搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多模态混合输入模拟实验过程实现新型Al-Si-Mg系合金设计

段志强 裴小龙 郭庆伟 侯华 赵宇宏

引用本文:
Citation:

多模态混合输入模拟实验过程实现新型Al-Si-Mg系合金设计

段志强, 裴小龙, 郭庆伟, 侯华, 赵宇宏

Design of new Al-Si-Mg alloys by multi-modal mixed input simulation experiment

Duan Zhi-Qiang, Pei Xiao-Long, Guo Qing-Wei, Hou Hua, Zhao Yu-Hong
PDF
HTML
导出引用
  • 数据驱动下, 基于大量的实验数据, 建立混合特征与力学性能之间非线性规律实现合金新成分的配比和工艺设计一直是一个挑战. 本文基于机器学习的方法, 提出一种面向性能的Al-Si-Mg系合金“成分-工艺-性能”的设计策略. 将同一体系不同牌号合金的成分、熔炼及热处理工艺等混合因素作为特征, 通过随机森林寻找特征与抗拉强度之间的非线性规律. 之后将数据集中部分合金的成分、工艺参数设置为目标空值, 使用链式方程多重插补算法对目标缺失数据进行预测插补. 通过该策略进行性能预测或指导设计的合金抗拉强度的实验值和预测值的误差均保持在±5%之内; 而且经实验证实, 其中Al-6.8Si-0.6Mg-0.05Sr的成分配比和540 ℃×10 h+170 ℃×10 h工艺方案使合金综合拉伸性能优异, 质量指数QDJR达到517.3, 高于同类合金低于500QDJR值的水平. 这一结果表明该策略有助于改善高强度Al-Si-Mg系合金传统设计方法周期长、成本高、效率低的问题.
    On the basis of a large number of experimental data, it is a challenge to establish a data-driven non-linear law between mixing characteristics and mechanical properties for the proportioning and process design of new alloy compositions. This paper proposes a performance-oriented “composition-process-property” design strategy for Al-Si-Mg alloys based on a machine learning approach, aiming to adopt multimodal experimental data on the composition, melting and heat treatment processes of divergent grades of the same system as features, and a random forest algorithm is used to find the non-linear pattern between the features and the tensile strength. Afterward, this paper sets the composition and process parameters of some of the alloys in the dataset as the target null values and uses the chain equation multiple interpolation algorithms to predict the interpolation of the target missing data. The errors of both experimental and predicted values of tensile strength of the alloys predicted or guided by this strategy are kept within ±5%; The composition ratio of Al-6.8Si-0.6Mg-0.05Sr and the heat treatment scheme of 540 ℃×10 h+170 ℃×10 h are experimentally confirmed to have a quality index QDJR of 517.3 for comprehensive tensile properties, which is higher than that of similar alloys below a QDJR value of 500. The result indicates that this strategy helps to enhance the long cycle time, high cost, and low efficiency of the traditional design method for Al-Si-Mg system alloys.
      通信作者: 赵宇宏, zhaoyuhong@nuc.edu.cn
    • 基金项目: 山西省研究生创新项目(批准号: 2021Y595)资助的课题.
      Corresponding author: Zhao Yu-Hong, zhaoyuhong@nuc.edu.cn
    • Funds: Project supported by the Graduate Innovation Project of Shanxi Province, China (Grant No. 2021Y595)
    [1]

    Ceschini L, Messieri S, Morri A, Seifeddine S, Toschi S, Zamani M 2020 Trans. Nonferrous Met. Soc. China 30 2861Google Scholar

    [2]

    Fu J N, Yang Z, Deng Y L, Wu Y F, Lu J Q 2020 Mater. Charact. 159 110021Google Scholar

    [3]

    Tzeng Y C, Wu C T, Bor H Y, Horng J L, Tsai M L, Lee S L 2014 Mat. Sci. Eng. A-Struct. 593 103Google Scholar

    [4]

    Tzeng Y C, Nieh J K, Bor H Y, Lee S L 2018 Metals 8 194Google Scholar

    [5]

