搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矢量光场空间调制的光波偏振方向解算方法研究

王富杰 曹晓昱 高超 文雪可 雷兵

引用本文:
Citation:

基于矢量光场空间调制的光波偏振方向解算方法研究

王富杰, 曹晓昱, 高超, 文雪可, 雷兵

Algorithms for calculating polarization direction based on spatial modulation of vector optical field

Wang Fu-Jie, Cao Xiao-Yu, Gao Chao, Wen Xue-Ke, Lei Bing
PDF
HTML
导出引用
  • 基于矢量光场调制与图像处理的偏振测量技术是一种新型的空间调制型偏振检测技术, 快速高精度的偏振解算方法是该技术走向实用的关键. 为探索快速高精度的偏振方向解算方法, 在简要介绍基于矢量光场空间调制的偏振方向检测技术原理的基础上, 分析了空间偏振调制型光强分布图像的基本特征, 设计并实现了Radon变换、光强调制曲线检测、径向积分和图像相关检测四种偏振方向解算方法, 详细阐述了他们的工作原理和物理思想. 为进行算法性能对比, 搭建实验系统并采集图像进行了实验验证, 分别对四种解算方法的稳定性、速度和精度等进行了对比研究, 结果表明, 四种方法均可实现稳定可靠的偏振方向检测, 光强调制曲线检测、径向积分和图像相关检测三种方法可获得优于0.01度的角度检测精度, 光强调制曲线检测和径向积分法的检测速度较快, 综合性能最优, 是最有潜力实现实时高精度偏振方向检测的两种方法.
    Polarization is an important property of electromagnetic waves, and measuring their polarization properties fast and precisely is a very important issue in many applications, such as skylight polarization navigation, optical activity measurement, imaging polarimetry, spectroscopic ellipsometry, and fluorescence polarization immunoassay . The polarization measurement method based on vector optical field modulation and image processing is a new type of spatial modulation polarization detection technology. The key step of this technique moving to practical application is determined by effective polarization measuring algorithms with high speed and accuracy. In order to find out the method of fast and precisely calculating polarization direction, the principle of polarization direction measurement based on vector optical field and spatial modulation is introduced briefly, and the basic characteristics of the spatially modulated intensity distribution images are analyzed. According to the properties of spatially modulated image, we propose and implement four different polarization direction calculation methods, which are the Radon transform, intensity modulation curve detection, radial integration, and image correlation detection, and also introduce their working principles and physical thoughts elaborately. To compare the detailed performances of these four algorithms, an experimental setup is constructed to collect the images and perform the algorithm verification, and the stabilities, speeds and accuracies of the four algorithms are compared. The research results indicate that all the four methods can achieve their stable and reliable polarization direction detections. The three methods, intensity modulation curve detection, radial integration and image correlation detection, can achieve the polarization direction measuring accuracy better than 0.01° . The intensity modulation curve detection and radial integration have relatively fast calculation speed and the best comprehensive performances , and are the most promising methods to realize real-time and high-precision polarization measurement.
      通信作者: 雷兵, leibing_2000@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61975235)和湖南省自然科学基金(批准号: 2019JJ40342)资助的课题.
      Corresponding author: Lei Bing, leibing_2000@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61975235), and the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ40342).
    [1]

    Zhang W J, Zhang X Z, Cao Y, Liu H B, Liu Z J 2016 Appl. Opt. 55 3518Google Scholar

    [2]

    Tang J, Zhang N, Li D L, Wang F, Zhang B Z, Wang C G, Shen C, Ren J B, Xue C Y, Liu J 2016 Opt. Express 24 15834Google Scholar

    [3]

    王成, 范之国, 金海红, 汪先球, 华豆 2021 物理学报 70 104201Google Scholar

    Wang C, Fan Z G, Jing H H, Wang X Q, Hua D 2021 Acta Phys. Sin. 70 104201Google Scholar

    [4]

    康健, 马伟, 李沅 2022 科学技术与工程 22 02696

    Kang J, Ma W, Li Y 2022 Sci. Technol. Eng. 22 02696

    [5]

    Qiu X D, Xie L G, Liu X, Luo L, Zhang Z Y, Du J L 2011 Opt. Lett. 41 4032Google Scholar

    [6]

    Eom I, Ahn S H, Rhee H J, Cho M H 2011 Opt. Express 19 10017Google Scholar

    [7]

    章慧, 齐爱华, 李丹, 李荣兴 2022 大学化学 37 2105009Google Scholar

    Zhang H, Qi A H, Li D, Li R X 2022 Univ. Chem. 37 2105009Google Scholar

    [8]

