搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油面上相邻Leidenfrost液滴的相互作用及运动机制

王浩 徐进良

引用本文:
Citation:

油面上相邻Leidenfrost液滴的相互作用及运动机制

王浩, 徐进良

Interaction and motion of two neighboring Leidenfrost droplets on oil surface

Wang Hao, Xu Jin-Liang
PDF
HTML
导出引用
  • 热油面液滴蒸发是自然现象, 已有研究侧重于单滴蒸发, 对于热油面上多滴蒸发的认识较少. 本文研究了热硅油面两个等直径FC-72液滴的Leidenfrost蒸发, 油温为74.0—130.0 ℃, 液滴初始直径为1.5 mm, 采用红外热成像及高速摄影测量, 发现热油面液滴蒸发存在非聚合、弹跳、分离3个阶段. 本文理论分析了液滴在水平方向的受力, 包括非均匀液滴温度产生的Marangoni力、重力水平分量、润滑推动力、黏性力. 尺度分析表明Marangoni力和重力水平分量起关键作用, Marangoni力趋向于液滴分离, 重力水平分量趋向于液滴聚合. 在非聚合蒸发阶段, 重力水平分量克服Marangoni力, 但两液滴间存在气膜夹层, 解释了两个液滴看似接触但不聚合的现象. 随液滴尺寸减小, 重力水平分量减小, 不足以克服Marangoni力, 这是导致蒸发后期两滴分离的主要原因. 最后通过将模型得到的不同阶段间的转换时间同测量值进行对比, 证实了上述解释. 本文研究有助于理解复杂的Leidenfrost液滴动力学现象和机理.
    Evaporation of droplets on a hot oil surface is a natural phenomenon. However, most of existing studies focus on the evaporation of a single droplet, and the evaporation of multiple droplets is insufficiently understood. Here, we explore the Leidenfrost evaporation of two identical FC-72 droplets on the surface of a hot oil bath. The oil temperature ranges from 73.6 to 126.6 ℃, and the evaporation of droplets each with an initial diameter of 1.5 mm is recorded by an infrared thermographer and a high-speed camera. The shallow oil depth keeps the oil temperature uniform relatively in the slot compared with that in the deep liquid pool due to the larger ratio of the surface area for copper-oil contact to the slot volume. We find that the neighboring droplets evaporate in three stages: non-coalescing, bouncing, and separating. The radius of neighboring Leidenfrost droplets follows the power law R(t)~(1−t/τ)n, where τ is the characteristic droplet lifetime and n is an exponent factor. Moreover, the diffusion-mediated interaction between the neighboring droplets slows down the evaporation process compared with the action of isolated Leidenfrost droplet and leads to an asymmetric temperature field on the droplet surface, thereby breaking the balance of the forces acting on the droplets. A simple dual-droplet evaporation model is developed which considers four forces acting horizontally on the droplet, namely, the Marangoni force resulting from the non-uniform droplet temperature, the gravity component, the lubrication-propulsion force, and the viscous drag force. Scale analysis shows that the Marangoni force and gravity component dominate dual-droplet evaporation dynamics. In the non-coalescence stage, the gravity component induces the droplets to attract each other, while the vapor film trapped between droplets prevents them from directly contacting. When the droplets turn smaller, the gravity component is insufficient to overcome the Marangoni force. Hence, the droplets separate in the final evaporation stage. Finally, we conclude that the competition between Marangoni force and gravitational force is the origin of the bounce evaporation by comparing the theoretical and experimental transition times at distinct stages. This study contributes to explaining the complex Leidenfrost droplet dynamics and evaporation mechanism.
      通信作者: 徐进良, xjl@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52130608, 51821004)资助的课题.
      Corresponding author: Xu Jin-Liang, xjl@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52130608, 51821004).
    [1]

    Biance A L, Clanet C, Quééréé D 2003 Phys. Fluids 15 1632Google Scholar

    [2]

    Tran T, Staat H J, Prosperetti A, Sun C, Lohse D 2012 Phys. Rev. Lett. 108 036101Google Scholar