    Jiang W M, Fan Z T, Dai Y C, Li C 2014 Mat. Sci. Eng. A-Struct. 597 237Google Scholar

    [6]

    Wang X F, Guo M X, Cao L Y, Luo J R, Zhang J S, Zhuang L H 2015 Mat. Sci. Eng. A-Struct 621 8Google Scholar

    [7]

    Jiang L T, Wu G H, Yang W s, Zhao Y G, Liu S S 2010 Trans. Nonferrous Met. Soc. China 20 2124Google Scholar

    [8]

    Cheng W, Liu C Y, Huang H F, Zhang L, Zhang B, Shi L 2021 Mater. Charact. 178 111278Google Scholar

    [9]

    Chen L W, Zhao Y H, Li M X, Li L M, Hou L F, Hou H 2021 Mat. Sci. Eng. A-Struct. 804 140793Google Scholar

    [10]

    Chen L W, Zhao Y H, Hou H, Zhang T, Liang J Q, Li M X, Li J 2019 J. Alloys Compd. 778 359Google Scholar

    [11]

    Wang C S, Fu H D, Jiang L, Xue D Z, Xie J X 2021 Acta Mater. 215 117118

    [12]

    Wang C S, Fu H D, Jiang L, Xue D Z, Xie J X 2019 npj Comput. Mater. 5 87

    [13]

    Su Y J, Fu H D, Bai Y, Jiang X, Xie J X 2020 Acta. Metall. Sin. 56 1313

    [14]

    Agrawal A, Choudhary A 2016 APL Mater. 4 053208Google Scholar

    [15]

    Wang C H, Shen C G, Cui Q, Zhang C, Xu W 2020 J. Nucl. Mater. 529 151823Google Scholar

    [16]

    Guo S, Yu J X, Liu X J, Wang C P, Jiang Q S 2019 Comp. Mater. Sci. 160 95Google Scholar

    [17]

    刘彬, 汤爱涛, 潘复生, 黄光杰, 毛建军 2011 重庆大学学报 34 44Google Scholar

    Liu B, Tang A T, Pan F S, Huang G J, Mao J J 2011 J. Chongqing Univ. 34 44Google Scholar

    [18]

    Xu X N, Wang L Y, Zhu G M, Zeng X Q 2020 JOM 72 3935Google Scholar

    [19]

    Chaudry U M, Hamad K, Abuhmed T 2021 Mater. Today Commun. 26 101897Google Scholar

    [20]

    Yang X W, Zhu J C, Nong Z S, He D, Lai Z H, Liu Y, Liu F W 2013 Trans. Nonferrous Met. Soc. China 23 788Google Scholar

    [21]

    Yi W, Liu G C, Lu Z, Gao J B, Zhang L J 2022 J. Mater. Sci. Technol. 112 277Google Scholar

    [22]

    徐晓峰, 赵宇光, 张阳阳 2016 第十三届全国铸造年会暨2016中国铸造活动周 成都, Octorber 26, 2016 第401页

    Xu X F, Zhao Y G, Zhang Y Y 2016 The 13th National Foundry Annual Meeting and 2016 China Foundry Week (Chendu) p401 (in Chinese)

    [23]

    Yu L, Zhou R T, Chen R D, Lai K K 2020 Emerg. Mark. Financ. Tr 58 472

    [24]

    Luor D-C 2015 Intell. Data. Anal. 19 529Google Scholar

    [25]

    van den Heuvel E, Zhan Z 2022 Am. Statist. 76 44Google Scholar

    [26]

    Xiao C W, Ye J Q, Esteves R M, Rong C M 2016 Concurr. Comp-Pract. E. 28 3866Google Scholar

    [27]

    Liaw A, Wiener M 2002 R News 2 18

    [28]

    Grömping U 2009 Am. Statist. 63 308Google Scholar

    [29]

    van Buuren S, Boshuizen H C, Knook D L 1999 Stat. Med. 18 681Google Scholar

    [30]

    黄子洋, 黄登一, 皮海亚 2016 科技尚品 91 172

    Huang Z Y, Huang D Y, Pi H Y 2016 Premiere 91 172

    [31]

