搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于大气廓线合成背景的目标气云透过率反演

胡运优 徐亮 沈先春 束胜全 徐睆垚 邓亚颂 徐寒扬 刘建国 刘文清

引用本文:
Citation:

基于大气廓线合成背景的目标气云透过率反演

胡运优, 徐亮, 沈先春, 束胜全, 徐睆垚, 邓亚颂, 徐寒扬, 刘建国, 刘文清

Inversion method of target gas cloud transmittance based on atmospheric profile synthesis background

Hu Yun-You, Xu Liang, Shen Xian-Chun, Shu Sheng-Quan, Xu Huan-Yao, Deng Ya-Song, Xu Han-Yang, Liu Jian-Guo, Liu Wen-Qing
PDF
HTML
导出引用
  • 天空向下热红外辐射具有随时空变化而变化的特性, 当扫描傅里叶变换红外遥测成像系统以天空为背景对目标气云进行成像扫描时, 各扫描像素对应的背景辐射差异较大且没有恒定的基线, 因而影响目标气云透过率的精确反演. 针对这类问题, 提出了基于大气廓线合成背景的目标气云透过率反演方法, 首先采用实测地点的温度、湿度、压强和臭氧廓线及大气模式生成天空红外背景, 以解决化工园区内难以实时测量纯净天空红外背景谱的问题, 其次验证了天空红外背景与天顶角余弦逐波数存在连续可导的关系, 使得少量具有天顶角梯度的天空红外背景即可快速插值生成任意仰角位置的天空红外背景谱. 本文以中分辨率大气辐射传输模型(MODTRAN)软件仿真和SF6气体的遥测成像实验进行了方法验证, 所提方法可以快速生成梯度仰角内任意角度对应的天空红外背景谱, 准确反演出各扫描像素的目标气云透过率, 反演得到的SF6柱浓度气云分布与实际分布一致, 相关性达到0.99979.
    The sky infrared background radiation varies greatly with spatial distribution and time. When scanning Fourier transform infrared remote sensing imaging system scans the target gas cloud with the sky as the background, the background radiation corresponding to each scanned pixel is different, and the background does not have a constant baseline. It is extremely difficult to obtain the background spectrum of each pixel in real time, which affects the inversion accuracy of the target gas cloud transmittance. An inversion method of target gas cloud transmittance based on atmospheric profile synthesis background is proposed in this work. The temperature, humidity, pressure, and ozone profiles of the measured locations and the atmospheric model are used to generate the sky infrared background in order to solve the problem, i.e. the difficulty in measuring the clean sky infrared background spectrum in the chemical industry park. This paper proposes that there is a continuous derivable relationship between the sky infrared background spectrum and the cosine of zenith angle at each wavenumber, so a small amount of sky infrared background spectrum with a zenith angle gradient can quickly generate a sky infrared background spectrum at any elevation angle. The proposed method is verified by the moderate resolution atmospheric radiative transfer model (MODTRAN) software simulation and the remote sensing imaging experiment of SF6 gas. The proposed method can quickly generate the sky infrared background spectrum corresponding to any angle within a gradient elevation angle and accurately invert the target gas cloud transmittance at each pixel. The results show that the distribution trend of the column concentration of the SF6 gas cloud is consistent with the actual distribution, and the correlation is 0.99979.
      通信作者: 徐亮, xuliang@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 41941011, 52027804)和安徽省重点研发计划(批准号: 2022m07020009)资助的课题.
      Corresponding author: Xu Liang, xuliang@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41941011, 52027804) and the Key R&D Program of Anhui Province, China (Grant No. 2022m07020009).
    [1]

    Hu Y Y, Xu L, Shen X C, Jin L, Xu H Y, Deng Y S, Liu J G, Liu W Q 2021 Appl. Opt. 60 9396Google Scholar

    [2]

    焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽 2013 物理学报 62 140705Google Scholar

