-
采用Sagdeev势方法研究了多组分尘埃等离子体中的非线性尘埃声孤波的传播特征. 推导得到了在含有尘埃颗粒、电子流、质子流及Kappa电子和离子的多组分尘埃等离子体中的非线性尘埃声波所对应的Sagdeev势函数. 并利用定性分析方法, 确定该系统同时存在线性周期波解轨道、非线性周期波解轨道和孤立波解轨道. 与此同时, 借助数值模拟方法发现: 该多组分尘埃等离子体系统中仅存在振幅小于零的稀疏型孤立波, 且非线性尘埃声孤波的振幅、宽度及波形等传播特征均与马赫数M、多种粒子数密度、温度、电荷量、质量及Kappa电子数、离子数等各种系统参数存在紧密关联.
-
关键词:
- 多组分尘埃等离子体 /
- 尘埃声孤波 /
- Sagdeev势方法
Nowadays, the dusty plasma has become an interesting new branch of the plasma physics. As is well known, the dusty plasmas play a significant role in the space, astrophysical and laboratory environments. In these days, the studying of the nonlinear waves in dusty plasma has attracted researchers’ attention, in order to explain many basic phenomena in the plasma physics. The nonlinear waves play an important role in studying dusty plasma environments, such as the aster-oid zones, the earth’s mesosphere, and the planetary rings. In this work, the propagating characteristics of nonlinear dust acoustic solitary waves in a multicomponent dusty plasma which is composed of positively charged dust particles, streaming protons and electrons, Kappa distributed electrons and ions are studied in detail. The Sagdeev potential method is employed to investigate the large amplitude dust acoustic waves. It has an evidence for the existence of compressive and rarefractive solitary waves. With the help of the Sagdeev potential method, the Sagdeev potential function and the bifurcation analysis of phase-portrait are obtained. Firstly, the Sagdeev potential function is obtained by the Sagdeev potential method. Then, the variations of phase diagram with different parameters in a two-dimensional autonomous system in the multicomponent dusty plasma system are investigated. It is found that the system has the linear wave solutions, nonlinear wave solutions, and solitary wave solutions at the same time. Meanwhile, the existence of different wave behaviors is closely related to various system factors. Moreover, it is found that only the rarefractive solitary waves exist in the multicomponent dusty plasma system by using the numerical simulation technique. Finally, the important influence of system parameter on the phase diagram, the Sagdeev potential function and the propagating characteristics of nonlinear dust acoustic solitary waves are discussed clearly. The results show that the different system parameters such as Mach number M, the masses, the temperatures, the number densities, the charge numbers of multiple particles and the Kappa distribution parameters for ions and electrons have important effects on the amplitudes, the widths and the waveforms of nonlinear dust acoustic solitary waves.[1] Al-Yousef H A, Alotaibi BM, Tolba R E, Moslem W M 2020 Res. Phys. 21 103792
[2] Akhter T, Mannan A, Mamun A A 2013 Plasma Phys. Rep. 39 548Google Scholar
[3] El-Labany S K, Moslem W M, Mahmoud M 2012 Astro. Space Sci. 339 185Google Scholar
[4] Chowdhury S 2007 Plane. Space Sci. 55 1380Google Scholar
[5] Zahed H, Emadi E 2016 Phys. Plasmas 23 083706Google Scholar
[6] Paul S N, Chattopadhyaya S, Bhattacharya S K, Bera B 2003 Pramana 60 1217Google Scholar
[7] Zahran M A, El-Shewy E K, Abdelwahed H G 2013 J. Plasma Phys. 79 859Google Scholar
[8] Luo R X, Chen H, Liu S Q 2015 IEEE Trans. Plasma Sci. 43 1845Google Scholar
[9] Treumann R A, Baumjohann W 2012 Annales Geophysicae 29 2219
[10] Misra A P, Chowdhury A R 2004 Phys. Rev. E 70 058401Google Scholar