    谷海彤, 陈邵华, 吴晓强, 蔡妙妆, 崔卓, 曾小林 2017 广西科技大学学报 28 103

    Gu H T, Chen S H, Wu X Q, Cai M Z, Cui Z, Zeng X L 2017 J. Guangxi Univ. Sci. Technol. 28 103

    [32]

    刘凤芹 2009 统计研究 26 71Google Scholar

    Liu F Q 2009 Statist. Res. 26 71Google Scholar

    [33]

    Hemphill, James F 2003 Am. Psychol. 58 78Google Scholar

    [34]

    Drouzy M, Jacob S, Richard M 1980 Int. Cast Metals J. 5 43

    [35]

    胥晓强, 范建业, 董立新, 刘力菱, 吴成辉 2018 热加工工艺 47 38

    Xu X Q, Fan J Y, Dong L X, Liu L L, Wu C H 2018 Hot Working Technol. 47 38

    [36]

    胥晓强, 董立新, 刘力菱, 吴成辉, 魏善涛 2018 特种铸造及有色合金 38 568

    Xu X Q, Dong L X, Liu L L, Wu C H, Wei S T 2018 Spec. Cast. Nonferrous Alloys 38 568

    [37]

    胡兴业, 张永, 刘野, 乔昕, 刘洪汇 2015 铸造 64 1132Google Scholar

    Hu X Y, Zhang Y, Liu Y, Qiao X, Liu H H 2015 Foundry 64 1132Google Scholar

    [38]

    李云亮, 张文达, 杨晶, 范耀强, 党惊知 2016 热加工工艺 45 225

    Li Y L, Zhang W D, Yang J, Fan Y Q, Dang J Z, 2016 Hot Working Technol. 45 225

  • 图 1  Al-Si-Mg系合金设计示意图

    Fig. 1.  Schematic diagram of Al-Si-Mg alloys design.

    图 2  Al-Si-Mg合金“成分-工艺-性能”双向设计示意图

    Fig. 2.  Schematic diagram of bidirectional prediction of Al-Si-Mg alloy composition-process-property.

    图 3  链式方程多重插补示意图

    Fig. 3.  Schematic diagram of chain equation multiple imputation.

    图 4  斯皮尔曼相关系数矩阵图. 紫色代表正相关, 黄色代表负相关; 椭圆越扁, 数值越大; *号为显著性标记, 根据显著性水平变化进行设置, 小于0.05和小于0.01分别显示*和**

    Fig. 4.  Spearman correlation coefficient matrix plot. Purple represents a positive correlation, and yellow represents a negative correlation; the flatter the ellipse, the larger the value; the * sign is a significant mark, which is set according to the change of the significance level, and it is displayed as * and ** when it is less than 0.05 and less than 0.01.

    图 5  随机森林算法泛化能力测试结果 (a)随机森林模型训练集的预测精度; (b)随机森林模型测试集的预测精度; (c)线性回归模型训练集的预测精度; (d)线性回归模型测试集的预测精度

    Fig. 5.  Random forest algorithm generalization ability test results: (a) The prediction accuracy of the random forest model training set; (b) the prediction accuracy of the random forest model test set; (c) the prediction accuracy of the linear regression model training set; (d) the prediction accuracy of the linear regression model test set.

    图 6  新合金的成分及工艺的实验结果

    Fig. 6.  Experimental results of the composition and process of the new alloy.

    图 7  性能预测结果 (a)变质剂K2ZrF6的含量对合金性能影响; (b)变质温度对合金性能的影响; (c)模具温度对合金性能的影响; (d)浇注温度对合金性能的影响

    Fig. 7.  Performance prediction results: (a) The effect of the content of modifier K2ZrF6 on the properties of the alloy; (b) the effect of the modification temperature on the properties of the alloy; (c) the effect of the mold temperature on the properties of the alloy; (d) the effect of the pouring temperature on the properties of the alloy.

    图 8  基于控制变量法的合金性能预测结果 (a)固溶工艺对合金性能的影响; (b)时效工艺对合金性能的影响

    Fig. 8.  Prediction Results of alloy properties based on controlled variable method: (a) Effect of solution process on alloy properties; (b) effect of aging process on alloy properties.

