, 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [3] 任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高. Ho1–xYxFeO3单晶自旋重取向的掺杂效应与磁控效应的太赫兹光谱. 物理学报, 2020, 69(20): 207802. doi: 10.7498/aps.69.20201518
    [4] 杜一帅, 康维, 郑瑞伦. 外延石墨烯电导率和费米速度随温度变化规律研究. 物理学报, 2017, 66(1): 014701. doi: 10.7498/aps.66.014701
    [5] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算. 物理学报, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [6] 孟增睿, 张伟斌, 杜宇, 尚丽平, 邓琥. FOX-7转晶行为的太赫兹光谱及理论计算研究. 物理学报, 2015, 64(7): 073302. doi: 10.7498/aps.64.073302
    [7] 郑树文, 范广涵, 何苗, 赵灵智. W掺杂对β-Ga2O3导电性能影响的理论研究. 物理学报, 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [8] 杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广. L-天冬酰胺及其一水合物的太赫兹光谱研究. 物理学报, 2014, 63(13): 133203. doi: 10.7498/aps.63.133203
    [9] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究. 物理学报, 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [10] 陈云云, 郑改革, 顾芳, 李振华. 尘埃粒子电势对等离子体电导率的影响. 物理学报, 2012, 61(15): 154202. doi: 10.7498/aps.61.154202
    [11] 郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖. 掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究. 物理学报, 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [12] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [13] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [14] 杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐 洁, 李舒丹. 基体电导率对0-3型铁电复合材料高压极化行为及损耗的影响. 物理学报, 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [15] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [16] 马晓菁, 赵红卫, 代 斌, 刘桂锋. 次黄嘌呤及其核苷的THz光谱. 物理学报, 2008, 57(6): 3429-3434. doi: 10.7498/aps.57.3429
    [17] 檀满林, 朱嘉琦, 张化宇, 朱振业, 韩杰才. 硼掺杂对四面体非晶碳膜电导性能的影响. 物理学报, 2008, 57(10): 6551-6556. doi: 10.7498/aps.57.6551
    [18] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究. 物理学报, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [19] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响. 物理学报, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [20] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
计量
  • 文章访问数:  4642
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-30
  • 修回日期:  2022-12-03
  • 上网日期:  2022-12-17
  • 刊出日期:  2023-02-20

/

返回文章
返回