搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二噻吩硼烷异构体分子结构测定的第一性原理研究

彭淑平 黄旭东 刘乾 任鹏 伍丹 范志强

引用本文:
Citation:

二噻吩硼烷异构体分子结构测定的第一性原理研究

彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强

First-principles study of single-molecule-structure determination of dithienoborepin isomers

Peng Shu-Ping, Huang Xu-Dong, Liu Qian, Ren Peng, Wu Dan, Fan Zhi-Qiang
PDF
HTML
导出引用
  • 本文在第一性原理计算基础上结合非平衡格林函数方法, 研究了量子干涉效应对连接镍电极的二噻吩硼烷(dithienoborepin, DTB)分子结自旋输运性质的影响, 并通过氨基和硝基钝化实现了对二噻吩硼烷分子异构体(DTB-A和DTB-B)的区分. 结果表明, 原始的DTB-A和DTB-B分子结在费米能级两侧都有一个自旋向上透射峰和一个自旋向下透射峰, 且两个透射峰的能量位置和高度基本相同. 因此, 原始DTB-A和DTB-B分子结的自旋向上和自旋向下电流曲线基本重合, 不能被明显区分. 然而, 研究发现量子干涉效应能不同程度地增强氨基钝化DTB-A分子结费米能级两侧分子轨道的自旋极化输运能力, 并减弱氨基钝化DTB-B分子结费米能级两侧分子轨道的自旋极化输运能力. 此外, 研究还发现量子干涉效应可以显著提高硝基钝化DTB-B分子结费米能级两侧分子轨道的自旋极化输运能力, 同时减弱硝基钝化DTB-A分子结费米能级两侧分子轨道的自旋极化输运能力. 由于量子干涉效应对氨基和硝基钝化的DTB异构体分子结自旋输运能力有不同的调制作用, 因此可以通过测量氨基和硝基钝化分子结的自旋电流值来区分DTB分子的两种异构体.
    Previous research results show that the conductance difference in molecular junction caused by quantum interference (QI) effect is an important way to identify isomers or improve the recognition sensitivity. Recently, single-molecule conductance of two fully π-conjugated dithienoborepin (DTB) isomers (DTB-A and DTB-B) with tricoordinate boron centers has been measured by using the scanning tunneling microscopy break junction technique. The result shows that QI can enhance chemical responsivity in single-molecule DTB junction. In this work, the first-principles method based on density functional theory and non-equilibrium Green's function is used to study the influence of QI effect on spin-transport property of DTB molecular junction connected to the nickel electrode, and the purpose of distinguishing DTB isomers (DTB-A and DTB-B) is realized by using amino and nitro passivation. The results show that the pristine DTB-A molecule and DTB-B molecule both have a up-spin transmission peak dominated by HOMO and a down-spin transmission peak dominated by LUMO on both sides of the Fermi level, and the energy positions and coefficients of two transmission peaks are basically the same. Therefore, the up-spin and down-spin current curves of the two junctions basically coincide, so that it is impossible to clearly distinguish the two isomers of DTB molecule simply by spin current. The QI can enhance the spin-polarized transport capability of two orbitals of amino-passivated DTB-A molecule to varying degrees but weaken the spin-polarized transport capability of two orbitals of amino-passivated DTB-B molecule. Therefore, the current of DTB-A molecular junction passivated by amino group is always higher than that of DTB-B molecular junction passivated by amino group. However, the QI can greatly enhance the spin-polarized transport capability of two orbitals of nitro-passivated DTB-B molecule but weaken the spin-polarized transport capability of two orbitals of nitro-passivated DTB-A molecule. Therefore, the current of DTB-B molecular junction passivated by nitro is always higher than that of DTB-A molecular junction passivated by nitro. Because the QI has different effects on the spin-transport capability of DTB-A and DTB-B passivated by amino or nitro group, so the two isomers of DTB molecule can be distinguished by measuring the spin current value. The above conclusions provide more theoretical guidance for the practical preparation of spin molecular junctions and the regulation of their spin-transport performance in the future.
      通信作者: 范志强, zqfan@csust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074046, 12204066)、湖南省教育厅科学基金(批准号: 20C0039, 19C0027)、长沙理工大学青年研究人员助推计划 (批准号: 2019QJCZ022)和湖南省研究生科研创新项目(批准号: CXCLY2022141)资助的课题.
      Corresponding author: Fan Zhi-Qiang, zqfan@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074046, 12204066), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 20C0039, 19C0027), the Young Researchers’ Cultivation Programme of Changsha University of Science & Technology, China (Grant No. 2019QJCZ022), and the Hunan Postgraduate Scientific Research and Innovation Project, China (Grant No. CXCLY2022141).
    [1]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [2]