    图 9  合金性能定量比较

    Fig. 9.  Quantitative comparison of alloy properties.

    图 10  预测概率分布图

    Fig. 10.  Prediction probability distribution map.

    图 11  特征重要性分数

    Fig. 11.  Feature importance.

    表 1  新合金的成分和工艺

    Table 1.  Composition and process of new alloys.

    AlSiMgTiBeSrSolidtion
    temperature
    Solidtion
    Time
    Aging
    temperature
    Aging
    Time
    1#Bal.7.30.5760.1420.0030.030535121558
    2#Bal.7.30.5760.1420.0030.030545141655
    3#Bal.7.30.5760.1420.0030.030545141707
    4#Bal.7.00.5600.14000.0405401017012
    5#Bal.7.00.5600.14000.0455401017012
    6#Bal.7.00.5600.14000.0505401017012
    7#Bal.6.80.6000.12000.45053591659
    8#Bal.6.80.6000.14000.0505401017010
    下载: 导出CSV

    表 2  实验结果及误差对比

    Table 2.  Experimental results and error comparison.

    目标值/MPa实验值/MPaError/%QDJR
    1#345327.46–5.20456.958
    2#345329.42–4.50493.962
    3#345328.15–4.88462.264
    4#345321.19–6.90416.588
    5#345330.74–4.10438.366
    6#345331.53–3.90476.512
    7#345340.55–1.29505.493
    8#345349.47+1.16517.300
    下载: 导出CSV
  • [1]

    Ceschini L, Messieri S, Morri A, Seifeddine S, Toschi S, Zamani M 2020 Trans. Nonferrous Met. Soc. China 30 2861Google Scholar

    [2]

    Fu J N, Yang Z, Deng Y L, Wu Y F, Lu J Q 2020 Mater. Charact. 159 110021Google Scholar

    [3]

    Tzeng Y C, Wu C T, Bor H Y, Horng J L, Tsai M L, Lee S L 2014 Mat. Sci. Eng. A-Struct. 593 103Google Scholar

    [4]

    Tzeng Y C, Nieh J K, Bor H Y, Lee S L 2018 Metals 8 194Google Scholar

    [5]

    Jiang W M, Fan Z T, Dai Y C, Li C 2014 Mat. Sci. Eng. A-Struct. 597 237Google Scholar

    [6]

    Wang X F, Guo M X, Cao L Y, Luo J R, Zhang J S, Zhuang L H 2015 Mat. Sci. Eng. A-Struct 621 8Google Scholar

    [7]

    Jiang L T, Wu G H, Yang W s, Zhao Y G, Liu S S 2010 Trans. Nonferrous Met. Soc. China 20 2124Google Scholar

    [8]

    Cheng W, Liu C Y, Huang H F, Zhang L, Zhang B, Shi L 2021 Mater. Charact. 178 111278Google Scholar

    [9]

    Chen L W, Zhao Y H, Li M X, Li L M, Hou L F, Hou H 2021 Mat. Sci. Eng. A-Struct. 804 140793Google Scholar

    [10]

    Chen L W, Zhao Y H, Hou H, Zhang T, Liang J Q, Li M X, Li J 2019 J. Alloys Compd. 778 359Google Scholar

    [11]

    Wang C S, Fu H D, Jiang L, Xue D Z, Xie J X 2021 Acta Mater. 215 117118

    [12]

    Wang C S, Fu H D, Jiang L, Xue D Z, Xie J X 2019 npj Comput. Mater. 5 87

    [13]

    Su Y J, Fu H D, Bai Y, Jiang X, Xie J X 2020 Acta. Metall. Sin. 56 1313

    [14]

    Agrawal A, Choudhary A 2016 APL Mater. 4 053208Google Scholar

    [15]

    Wang C H, Shen C G, Cui Q, Zhang C, Xu W 2020 J. Nucl. Mater. 529 151823Google Scholar

    [16]

    Guo S, Yu J X, Liu X J, Wang C P, Jiang Q S 2019 Comp. Mater. Sci. 160 95Google Scholar