    Jiao Y, Xu L, Gao M G, Jin L, Tong J J, Li S, Wei X L 2013 Acta Phys. Sin. 62 140705Google Scholar

    [3]

    Sabbah S, Rusch P, Gerhard J H, Harig R 2013 Proc. SPIE 8743 370

    [4]

    Liou K N 2002 An Introduction to Atmospheric Radiation (Vol. 84) (Elsevier)

    [5]

    Chen M H, Yuan C S, Wang L C 2015 Aerosol Air Qual. Res. 15 1110Google Scholar

    [6]

    Smith T E L, Wooster M J, Tattaris M, Griffith D W T 2011 Atmos. Meas. Tech. 4 97Google Scholar

    [7]

    Stremme W, Krueger A, Harig R, Grutter M 2012 Atmos. Meas. Tech. 5 275Google Scholar

    [8]

    Theriault J M, Puckrin E, Lavoie H, Turcotte C S, Bouffard F, Dube D 2004 Proc. SPIE 5584 100Google Scholar

    [9]

    Flanigan D F 1997 Appl. Opt. 36 7027Google Scholar

    [10]

    Evans W F, Puckrin E, McMaster D 2002 Proc. SPIE 4574 44Google Scholar

    [11]

    高闽光, 刘文清, 张天舒, 刘诚, 刘建国, 魏庆农, 陆亦怀, 王亚萍, 朱军, 徐亮 2006 光谱学与光谱分析 26 47Google Scholar

    Gao M G, Liu W Q, Zhang T S, Liu C, Liu J G, Wei Q N, Lu Y H, Wang Y P, Zhu J, Xu L 2006 Spectrosc. Spec. Anal. 26 47Google Scholar

    [12]

    Harig R 2004 Appl. Opt. 43 4603Google Scholar

    [13]

    Harig R, Rusch P, Peters H, Gerhard J, Braun R, Sabbah S, Beecken J 2009 Proc. SPIE 7475 74750Z

    [14]

    Li D C, Cui F X, Wang A J, Li Y Y, Wu J, Qiao Y L 2020 IEEE Trans. Geosci. Electron. 58 8649Google Scholar

    [15]

    夏旻惠, 智协飞 2020 大气科学学报 43 652Google Scholar

    Xia M H, Zhi X F 2020 Trans. Atmos. Sci. 43 652Google Scholar

    [16]

    崔方晓, 李大成, 吴军, 王安静, 李扬裕 2019 光学学报 39 406Google Scholar

    Cui F X, Li D C, Wu J, Wang A J, Li Y Y 2019 Acta Opt. Sin. 39 406Google Scholar

    [17]

    迟晓铭, 肖安山, 朱亮, 贾润中, 李明骏, 高少华, 王国龙, 丁德武, 朱胜杰 2021 安全、健康和环境 21 1Google Scholar

    Chi X M, Xiao A S, Zhu L, Jia R Z, Li M J, Gao S H, Wang G L, Ding D W, Zhu S J 2021 Safety Health Environ. 21 1Google Scholar

    [18]

    Flanigan D F 1996 Appl. Opt. 35 6090Google Scholar

    [19]

    Berk A, Conforti P, Kennett R, et al. 2014 6th IEEE GRSS Workshop on Hyperspectral Image and Signal Processing Lausanne June 25, 2014 p1

    [20]

    冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽 2016 物理学报 65 014210Google Scholar

    Feng M C, Xu L, Liu W Q, Liu J G, Gao M G, Wei X L 2016 Acta Phys. Sin. 65 014210Google Scholar

    [21]

    Keller W, Borkowski A 2019 J. Geod. 93 1251Google Scholar

  • 图 1  天空场景下的3层辐射传输模型

    Fig. 1.  Three-layer radiative transfer model under sky background.

    图 2  MODTRAN中6种大气模式的温度廓线

    Fig. 2.  Temperature profiles of six atmospheric models in MODTRAN.

    图 3  在800.4976 cm–1处的辐射亮度随天顶角余弦值的变化

    Fig. 3.  Variation of radiance at 800.4976 cm–1 with the cosine of zenith angle.