    [3]

    Davanlou A, Kumar R 2015 Sci. Rep. 5 9531Google Scholar

    [4]

    Luo C, Mrinal M, Wang X 2017 Sci. Rep. 7 12018Google Scholar

    [5]

    Abdelaziz R, Disci-Zayed D, Hedayati M K, Pohls J H, Zillohu A U, Erkartal B, Chakravadhanula V S, Duppel V, Kienle L, Elbahri M 2013 Nat. Commun. 4 2400Google Scholar

    [6]

    Schwenzer B 2014 MRS Bull. 39 7Google Scholar

    [7]

    Kleinstreuer C, Zhang Z 2010 Annu. Rev. Fluid Mech. 42 301Google Scholar

    [8]

    Bouillant A, Mouterde T, Bourrianne P, Lagarde A, Clanet C, Quéré D 2018 Nat. Phys. 14 1188Google Scholar

    [9]

    Graeber G, Regulagadda K, Hodel P, Kuttel C, Landolf D, Schutzius T M, Poulikakos D 2021 Nat. Commun. 12 1727Google Scholar

    [10]

    Brunet P, Snoeijer J H 2011 Eur. Phys. J. Spec. Top. 192 207Google Scholar

    [11]

    Linke H, Aleman B J, Melling L D, Taormina M J, Francis M J, Dow-Hygelund C C, Narayanan V, Taylor R P, Stout A 2006 Phys. Rev. Lett. 96 154502Google Scholar

    [12]

    Bouillant A, Lafoux B, Clanet C, Quere D 2021 Soft Matter 17 8805Google Scholar

    [13]

    van Limbeek M A J, Sobac B, Rednikov A, Colinet P, Snoeijer J H 2019 J. Fluid Mech. 863 1157Google Scholar

    [14]

    Gauthier A, Diddens C, Proville R, Lohse D, van der Meer D 2019 Proc. Natl. Acad. Sci. USA 116 1174Google Scholar

    [15]

    Matsumoto R, Hasegawa K 2021 Sci. Rep. 11 3954Google Scholar

    [16]

    Gauthier A, Lajoinie G, Snoeijer J H, van der Meer D 2020 Soft Matter 16 4043Google Scholar

    [17]

    Maquet L, Sobac B, Darbois-Texier B, Duchesne A, Brandenbourger M, Rednikov A, Colinet P, Dorbolo S 2016 Phys. Rev. Fluids 1 053902

    [18]

    Pacheco-Vazquez F, Ledesma-Alonso R, Palacio-Rangel J L, Moreau F 2021 Phys. Rev. Lett. 127 204501Google Scholar

    [19]

    Carrier O, Shahidzadeh-Bonn N, Zargar R, Aytouna M, Habibi M, Eggers J, Bonn D 2016 J. Fluid Mech. 798 774Google Scholar

    [20]

    Schäfle C, Bechinger C, Rinn B, David C, Leiderer P 1999 Phys. Rev. Lett. 83 5302Google Scholar

    [21]

    Kobayashi M, Makino M, Okuzono T, Doi M 2010 J. Phys. Soc. Jpn. 79 044802

    [22]

    Couder Y, Protiere S, Fort E, Boudaoud A 2005 Nature 437 208Google Scholar

    [23]

    Harris D M, Bush J W M 2014 J. Fluid Mech. 739 444Google Scholar

    [24]

    Bozzano G, Dente M 2013 Icheap-11:11 th International Conference on Chemical and Process Engineering, Pts 1-4 32 1489Google Scholar

    [25]

    Valani R N, Slim A C, Simula T 2019 Phys. Rev. Lett. 123 024503Google Scholar

    [26]

    Yan X, Xu J, Meng Z, Xie J, Liu G 2020 Langmuir 36 1680Google Scholar

    [27]

    Xu J L, Yan X, Liu G H, Xie J 2019 Nano Energy 57 791Google Scholar

    [28]

    Zawala J, Dorbolo S, Terwagne D, Vandewalle N, Malysa K 2011 Soft Matter 7 6719Google Scholar