    李子骏, 贾宏志 2016 光学仪器 38 288Google Scholar

    Li Z J, Jia H Z 2016 Opt. Instrum. 38 288Google Scholar

    [9]

    汪杰君, 刘少晖, 李树, 叶松, 王新强, 王方原 2021 光子学报 50 0228001Google Scholar

    Wang J J, Liu S H, Li S, Ye S, Wang X Q, Wang F Y 2021 Acta Photonica Sin. 50 0228001Google Scholar

    [10]

    王宇瑶, 麻金继, 李婧晗, 洪津, 李正强 2022 遥感学报 26 0852Google Scholar

    Wang Y Y, Ma J J, Li J H, Hong J, Li Z Q 2022 J. Remote Sens. 26 0852Google Scholar

    [11]

    Jiang S X, Jia H Z, Lei Y, Shen X R, Cao J J, Wang N 2017 Opt. Express 25 7445Google Scholar

    [12]

    Vishnyakov G N, Levin G G, Lomakin A G 2011 J. Opt. Technol. 78 124Google Scholar

    [13]

    李荣华, 朴俊峰, 唐智超, 褚清清 2020 传感器与微系统 39 89Google Scholar

    Li R H, Piao J F, Tang Z C, Chu Q Q 2020 Transducer Microsys. Technol. 39 89Google Scholar

    [14]

    简小华, 张淳民, 赵葆常, 张霖, 朱兰艳 2009 物理学报 58 2286Google Scholar

    Jian X H, Zhang C M, Zhao B C, Zhang L, Zhu L Y 2009 Acta Phys. Sin. 58 2286Google Scholar

    [15]

    陈强华, 周胜, 丁锦红, 韩文远, 孔祥悦, 罗会甫 2022 光学学报 42 0712004Google Scholar

    Chen Q H, Zhou S, Ding J H, Han W Y, Kong X Y, Luo H F 2022 Acta Opt. Sin. 42 0712004Google Scholar

    [16]

    2020-11-06] [刘振, 葛惊寰, 高桂爱, 解学军, 刘莉, 杨孟杰 2020 中国专利 CN 111896489 A [2020-11-06

    Liu Z, Ge J H, Gao G A, Xie X J, Liu L, Yang M J 2020 Chin. Patent CN 111896489 A (in Chinese)

    [17]

    张伟, 朱秋东, 张旭升 2018 光学学报 38 0426001Google Scholar

    Zhang W, Zhu Q D, Zhang X S 2018 Acta Opt. Sin. 38 0426001Google Scholar

    [18]

    Liu X, Yang J L, Geng Z H, Jia H Z 2020 Chirality 32 1072Google Scholar

    [19]

    Ma X 2019 Sens. Actuators, B 283 857Google Scholar

    [20]

    2021-09-28] [李艳秋, 宁天磊, 周国栋 2021 中国专利 CN 113447126 A [2021-09-28

    Li Y Q, Ning T L, Zhou G D 2021 Chin. Patent CN 113447126 A (in Chinese)

    [21]

    曹奇志, 张晶, 爱德华·德霍格, 卢远, 胡宝清, 李武刚, 李建映, 樊东鑫, 邓婷, 闫妍 2016 物理学报 65 050702Google Scholar

    Cao Q Z, Zhang J, Edward D H, Lu Y, Hu B Q, Li W G, Li J Y, Fan D X, Deng T, Yan Y 2016 Acta Phys. Sin. 65 050702Google Scholar

    [22]

    Lei B, Liu S G 2018 Opt. Lett. 43 2969Google Scholar

    [23]

    Gao C, Lei B 2021 Chin. Opt. Lett. 19 21201Google Scholar

    [24]

    Wang F J, Lei B, Gao C, Wen X K, Lei Y 2022 Appl. Opt. 61 1965Google Scholar

    [25]

    Zhan Q W 2013 Vectorial Optical Fields: Fundamentals and Application (Singapore: World Scientific Publishing Co Pte. Ltd.) pp28–74

    [26]

    2014-07-07] [齐晓岩, 单旭晨, 马宇, 曹远 2014 中国专利 CN 203705145 U [2014-07-07

    Qi X Y, Shan X C, Ma Y, Cao Y, Liu S G 2014 Chin. Patent CN 203705145 U (in Chinese)

    [27]

    Zhang W J, Zhang Z W 2019 Sens. Actuators, B 286 119Google Scholar

    [28]

    拉斐尔·C. 冈萨雷斯, 理查德·E. 伍兹 著 (阮秋琦, 阮宇智 译) 2020 数字图像处理 (第4版) (北京: 电子工业出版社) 第206—263页

    Gonzalez R C, Woods R E (translated by Ruan Q Q, Ruan Y Z) 2020 Digital Image Processing (4th Ed.) (Beijing: Publishing House of Electronics Industry) pp260–263 (in Chinese)

  • 图 1  基于矢量光场空间调制的偏振方向检测技术原理示意图

    Fig. 1.  Sketch of polarization direction measurement system based on the spatial modulating of vector light field.