    图 4  78.5°天顶角下的仿真谱与生成谱(插值生成谱进行了平移)

    Fig. 4.  Simulated spectrum and the generated spectrum with a zenith angle of 78.5° (the interpolation generated spectrum has been shifted).

    图 5  78.5°天顶角下的仿真谱与生成谱的差谱

    Fig. 5.  Difference spectrum between the simulated spectrum and the generated spectrum at a zenith angle of 78.5°.

    图 6  扫描FTIR遥测成像系统与测试场景

    Fig. 6.  Scanning FTIR remote sensing imaging system and test scene.

    图 7  像素光谱对应的测量姿态仰角 (a)参考区域各像素位置仰角; (b)扫描区域各像素位置仰角

    Fig. 7.  Measured elevation corresponding to the pixel spectrum: (a) The elevation of each pixel in the reference area; (b) the elevation of each pixel in the scanning area.

    图 8  4行7列像素位置的实测背景光谱、目标光谱及差谱

    Fig. 8.  Measured background spectrum, target spectrum and difference spectrum of pixel position in 4 row and 7 column.

    图 9  基于参考区域生成的背景谱与实测背景谱

    Fig. 9.  Background spectrum generated based on reference area and measured background spectrum.

    图 10  SF6透过率

    Fig. 10.  SF6 transmittance.

    图 11  两种背景反演的SF6柱浓度拟合分析结果

    Fig. 11.  Fitting analysis results of SF6 column concentration of two backgrounds.

    图 12  基于参考区域生成背景反演的柱浓度图像 (a)低阈值显示的SF6柱浓度图像; (b)高阈值显示的SF6柱浓度图像

    Fig. 12.  Column concentration images based on background generated by the reference area: (a) SF6 column density image displayed at a low threshold; (b) SF6 column density image displayed at a high threshold.

    图 13  实验场景的ECMWF廓线 (a)温度廓线; (b)相对湿度廓线; (c)臭氧廓线; (d)海拔

    Fig. 13.  ECMWF profiles of experimental scenarios: (a) Temperature profile; (b) relative humidity profile; (c) ozone profile; (d) altitude

    图 14  实测背景与ECMWF廓线仿真背景

    Fig. 14.  Measured background and ECMWF profile simulation background.

    图 15  基于ECMWF廓线合成背景提取的SF6目标光谱

    Fig. 15.  SF6 target spectrum extracted by the synthesis background based on ECMWF profiles.

    图 16  两种背景反演的SF6柱浓度拟合结果

    Fig. 16.  Fitting analysis results of SF6 column concentration of two backgrounds.

    图 17  基于ECMWF廓线合成背景反演的柱浓度图像 (a)低阈值显示的SF6柱浓度图像; (b)高阈值显示的SF6柱浓度图像

    Fig. 17.  Column concentration images based on ECMWF profiles synthesis background: (a) SF6 column concentration image displayed at a low threshold; (b) SF6 column concentration image displayed at a high threshold.

    表 1  MODTRAN大气模式

    Table 1.  Atmospheric models of MODTRAN.

    模型序号大气模式边界层温度/K
    1热带299.7
    2中纬度夏季294.2
    3中纬度冬季272.2
    4亚极地夏季287.2
    5亚极地冬季257.2
    6美国标准大气(1976)288.2
    下载: 导出CSV

    表 2  ECMWF部分数据字段

    Table 2.  Some data fields of ECMWF.

    序号字段注释
    1Longitude经度(°)
    2Latitude纬度(°)
    3Time时间(h)
    4Pressure level压强(mbar)
    5Temperature温度(K)
    6Relative humidity相对湿度(%)
    7Ozone mass mixing ratio臭氧(kg/kg)
    8Geopotential海拔参数(m2/s2)
    下载: 导出CSV

    表 3  插值生成谱与仿真谱的均方根(单位: 10–10 W/(cm2·sr·cm1))

    Table 3.  Root mean square error between the generated spectrum by interpolation and the simulated spectrum (unit: 10–10 W/(cm2·sr·cm1)).