    [29]

    Khilifi D, Foudhil W, Fahem K, Harmand S, Ben Jabrallah S 2019 Therm. Sci. 23 1105Google Scholar

    [30]

    Wang H, Xu J, Ma X, Xie J 2022 Phys. Fluids 34 093320

    [31]

    Inamuro T, Tajima S, Ogino F 2004 Int. J. Heat Mass Transfer 47 4649Google Scholar

    [32]

    Leong F Y, Le D V 2020 Phys. Fluids 32 062102

    [33]

    Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221Google Scholar

    [34]

    Zheng S F, Eimann F, Philipp C, Fieback T, Gross U 2019 Int. J. Heat Mass Transfer 141 34Google Scholar

    [35]

    Annamalai K, Ryan W, Chandra S 1993 J. Heat Transfer 115 707Google Scholar

    [36]

    Sokuler M, Auernhammer G K, Liu C J, Bonaccurso E, Butt H J 2010 Epl. Europhys. Lett. 89 36004Google Scholar

    [37]

    Pradhan T K, Panigrahi P K 2016 Colloid Surface A 500 154Google Scholar

    [38]

    Larson R G 2014 AlChE J. 60 1538Google Scholar

    [39]

    Fairhurst D J 2022 J. Fluid Mech. 934 F1

    [40]

    Wray A W, Wray P S, Duffy B R, Wilson S K 2021 Phys. Rev. Fluids 6 073604

    [41]

    Wray A W, Duffy B R, Wilson S K 2020 J. Fluid Mech. 884 A45

    [42]

    Bergman T L, Bergman T L, Incropera F P, Dewitt D P, Lavine A S 2011 Fundamentals of Heat and Mass Transfer (John Wiley & Sons)

    [43]

    Yu X, Xu J 2020 Appl. Phys. Lett. 116 253903

    [44]

    Ding Y J, Liu J 2016 Appl. Phys. Lett. 109 121904

    [45]

    Yan X, Xu J, Meng Z, Xie J, Wang H 2020 Small 16 e2001548Google Scholar

    [46]

    Janssens S D, Koizumi S, Fried E 2017 Phys. Fluids 29 032103

  • 图 1  (a) 实验装置图; (b), (c)放大的带有薄液池的加热铜块(1-高速摄像机, 2-红外高速相机, 3-微量注射器, 4-位移调节平台, 5-电源变压器, 6-PID温度控制器, 7-带薄液池的铜块, 8-光源, 9-用于释放液滴的冷却针头)

    Fig. 1.  Photograph of experimental setup (a) and enlarged copper block with thin liquid pool (b), (c) (1-high speed camera, 2-infrared radiation image camera, 3-micro-syringe pump, 4-displacement adjustment platform, 5-voltage transformer, 6-PID temperature controller, 7- copper block with thin liquid pool, 8-light source, 9-cooled dual-needles for droplet release).

    图 2  (a) 油池在水平方向和深层方向的温度分布; (b) 硅油和FC-72的表面温度测量的校准; (c) 通过红外测量定位液滴界面的原理

    Fig. 2.  (a) Temperature dispersion in the oil bath’s horizontal and deep directions; (b) calibration of surface temperature measurement for silicon oil and FC-72; (c) the principle to locate the drop interface by IR measurement.

    图 3  (a) 不同油面温度To下液滴寿命的两种分区; (b) 油面温度为88.2 ℃和128.0 ℃时液滴的直径与时间的关系

    Fig. 3.  (a) Droplet diameters versus time at oil surface temperature of 88.2 ℃ and 128.0 ℃; (b) two regimes distribution of droplet life time at different oil surface temperatures.

    图 4  (a) 从a—i的9个特定时间的液滴动态图; (b), (c) 在To = 88.2 ℃时, 液滴整个寿命期的3种蒸发行为

    Fig. 4.  (a) Droplet dynamics at nine specific time from a to i; (b), (c) three-regimes behavior of droplet dynamics during the whole droplet lifetime at To = 88.2 ℃.