    图 2  典型的矢量光场空间调制后的光强分布图 (a) 理论仿真图像; (b) 实验采集图像

    Fig. 2.  Typical intensity distribution of the spatial modulated vector light field: (a) The calculated pattern in theory; (b) the observed pattern in experiment.

    图 3  不同半径处的光强调制曲线图(R = 50, R = 250, R = 450, R = 650, R = 850 像素)

    Fig. 3.  Intensity modulated curves with different radii in experimental image (R = 50, R = 250, R = 450, R = 650, R = 850 pixels).

    图 4  Radon变换原理图

    Fig. 4.  Schematic image of the Radon transform.

    图 5  Radon变换的正弦图及其光强分布 (a) Radon变换的正弦图; (b) Radon变换时积分直线距离为零时的光强分布

    Fig. 5.  The sinogram and the intensity distribution of Radon transform: (a) The sinogram of Radon transform; (b) the intensity distribution of zero integral distance in Radon transform.

    图 6  16幅角度间隔为1°图像的光强调制曲线 (a) 360°范围内的光强调制曲线; (b) 45°范围内局部放大图

    Fig. 6.  Intensity modulated curves of 16 images with 1 degree angular interval: (a) Intensity modulated curves in 360°; (b) partial enlargement within 45°.

    图 7  径向积分法的原理示意图

    Fig. 7.  Schematic diagram of radial integration method.

    图 8  四种算法解算的15个旋转角对比

    Fig. 8.  Comparison of 15 rotation angles obtained by four algorithms.

    表 1  四种解算方法对同一位置数据处理结果的对比

    Table 1.  Comparison of the calculation results by using four algorithms with the data in the same location.

    解算方法平均值/(°)最大误差/(°)平均误差/(°)误差标准差/(°)耗费时间/s
    Radon变换128.93800.00850.00260.003669.6582
    光强调制曲线129.14500.00600.00480.00150.2997
    径向积分129.00900.00800.00320.00400.4783
    图像相关检测129.03100.00500.00500.00500.8909
    下载: 导出CSV

    表 2  四种解算方法对15个旋转角数据处理结果的对比

    Table 2.  Comparison of the calculation results by using four algorithms in 15 rotation angles.

    解算方法平均转角/(°)最大误差/(°)平均误差/(°)标准差/(°)平均耗时/s
    Radon变换0.99200.08000.01600.022867.1860
    光强调制曲线0.99600.01000.00400.00630.3019
    径向积分0.99600.01000.00400.00630.4335
    图像相关检测0.99670.01000.00450.00670.8810
    下载: 导出CSV
  • [1]

    Zhang W J, Zhang X Z, Cao Y, Liu H B, Liu Z J 2016 Appl. Opt. 55 3518Google Scholar

    [2]

    Tang J, Zhang N, Li D L, Wang F, Zhang B Z, Wang C G, Shen C, Ren J B, Xue C Y, Liu J 2016 Opt. Express 24 15834Google Scholar

    [3]

    王成, 范之国, 金海红, 汪先球, 华豆 2021 物理学报 70 104201Google Scholar

    Wang C, Fan Z G, Jing H H, Wang X Q, Hua D 2021 Acta Phys. Sin. 70 104201Google Scholar

    [4]

    康健, 马伟, 李沅 2022 科学技术与工程 22 02696

    Kang J, Ma W, Li Y 2022 Sci. Technol. Eng. 22 02696

    [5]

    Qiu X D, Xie L G, Liu X, Luo L, Zhang Z Y, Du J L 2011 Opt. Lett. 41 4032Google Scholar

    [6]

    Eom I, Ahn S H, Rhee H J, Cho M H 2011 Opt. Express 19 10017Google Scholar

    [7]

    章慧, 齐爱华, 李丹, 李荣兴 2022 大学化学 37 2105009Google Scholar

    Zhang H, Qi A H, Li D, Li R X 2022 Univ. Chem. 37 2105009Google Scholar

    [8]

    李子骏, 贾宏志 2016 光学仪器 38 288Google Scholar

    Li Z J, Jia H Z 2016 Opt. Instrum. 38 288Google Scholar

    [9]