    [17]

    刘彬, 汤爱涛, 潘复生, 黄光杰, 毛建军 2011 重庆大学学报 34 44Google Scholar

    Liu B, Tang A T, Pan F S, Huang G J, Mao J J 2011 J. Chongqing Univ. 34 44Google Scholar

    [18]

    Xu X N, Wang L Y, Zhu G M, Zeng X Q 2020 JOM 72 3935Google Scholar

    [19]

    Chaudry U M, Hamad K, Abuhmed T 2021 Mater. Today Commun. 26 101897Google Scholar

    [20]

    Yang X W, Zhu J C, Nong Z S, He D, Lai Z H, Liu Y, Liu F W 2013 Trans. Nonferrous Met. Soc. China 23 788Google Scholar

    [21]

    Yi W, Liu G C, Lu Z, Gao J B, Zhang L J 2022 J. Mater. Sci. Technol. 112 277Google Scholar

    [22]

    徐晓峰, 赵宇光, 张阳阳 2016 第十三届全国铸造年会暨2016中国铸造活动周 成都, Octorber 26, 2016 第401页

    Xu X F, Zhao Y G, Zhang Y Y 2016 The 13th National Foundry Annual Meeting and 2016 China Foundry Week (Chendu) p401 (in Chinese)

    [23]

    Yu L, Zhou R T, Chen R D, Lai K K 2020 Emerg. Mark. Financ. Tr 58 472

    [24]

    Luor D-C 2015 Intell. Data. Anal. 19 529Google Scholar

    [25]

    van den Heuvel E, Zhan Z 2022 Am. Statist. 76 44Google Scholar

    [26]

    Xiao C W, Ye J Q, Esteves R M, Rong C M 2016 Concurr. Comp-Pract. E. 28 3866Google Scholar

    [27]

    Liaw A, Wiener M 2002 R News 2 18

    [28]

    Grömping U 2009 Am. Statist. 63 308Google Scholar

    [29]

    van Buuren S, Boshuizen H C, Knook D L 1999 Stat. Med. 18 681Google Scholar

    [30]

    黄子洋, 黄登一, 皮海亚 2016 科技尚品 91 172

    Huang Z Y, Huang D Y, Pi H Y 2016 Premiere 91 172

    [31]

    谷海彤, 陈邵华, 吴晓强, 蔡妙妆, 崔卓, 曾小林 2017 广西科技大学学报 28 103

    Gu H T, Chen S H, Wu X Q, Cai M Z, Cui Z, Zeng X L 2017 J. Guangxi Univ. Sci. Technol. 28 103

    [32]

    刘凤芹 2009 统计研究 26 71Google Scholar

    Liu F Q 2009 Statist. Res. 26 71Google Scholar

    [33]

    Hemphill, James F 2003 Am. Psychol. 58 78Google Scholar

    [34]

    Drouzy M, Jacob S, Richard M 1980 Int. Cast Metals J. 5 43

    [35]

    胥晓强, 范建业, 董立新, 刘力菱, 吴成辉 2018 热加工工艺 47 38

    Xu X Q, Fan J Y, Dong L X, Liu L L, Wu C H 2018 Hot Working Technol. 47 38

    [36]

    胥晓强, 董立新, 刘力菱, 吴成辉, 魏善涛 2018 特种铸造及有色合金 38 568

    Xu X Q, Dong L X, Liu L L, Wu C H, Wei S T 2018 Spec. Cast. Nonferrous Alloys 38 568

    [37]

    胡兴业, 张永, 刘野, 乔昕, 刘洪汇 2015 铸造 64 1132Google Scholar

    Hu X Y, Zhang Y, Liu Y, Qiao X, Liu H H 2015 Foundry 64 1132Google Scholar

    [38]