    图 5  双滴接触时刻, 液滴区域和背景区域的温度分布

    Fig. 5.  Temperature distribution on the droplet-dominated and background-dominated regions at contact time.

    图 6  红外相机俯拍得到液滴表面的温度轮廓线 (温度随着圆周角变化)

    Fig. 6.  Droplet surface temperatures along top view circle (temperatures are plotted versus circumference angles).

    图 7  油面双滴非聚合蒸发的力学分析 (a) 施加在倾斜液滴上的各种力; (b) 润滑推动力; (c) Leidenfrost蒸气层与空气交界处的Marangoni力; (d) 气膜出口位置的液滴表面张力圆周分布; (e) 沿x方向分布的液滴表面温度; (f) 作用在倾斜油面上的液滴重力; (g) 油面倾斜角α 与液滴邦德数Bo之间的关系

    Fig. 7.  Force analysis explaining the non-coalescence phenomenon of dual-droplets over oil surface: (a) Various forces exerted on inclined droplets; (b) lubrication-propulsion force; (c) Marangoni force along circumference direction at the junction between Leidenfrost vapor layer and air; (d) distribution of droplet surface tension along the x-direction at the vapor outlet; (e) distribution of droplet surface temperature along the x-direction; (f) droplet gravity on the inclined oil surface; (g) the relationship between the oil surface’s inclination angle α and the droplet’s bond number.

    图 8  液滴温度和各种力的变化 (a) 测量的液滴温度与时间的关系, 以及用简单的拟合得到的两条曲线; (b) 各种力大小的比较; (c) 竞争的重力Fg, x和Marangoni力Fσ, x主导了液滴动力学的三态行为

    Fig. 8.  Variation of droplet temperatures and various forces: (a) The measured droplet temperature versus time and two curve obtained with simple fitting; (b) comparison of various forces magnitudes; (c) competing gravity force Fg, x and Marangoni force Fσ, x dominate the three-regimes behavior of droplet dynamics.

    表 1  在1 atm (1 atm = 1.013×105 Pa) 的压力下, FC-72和硅油的物性参数

    Table 1.  Physical properties of FC-72 and silicon oil at 1 atm (1 atm = 1.013×105 Pa).

    参数
    FC-72
    (液体)
    饱和温度 (1 atm) Tsat/℃56.6
    密度 ρd/( kg·m–3)1680
    比热容 cpl/(J·m–1·K–1)1100
    潜热 L/(kJ·kg–1)88
    导热率 λd(W·m–1·K–1)0.057
    动力黏度 μd/(kg·m–1·s–1)0.64×10–3
    FC-72
    (蒸气)
    密度 ρv/(kg·m–3)9.7
    比热容 cpv/(J·m–1·K–1)900
    热导率 λv/(W·m–1·K–1)0.0235
    动力黏度 μv/(kg·m–1·s–1)1.31×10–6
    硅油密度 ρo/(kg·m–3)960
    比热容 cpo/(J·m–1·K–1)1460
    动力黏度 μo/(kg·m–1·s–1)0.048
    表面张力(25 ℃) σo/(N·m–1)0.0208
    下载: 导出CSV
  • [1]

    Biance A L, Clanet C, Quééréé D 2003 Phys. Fluids 15 1632Google Scholar

    [2]

    Tran T, Staat H J, Prosperetti A, Sun C, Lohse D 2012 Phys. Rev. Lett. 108 036101Google Scholar

    [3]

    Davanlou A, Kumar R 2015 Sci. Rep. 5 9531Google Scholar

    [4]

    Luo C, Mrinal M, Wang X 2017 Sci. Rep. 7 12018Google Scholar

    [5]

    Abdelaziz R, Disci-Zayed D, Hedayati M K, Pohls J H, Zillohu A U, Erkartal B, Chakravadhanula V S, Duppel V, Kienle L, Elbahri M 2013 Nat. Commun. 4 2400Google Scholar

    [6]

    Schwenzer B 2014 MRS Bull. 39 7Google Scholar

    [7]