    汪杰君, 刘少晖, 李树, 叶松, 王新强, 王方原 2021 光子学报 50 0228001Google Scholar

    Wang J J, Liu S H, Li S, Ye S, Wang X Q, Wang F Y 2021 Acta Photonica Sin. 50 0228001Google Scholar

    [10]

    王宇瑶, 麻金继, 李婧晗, 洪津, 李正强 2022 遥感学报 26 0852Google Scholar

    Wang Y Y, Ma J J, Li J H, Hong J, Li Z Q 2022 J. Remote Sens. 26 0852Google Scholar

    [11]

    Jiang S X, Jia H Z, Lei Y, Shen X R, Cao J J, Wang N 2017 Opt. Express 25 7445Google Scholar

    [12]

    Vishnyakov G N, Levin G G, Lomakin A G 2011 J. Opt. Technol. 78 124Google Scholar

    [13]

    李荣华, 朴俊峰, 唐智超, 褚清清 2020 传感器与微系统 39 89Google Scholar

    Li R H, Piao J F, Tang Z C, Chu Q Q 2020 Transducer Microsys. Technol. 39 89Google Scholar

    [14]

    简小华, 张淳民, 赵葆常, 张霖, 朱兰艳 2009 物理学报 58 2286Google Scholar

    Jian X H, Zhang C M, Zhao B C, Zhang L, Zhu L Y 2009 Acta Phys. Sin. 58 2286Google Scholar

    [15]

    陈强华, 周胜, 丁锦红, 韩文远, 孔祥悦, 罗会甫 2022 光学学报 42 0712004Google Scholar

    Chen Q H, Zhou S, Ding J H, Han W Y, Kong X Y, Luo H F 2022 Acta Opt. Sin. 42 0712004Google Scholar

    [16]

    2020-11-06] [刘振, 葛惊寰, 高桂爱, 解学军, 刘莉, 杨孟杰 2020 中国专利 CN 111896489 A [2020-11-06

    Liu Z, Ge J H, Gao G A, Xie X J, Liu L, Yang M J 2020 Chin. Patent CN 111896489 A (in Chinese)

    [17]

    张伟, 朱秋东, 张旭升 2018 光学学报 38 0426001Google Scholar

    Zhang W, Zhu Q D, Zhang X S 2018 Acta Opt. Sin. 38 0426001Google Scholar

    [18]

    Liu X, Yang J L, Geng Z H, Jia H Z 2020 Chirality 32 1072Google Scholar

    [19]

    Ma X 2019 Sens. Actuators, B 283 857Google Scholar

    [20]

    2021-09-28] [李艳秋, 宁天磊, 周国栋 2021 中国专利 CN 113447126 A [2021-09-28

    Li Y Q, Ning T L, Zhou G D 2021 Chin. Patent CN 113447126 A (in Chinese)

    [21]

    曹奇志, 张晶, 爱德华·德霍格, 卢远, 胡宝清, 李武刚, 李建映, 樊东鑫, 邓婷, 闫妍 2016 物理学报 65 050702Google Scholar

    Cao Q Z, Zhang J, Edward D H, Lu Y, Hu B Q, Li W G, Li J Y, Fan D X, Deng T, Yan Y 2016 Acta Phys. Sin. 65 050702Google Scholar

    [22]

    Lei B, Liu S G 2018 Opt. Lett. 43 2969Google Scholar

    [23]

    Gao C, Lei B 2021 Chin. Opt. Lett. 19 21201Google Scholar

    [24]

    Wang F J, Lei B, Gao C, Wen X K, Lei Y 2022 Appl. Opt. 61 1965Google Scholar

    [25]

    Zhan Q W 2013 Vectorial Optical Fields: Fundamentals and Application (Singapore: World Scientific Publishing Co Pte. Ltd.) pp28–74

    [26]

    2014-07-07] [齐晓岩, 单旭晨, 马宇, 曹远 2014 中国专利 CN 203705145 U [2014-07-07

    Qi X Y, Shan X C, Ma Y, Cao Y, Liu S G 2014 Chin. Patent CN 203705145 U (in Chinese)

    [27]

    Zhang W J, Zhang Z W 2019 Sens. Actuators, B 286 119Google Scholar

    [28]

    拉斐尔·C. 冈萨雷斯, 理查德·E. 伍兹 著 (阮秋琦, 阮宇智 译) 2020 数字图像处理 (第4版) (北京: 电子工业出版社) 第206—263页

    Gonzalez R C, Woods R E (translated by Ruan Q Q, Ruan Y Z) 2020 Digital Image Processing (4th Ed.) (Beijing: Publishing House of Electronics Industry) pp260–263 (in Chinese)