    模型序号天顶角/(°)
    84.578.571.564.5
    12.921.635.03Nan
    21.770.9312.471.0
    34.8121.260.380.18
    44.5932.974.411.05
    54.761.570.430.12
    63.4118.560.440.39
    下载: 导出CSV
  • [1]

    Hu Y Y, Xu L, Shen X C, Jin L, Xu H Y, Deng Y S, Liu J G, Liu W Q 2021 Appl. Opt. 60 9396Google Scholar

    [2]

    焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽 2013 物理学报 62 140705Google Scholar

    Jiao Y, Xu L, Gao M G, Jin L, Tong J J, Li S, Wei X L 2013 Acta Phys. Sin. 62 140705Google Scholar

    [3]

    Sabbah S, Rusch P, Gerhard J H, Harig R 2013 Proc. SPIE 8743 370

    [4]

    Liou K N 2002 An Introduction to Atmospheric Radiation (Vol. 84) (Elsevier)

    [5]

    Chen M H, Yuan C S, Wang L C 2015 Aerosol Air Qual. Res. 15 1110Google Scholar

    [6]

    Smith T E L, Wooster M J, Tattaris M, Griffith D W T 2011 Atmos. Meas. Tech. 4 97Google Scholar

    [7]

    Stremme W, Krueger A, Harig R, Grutter M 2012 Atmos. Meas. Tech. 5 275Google Scholar

    [8]

    Theriault J M, Puckrin E, Lavoie H, Turcotte C S, Bouffard F, Dube D 2004 Proc. SPIE 5584 100Google Scholar

    [9]

    Flanigan D F 1997 Appl. Opt. 36 7027Google Scholar

    [10]

    Evans W F, Puckrin E, McMaster D 2002 Proc. SPIE 4574 44Google Scholar

    [11]

    高闽光, 刘文清, 张天舒, 刘诚, 刘建国, 魏庆农, 陆亦怀, 王亚萍, 朱军, 徐亮 2006 光谱学与光谱分析 26 47Google Scholar

    Gao M G, Liu W Q, Zhang T S, Liu C, Liu J G, Wei Q N, Lu Y H, Wang Y P, Zhu J, Xu L 2006 Spectrosc. Spec. Anal. 26 47Google Scholar

    [12]

    Harig R 2004 Appl. Opt. 43 4603Google Scholar

    [13]

    Harig R, Rusch P, Peters H, Gerhard J, Braun R, Sabbah S, Beecken J 2009 Proc. SPIE 7475 74750Z

    [14]

    Li D C, Cui F X, Wang A J, Li Y Y, Wu J, Qiao Y L 2020 IEEE Trans. Geosci. Electron. 58 8649Google Scholar

    [15]

    夏旻惠, 智协飞 2020 大气科学学报 43 652Google Scholar

    Xia M H, Zhi X F 2020 Trans. Atmos. Sci. 43 652Google Scholar

    [16]

    崔方晓, 李大成, 吴军, 王安静, 李扬裕 2019 光学学报 39 406Google Scholar

    Cui F X, Li D C, Wu J, Wang A J, Li Y Y 2019 Acta Opt. Sin. 39 406Google Scholar

    [17]

    迟晓铭, 肖安山, 朱亮, 贾润中, 李明骏, 高少华, 王国龙, 丁德武, 朱胜杰 2021 安全、健康和环境 21 1Google Scholar

    Chi X M, Xiao A S, Zhu L, Jia R Z, Li M J, Gao S H, Wang G L, Ding D W, Zhu S J 2021 Safety Health Environ. 21 1Google Scholar

    [18]

    Flanigan D F 1996 Appl. Opt. 35 6090Google Scholar

    [19]