[11] Shukla P K, Marklund M 2005 Phys. Scripta T113 36
[12] Ren L W, Wang Z X, Wang X, Liu J Y, Liu Y 2006 Phys. Plasmas 13 082306Google Scholar
[13] Saleem H, Moslem W M, Shukla P K 2012 J. Geophys. Res. Space Phys. 117 A08220
[14] Prasad K P, Abdikian A, Saha A 2021 Adv. Space Res. 68 4155Google Scholar
[15] Rao N N, Shukla P K, Yu M Y 1990 Planet. Space Sci. 38 543Google Scholar
[16] Barkan A, Merlino R L, D’Angelo N 1995 Phys. Plasmas 2 3563Google Scholar
[17] Tiwari R S, Jain S L, Mishra M K 2011 Phys. Plasmas 18 083702Google Scholar
[18] Adhikary N C, Misra A P, Deka M K, Dev A N 2017 Phys. Plasmas 24 073703Google Scholar
[19] Mamun A A 2008 Phys. Lett. A 372 884Google Scholar
[20] Sinha A, Sahu B 2021 Adv. Space Res. 67 1244Google Scholar
[21] Mamun A A, Shukla P K 2009 Europhys. Lett. 87 55001Google Scholar
[22] Hatami M M, Niknam A R 2021 Physica A 564 125533Google Scholar
[23] El-Hanbaly A M, El-Shewy E K, Sallah M, Darweesh H F 2016 Commun. Theor. Phys. 65 606Google Scholar
[24] Sebastian S, Sreekala G, Michael M, Abraham N P, Renuka G, Venugopal C 2015 Phys. Scripta. 90 035601Google Scholar
[25] Mahmoud A A, Tolba R E 2019 Chaos Solitons & Fractals. 118 320
[26] Bedeir A M, Abulwafa E M, Elhanbaly A M, Mahmoud A A 2021 Phys. Scr. 96 095603Google Scholar
-
-
[1] Al-Yousef H A, Alotaibi BM, Tolba R E, Moslem W M 2020 Res. Phys. 21 103792
[2] Akhter T, Mannan A, Mamun A A 2013 Plasma Phys. Rep. 39 548Google Scholar
[3] El-Labany S K, Moslem W M, Mahmoud M 2012 Astro. Space Sci. 339 185Google Scholar
[4] Chowdhury S 2007 Plane. Space Sci. 55 1380Google Scholar
[5] Zahed H, Emadi E 2016 Phys. Plasmas 23 083706Google Scholar
[6] Paul S N, Chattopadhyaya S, Bhattacharya S K, Bera B 2003 Pramana 60 1217Google Scholar
[7] Zahran M A, El-Shewy E K, Abdelwahed H G 2013 J. Plasma Phys. 79 859Google Scholar
[8] Luo R X, Chen H, Liu S Q 2015 IEEE Trans. Plasma Sci. 43 1845Google Scholar
[9] Treumann R A, Baumjohann W 2012 Annales Geophysicae 29 2219
[10] Misra A P, Chowdhury A R 2004 Phys. Rev. E 70 058401Google Scholar
[11] Shukla P K, Marklund M 2005 Phys. Scripta T113 36
[12] Ren L W, Wang Z X, Wang X, Liu J Y, Liu Y 2006 Phys. Plasmas 13 082306Google Scholar
[13] Saleem H, Moslem W M, Shukla P K 2012 J. Geophys. Res. Space Phys. 117 A08220
[14] Prasad K P, Abdikian A, Saha A 2021 Adv. Space Res. 68 4155Google Scholar
[15] Rao N N, Shukla P K, Yu M Y 1990 Planet. Space Sci. 38 543Google Scholar
[16] Barkan A, Merlino R L, D’Angelo N 1995 Phys. Plasmas 2 3563Google Scholar
[17] Tiwari R S, Jain S L, Mishra M K 2011 Phys. Plasmas 18 083702Google Scholar
[18] Adhikary N C, Misra A P, Deka M K, Dev A N 2017 Phys. Plasmas 24 073703Google Scholar
[19] Mamun A A 2008 Phys. Lett. A 372 884Google Scholar
[20] Sinha A, Sahu B 2021 Adv. Space Res. 67 1244Google Scholar
[21] Mamun A A, Shukla P K 2009 Europhys. Lett. 87 55001Google Scholar
[22] Hatami M M, Niknam A R 2021 Physica A 564 125533Google Scholar
[23] El-Hanbaly A M, El-Shewy E K, Sallah M, Darweesh H F 2016 Commun. Theor. Phys. 65 606Google Scholar
[24] Sebastian S, Sreekala G, Michael M, Abraham N P, Renuka G, Venugopal C 2015 Phys. Scripta. 90 035601Google Scholar
[25] Mahmoud A A, Tolba R E 2019 Chaos Solitons & Fractals. 118 320
[26] Bedeir A M, Abulwafa E M, Elhanbaly A M, Mahmoud A A 2021 Phys. Scr. 96 095603Google Scholar
计量
- 文章访问数: 3448
- PDF下载量: 58
- 被引次数: 0