  • [1] 张银胜, 童俊毅, 陈戈, 单梦姣, 王硕洋, 单慧琳. 基于多尺度特征增强的合成孔径光学图像复原. 物理学报, 2024, 73(6): 064203. doi: 10.7498/aps.73.20231761
    [2] 曹奇志, 唐金凤, 潘杨柳, 江敏, 蒋思悦, 张晶, 贾辰凌, 樊东鑫, 邓婷, 王华华, 段炼. 线性剪切空间调制快拍成像动态定标技术. 物理学报, 2022, 71(15): 154205. doi: 10.7498/aps.71.20220229
    [3] 白立春, 孙劲光, 高艳东. 气泡在超声场中绕圈运动的高速摄影及其图像分析. 物理学报, 2021, 70(5): 054701. doi: 10.7498/aps.70.20201381
    [4] 齐淑霞, 刘圣, 李鹏, 韩磊, 程华超, 吴东京, 赵建林. 高效产生任意矢量光场的一种方法. 物理学报, 2019, 68(2): 024201. doi: 10.7498/aps.68.20181816
    [5] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [6] 袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛. 基于偏振光相位调制的超衍射极限空间结构光研究. 物理学报, 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [7] 兰斌, 冯国英, 张涛, 梁井川, 周寿桓. 用于透明平板平行度和均匀性测量的单元件干涉仪. 物理学报, 2017, 66(6): 069501. doi: 10.7498/aps.66.069501
    [8] 郑殿春, 丁宁, 沈湘东, 赵大伟, 郑秋平, 魏红庆. 基于分形理论的尖-板电极短空气隙放电现象研究. 物理学报, 2016, 65(2): 024703. doi: 10.7498/aps.65.024703
    [9] 曹奇志, 张晶, Edward DeHoog, 卢远, 胡宝清, 李武钢, 李建映, 樊东鑫, 邓婷, 闫妍. 空间调制稳态微型快拍成像测偏技术研究. 物理学报, 2016, 65(5): 050702. doi: 10.7498/aps.65.050702
    [10] 王吉明, 赫崇君, 刘友文, 杨凤, 田威, 吴彤. 基于可调谐复振幅滤波器的超长焦深矢量光场. 物理学报, 2016, 65(4): 044202. doi: 10.7498/aps.65.044202
    [11] 夏军, 常琛亮, 雷威. 基于液晶空间光调制器的全息显示. 物理学报, 2015, 64(12): 124213. doi: 10.7498/aps.64.124213
    [12] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于扭曲向列液晶空间光调制器的矢量光生成. 物理学报, 2015, 64(11): 114204. doi: 10.7498/aps.64.114204
    [13] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [14] 钟东洲, 吴正茂. 电光调制对外部光反馈垂直腔表面发射激光器输出矢量混沌偏振的操控. 物理学报, 2012, 61(3): 034203. doi: 10.7498/aps.61.034203
    [15] 王波, 梁中翥, 孔延梅, 梁静秋, 付建国, 郑莹, 朱万彬, 吕金光, 王维彪, 裴舒, 张军. 用于微型光谱仪的硅基多级微反射镜设计与制作研究. 物理学报, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [16] 李芹, 蔡理, 冯朝文. SET-MOS混合结构的细胞神经网络及其应用. 物理学报, 2009, 58(6): 4183-4188. doi: 10.7498/aps.58.4183
    [17] 郜 鹏, 姚保利, 韩俊鹤, 陈利菊, 王英利, 雷 铭. 菌紫质同线偏振全息记录时再现光偏振方向对衍射效率的调制. 物理学报, 2008, 57(5): 2952-2958. doi: 10.7498/aps.57.2952
    [18] 简小华, 张淳民, 赵葆常. 研究干涉图处理与光谱复原的一种新方法. 物理学报, 2007, 56(2): 824-829. doi: 10.7498/aps.56.824
    [19] 贾维国, 杨性愉. 强双折射光纤中任意偏振方向矢量调制不稳定性. 物理学报, 2005, 54(3): 1053-1058. doi: 10.7498/aps.54.1053
    [20] 阳世新, 李方华, 刘玉东, 古元新, 范海福. 直接法应用于蛋白质二维晶体的电子晶体学图像处理. 物理学报, 2000, 49(10): 1982-1987. doi: 10.7498/aps.49.1982
计量
  • 文章访问数:  3873
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 修回日期:  2022-09-30
  • 上网日期:  2022-12-23
  • 刊出日期:  2023-01-05

/

返回文章
返回