    Kleinstreuer C, Zhang Z 2010 Annu. Rev. Fluid Mech. 42 301Google Scholar

    [8]

    Bouillant A, Mouterde T, Bourrianne P, Lagarde A, Clanet C, Quéré D 2018 Nat. Phys. 14 1188Google Scholar

    [9]

    Graeber G, Regulagadda K, Hodel P, Kuttel C, Landolf D, Schutzius T M, Poulikakos D 2021 Nat. Commun. 12 1727Google Scholar

    [10]

    Brunet P, Snoeijer J H 2011 Eur. Phys. J. Spec. Top. 192 207Google Scholar

    [11]

    Linke H, Aleman B J, Melling L D, Taormina M J, Francis M J, Dow-Hygelund C C, Narayanan V, Taylor R P, Stout A 2006 Phys. Rev. Lett. 96 154502Google Scholar

    [12]

    Bouillant A, Lafoux B, Clanet C, Quere D 2021 Soft Matter 17 8805Google Scholar

    [13]

    van Limbeek M A J, Sobac B, Rednikov A, Colinet P, Snoeijer J H 2019 J. Fluid Mech. 863 1157Google Scholar

    [14]

    Gauthier A, Diddens C, Proville R, Lohse D, van der Meer D 2019 Proc. Natl. Acad. Sci. USA 116 1174Google Scholar

    [15]

    Matsumoto R, Hasegawa K 2021 Sci. Rep. 11 3954Google Scholar

    [16]

    Gauthier A, Lajoinie G, Snoeijer J H, van der Meer D 2020 Soft Matter 16 4043Google Scholar

    [17]

    Maquet L, Sobac B, Darbois-Texier B, Duchesne A, Brandenbourger M, Rednikov A, Colinet P, Dorbolo S 2016 Phys. Rev. Fluids 1 053902

    [18]

    Pacheco-Vazquez F, Ledesma-Alonso R, Palacio-Rangel J L, Moreau F 2021 Phys. Rev. Lett. 127 204501Google Scholar

    [19]

    Carrier O, Shahidzadeh-Bonn N, Zargar R, Aytouna M, Habibi M, Eggers J, Bonn D 2016 J. Fluid Mech. 798 774Google Scholar

    [20]

    Schäfle C, Bechinger C, Rinn B, David C, Leiderer P 1999 Phys. Rev. Lett. 83 5302Google Scholar

    [21]

    Kobayashi M, Makino M, Okuzono T, Doi M 2010 J. Phys. Soc. Jpn. 79 044802

    [22]

    Couder Y, Protiere S, Fort E, Boudaoud A 2005 Nature 437 208Google Scholar

    [23]

    Harris D M, Bush J W M 2014 J. Fluid Mech. 739 444Google Scholar

    [24]

    Bozzano G, Dente M 2013 Icheap-11:11 th International Conference on Chemical and Process Engineering, Pts 1-4 32 1489Google Scholar

    [25]

    Valani R N, Slim A C, Simula T 2019 Phys. Rev. Lett. 123 024503Google Scholar

    [26]

    Yan X, Xu J, Meng Z, Xie J, Liu G 2020 Langmuir 36 1680Google Scholar

    [27]

    Xu J L, Yan X, Liu G H, Xie J 2019 Nano Energy 57 791Google Scholar

    [28]

    Zawala J, Dorbolo S, Terwagne D, Vandewalle N, Malysa K 2011 Soft Matter 7 6719Google Scholar

    [29]

    Khilifi D, Foudhil W, Fahem K, Harmand S, Ben Jabrallah S 2019 Therm. Sci. 23 1105Google Scholar

    [30]

    Wang H, Xu J, Ma X, Xie J 2022 Phys. Fluids 34 093320

    [31]

    Inamuro T, Tajima S, Ogino F 2004 Int. J. Heat Mass Transfer 47 4649Google Scholar

    [32]

    Leong F Y, Le D V 2020 Phys. Fluids 32 062102

    [33]

    Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221Google Scholar

    [34]