    Berk A, Conforti P, Kennett R, et al. 2014 6th IEEE GRSS Workshop on Hyperspectral Image and Signal Processing Lausanne June 25, 2014 p1

    [20]

    冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽 2016 物理学报 65 014210Google Scholar

    Feng M C, Xu L, Liu W Q, Liu J G, Gao M G, Wei X L 2016 Acta Phys. Sin. 65 014210Google Scholar

    [21]

    Keller W, Borkowski A 2019 J. Geod. 93 1251Google Scholar

  • [1] 曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, PolyakovAlexander Viktorovich. 利用地基高分辨率傅里叶变换红外光谱技术探测大气氟氯烃气体CCl2F2的时空变化特征. 物理学报, 2021, 70(20): 200201. doi: 10.7498/aps.70.20210640
    [2] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [3] 高强, 李小秋, 周志鹏, 孙磊. 基于分形谐振器的远场超分辨率扫描成像. 物理学报, 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [4] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清. 基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值. 物理学报, 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [5] 冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽. 基于MODTRAN模型使用被动傅里叶变换红外光谱技术对生物气溶胶的探测研究. 物理学报, 2016, 65(1): 014210. doi: 10.7498/aps.65.014210
    [6] 李相贤, 徐亮, 高闽光, 童晶晶, 冯明春, 刘建国, 刘文清. 温室气体及碳同位素比值红外光谱反演精度的影响因素研究. 物理学报, 2015, 64(2): 024217. doi: 10.7498/aps.64.024217
    [7] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法. 物理学报, 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [8] 陈成, 梁静秋, 梁中翥, 吕金光, 秦余欣, 田超, 王维彪. 准直系统热光学效应对静态傅里叶变换红外光谱仪光谱复原的影响研究. 物理学报, 2015, 64(13): 130703. doi: 10.7498/aps.64.130703
    [9] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [10] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵. 静态傅里叶变换超光谱全偏振成像技术. 物理学报, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [11] 李相贤, 徐亮, 高闽光, 童晶晶, 金岭, 李胜, 魏秀丽, 冯明春. CO2及其碳同位素比值高精度检测研究. 物理学报, 2013, 62(18): 180203. doi: 10.7498/aps.62.180203
    [12] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究. 物理学报, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [13] 焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽. 污染气体扫描成像红外被动遥测系统实时数据处理研究. 物理学报, 2013, 62(14): 140705. doi: 10.7498/aps.62.140705
    [14] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统. 物理学报, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [15] 何智兵, 阳志林, 闫建成, 宋之敏, 卢铁城. 辉光放电聚合物结构及力学性质研究. 物理学报, 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [16] 张淳民, 刘宁, 吴福全. 偏振干涉成像光谱仪中格兰-泰勒棱镜全视场角透过率的分析与计算. 物理学报, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [17] 刘志明, 刘文清, 高闽光, 童晶晶, 张天舒, 徐亮, 魏秀丽, 金岭, 王亚萍, 陈军. 基于红外掩日通量法(SOF)污染源排放气体浓度时空分布反演算法研究. 物理学报, 2010, 59(8): 5397-5405. doi: 10.7498/aps.59.5397
    [18] 相里斌, 袁艳, 吕群波. 傅里叶变换光谱成像仪光谱传递函数研究. 物理学报, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [19] 黄松, 辛煜, 宁兆元, 程珊华, 陆新华. 微波输入功率引起a-C∶F薄膜交联结构的增强. 物理学报, 2002, 51(11): 2635-2639. doi: 10.7498/aps.51.2635
    [20] 辛煜, 宁兆元, 甘肇强, 陆新华, 方亮, 程珊华. 不同CHF3/CH4流量比下沉积a-C∶F∶H薄膜键结构的红外分析. 物理学报, 2001, 50(12): 2492-2496. doi: 10.7498/aps.50.2492
计量
  • 文章访问数:  4028
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 修回日期:  2022-11-21
  • 上网日期:  2022-12-02
  • 刊出日期:  2023-02-05

/

返回文章
返回