    李云亮, 张文达, 杨晶, 范耀强, 党惊知 2016 热加工工艺 45 225

    Li Y L, Zhang W D, Yang J, Fan Y Q, Dang J Z, 2016 Hot Working Technol. 45 225

  • [1] 戚忠乙, 王博, 江鸿翔, 张丽丽, 何杰. 微量稀土La对Al-7%Si-0.6%Fe合金组织与性能的影响. 物理学报, 2024, 73(7): 076401. doi: 10.7498/aps.73.20231939
    [2] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [3] 李鑫, 谢辉, 张亚龙, 马莹, 张军涛, 苏恒杰. Bi/Sb原子置换位置对Mg2Si0.375Sn0.625合金电子传输性能的影响. 物理学报, 2022, 71(24): 248401. doi: 10.7498/aps.71.20221364
    [4] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [5] 付正鸿, 李婷, 单美乐, 郭糠, 苟国庆. H对Mg2Si力学性能影响的第一性原理研究. 物理学报, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [6] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [7] 钱圣男, 董闯. Mg-Al系工业合金牌号的成分式解析. 物理学报, 2017, 66(13): 136103. doi: 10.7498/aps.66.136103
    [8] 朱岩, 张新宇, 张素红, 马明臻, 刘日平, 田宏燕. Mg2Si化合物在静水压下的电子输运性能研究. 物理学报, 2015, 64(7): 077103. doi: 10.7498/aps.64.077103
    [9] 张瑞芳, 程庆华, 徐大海. 周期力调制噪声驱动下单模激光系统的多重随机共振. 物理学报, 2015, 64(2): 024211. doi: 10.7498/aps.64.024211
    [10] 张建新, 王海燕, 高爱华, 樊世克. Mg-Sn-Si系合金的热力学基础及合金相演变过程分析. 物理学报, 2015, 64(6): 066401. doi: 10.7498/aps.64.066401
    [11] 张青洪, 廖成, 盛楠, 陈伶璐. 森林环境电波传播抛物方程模型的改进研究. 物理学报, 2013, 62(20): 204101. doi: 10.7498/aps.62.204101
    [12] 张建新, 高爱华, 郭学锋, 任磊. Mg-Sn-Si合金中Mg2(Si,Sn)复合相的结构与性能研究. 物理学报, 2013, 62(17): 178101. doi: 10.7498/aps.62.178101
    [13] 何琴玉, 罗海津, 王银珍, 李炜, 苏佳槟, 雷正大, 陈振瑞, 张勇. Si100P2.5 (GaP)1.5中随机孔洞对热电性能的影响. 物理学报, 2012, 61(23): 237201. doi: 10.7498/aps.61.237201
    [14] 张晓燕, 徐伟, 周丙常. 色高斯噪声驱动双稳系统的多重随机共振研究. 物理学报, 2011, 60(6): 060514. doi: 10.7498/aps.60.060514
    [15] 吴东昌, 黄林军, 梁工英. Mg-Ni-Nd非晶合金晶化温度与晶化驱动力的预测. 物理学报, 2008, 57(3): 1813-1817. doi: 10.7498/aps.57.1813
    [16] 张军峰, 胡寿松. 基于多重核学习支持向量回归的混沌时间序列预测. 物理学报, 2008, 57(5): 2708-2713. doi: 10.7498/aps.57.2708
    [17] 陈时东, 朱留华, 孔令江, 刘慕仁. 优先随机慢化及预测间距对交通流的影响. 物理学报, 2007, 56(5): 2517-2522. doi: 10.7498/aps.56.2517
    [18] 杨秋红, 曾智江, 徐 军, 苏良碧. Mg,Ti共掺Al2O3透明多晶陶瓷光谱性能研究. 物理学报, 2006, 55(6): 2726-2729. doi: 10.7498/aps.55.2726
    [19] 李 文, 陈岱民, 关振中, 张瑞林. Ti-Al系金属间化合物力学性能的电子理论. 物理学报, 1998, 47(12): 2064-2073. doi: 10.7498/aps.47.2064
    [20] 滕凤恩, 崔相旭. 多晶X射线线形傅氏分析方法在合金材料力学性能预测上的应用. 物理学报, 1989, 38(11): 1845-1848. doi: 10.7498/aps.38.1845
计量
  • 文章访问数:  4156
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-04
  • 修回日期:  2022-10-16
  • 上网日期:  2022-10-19
  • 刊出日期:  2023-01-20

/

返回文章
返回