    Zheng S F, Eimann F, Philipp C, Fieback T, Gross U 2019 Int. J. Heat Mass Transfer 141 34Google Scholar

    [35]

    Annamalai K, Ryan W, Chandra S 1993 J. Heat Transfer 115 707Google Scholar

    [36]

    Sokuler M, Auernhammer G K, Liu C J, Bonaccurso E, Butt H J 2010 Epl. Europhys. Lett. 89 36004Google Scholar

    [37]

    Pradhan T K, Panigrahi P K 2016 Colloid Surface A 500 154Google Scholar

    [38]

    Larson R G 2014 AlChE J. 60 1538Google Scholar

    [39]

    Fairhurst D J 2022 J. Fluid Mech. 934 F1

    [40]

    Wray A W, Wray P S, Duffy B R, Wilson S K 2021 Phys. Rev. Fluids 6 073604

    [41]

    Wray A W, Duffy B R, Wilson S K 2020 J. Fluid Mech. 884 A45

    [42]

    Bergman T L, Bergman T L, Incropera F P, Dewitt D P, Lavine A S 2011 Fundamentals of Heat and Mass Transfer (John Wiley & Sons)

    [43]

    Yu X, Xu J 2020 Appl. Phys. Lett. 116 253903

    [44]

    Ding Y J, Liu J 2016 Appl. Phys. Lett. 109 121904

    [45]

    Yan X, Xu J, Meng Z, Xie J, Wang H 2020 Small 16 e2001548Google Scholar

    [46]

    Janssens S D, Koizumi S, Fried E 2017 Phys. Fluids 29 032103

  • [1] 冯山青, 龚路远, 权生林, 郭亚丽, 沈胜强. 纳米液滴撞击高温平板壁的分子动力学模拟. 物理学报, 2024, 73(10): 103106. doi: 10.7498/aps.73.20240034
    [2] 刘贺, 杨亚晶, 唐玉凝, 魏衍举. 声致液滴失稳动力学研究. 物理学报, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [3] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离. 物理学报, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [4] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [5] 李春曦, 程冉, 叶学民. 接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响. 物理学报, 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [6] 曹春蕾, 徐进良, 叶文力. 周期性爆沸诱导的液滴自驱动. 物理学报, 2021, 70(24): 244703. doi: 10.7498/aps.70.20211386
    [7] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [8] 刘燕文, 王小霞, 陆玉新, 田宏, 朱虹, 孟鸣凤, 赵丽, 谷兵. 用于电真空器件的金属材料蒸发特性. 物理学报, 2016, 65(6): 068502. doi: 10.7498/aps.65.068502
    [9] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟. 物理学报, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [10] 姚祎, 周哲玮, 胡国辉. 有结构壁面上液滴运动特征的耗散粒子动力学模拟. 物理学报, 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
    [11] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟. 物理学报, 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [12] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [13] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积. 物理学报, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [14] 何博, 何浩波, 丰松江, 聂万胜. 液体火箭有机凝胶喷雾液滴蒸发模型及仿真研究. 物理学报, 2012, 61(14): 148201. doi: 10.7498/aps.61.148201
    [15] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟. 物理学报, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [16] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [17] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟. 物理学报, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [18] 杜人君, 解文军. 声悬浮条件下环己烷液滴的蒸发凝固. 物理学报, 2011, 60(11): 114302. doi: 10.7498/aps.60.114302
    [19] 刘燕文, 田宏, 韩勇, 朱虹, 李玉涛, 徐振英, 孟鸣凤, 易红霞, 陆玉新, 张洪来, 刘濮鲲. 新型的覆纳米粒子薄膜阴极的研究. 物理学报, 2009, 58(12): 8635-8642. doi: 10.7498/aps.58.8635
    [20] 常建忠, 刘谋斌, 刘汉涛. 微液滴动力学特性的耗散粒子动力学模拟. 物理学报, 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
计量
  • 文章访问数:  4328
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 修回日期:  2022-11-06
  • 上网日期:  2023-03-08
  • 刊出日期:  2023-03-05

/

返回文章
返回