    Perrin M L, Frisenda R, Koole M, Seldenthuis J S, Gil J A C, Valkenier H, Hummelen J C, Renaud N, Grozema F C, Thijssen J M, Dulić D, van der Zant H S J 2014 Nat. Nanotechnol. 9 830Google Scholar

    [3]

    Koley S, Chakrabarti S 2018 Chem. Eur. J. 24 5876Google Scholar

    [4]

    Sharma P, Bernard L S, Bazigos A, Magrez A, Ionescu A M 2015 ACS Nano 9 620Google Scholar

    [5]

    Kumar S, Wang Z, Davila N, Kumari N, Norris K J, Huang X, Strachan J P, Vine D, Kilcoyne A L D, Nishi Y, Williams R S 2017 Nat. Commun. 8 658Google Scholar

    [6]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D, Wang C K 2019 Physica E 106 270Google Scholar

    [7]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [8]

    Komeda J, Takada K, Maeda H, Fukui N, Tsuji T, Nishihara H 2022 Chem. Eur. J. 28 e202201316Google Scholar

    [9]

    Zhao J, Zeng H, Wang D, Yao G 2020 Appl. Surf. Sci. 519 146203Google Scholar

    [10]

    Petersen M Å, Rasmussen B, Andersen N N, Sauer S P A, Nielsen M B, Beeren S R, Pittelkow M 2017 Chem. Eur. J. 23 17010Google Scholar

    [11]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [12]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [13]

    Lambert C J 2015 Chem. Soc. Rev. 44 875Google Scholar

    [14]

    Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar

    [15]

    Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H, Kaliginedi V, Hong W, Gulcur M, Wandlowski T, Bryce M R, Lambert C J 2015 Nat. Commun. 6 6389Google Scholar

    [16]

    Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P, Xie H Q 2017 Carbon 122 687Google Scholar

    [17]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [18]

    Yang Y, Gantenbein M, Alqorashi A, Wei J, Sangtarash S, Hu D, Sadeghi H, Zhang R, Pi J, Chen L, Huang X, Li R, Liu J, Shi J, Hong W, Lambert C J, Bryce M R 2018 J. Phys. Chem. C 122 14965Google Scholar

    [19]

    Liu X, Sangtarash S, Reber D, Zhang D, Sadeghi H, Shi J, Xiao Z Y, Hong W, Lambert C J, Liu S X 2017 Angew. Chem. 129 179Google Scholar

    [20]

    Borges A, Fung E D, Ng F, Venkataraman L, Solomon G C 2016 J. Phys. Chem. Lett. 7 4825Google Scholar

    [21]

    Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J, Renaud N 2016 Nat. Chem. 8 1099Google Scholar

    [22]

    Liu R, Bi J J, Xie Z, Yin K, Wang D, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [23]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J, Duan L L, Huo Y, Shao X, Hong W, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [24]

    Yang G, Sangtarash S, Liu Z, Li X, Sadeghi H, Tan Z, Li R, Zheng J, Dong X, Liu J, Yang Y, Shi J, Xiao Z, Zhang G, Lambert C, Hong W, Zhang D 2017 Chem. Sci. 8 7505Google Scholar

    [25]

    Li Y, Buerkle M, Li G, Rostamian A, Wang H, Wang Z, Bowler D R, Miyazaki T, Xiang L, Asai Y, Zhou G, Tao N 2019 Nat. Mater. 18 357Google Scholar

    [26]

    Huang B, Liu X, Yuan Y, Hong Z W, Zheng J F, Pei L Q, Shao Y, Li J F, Zhou X S, Chen J Z, Jin S, Mao B W 2018 J. Am. Chem. Soc. 140 17685Google Scholar

    [27]

    Bai J, Daaoub A, Sangtarash S, Li X, Tang Y, Zou Q, Sadeghi H, Liu S, Huang X, Tan Z, Liu J, Yang Y, Shi J, Mészáros G, Chen W, Lambert C, Hong W 2019 Nat. Mater. 18 364Google Scholar

    [28]

    Zheng J, Liu J, Zhuo Y, Li R, Jin X, Yang Y, Chen Z B, Shi J, Xiao Z, Hong W, Tian Z Q 2018 Chem. Sci. 9 5033Google Scholar

    [29]

    Liu J, Zhao X, Al-Galiby Q, Huang X, Zheng J, Li R, Huang C, Yang Y, Shi J, Manrique D Z, Lambert C J, Bryce M R, Hong W 2017 Angew. Chem. 129 13241Google Scholar

    [30]

    Cai S, Deng W, Huang F, Chen L, Tang C, He W, Long S, Li R, Tan Z, Liu J, Shi J, Liu Z, Xiao Z, Zhang D, Hong W 2019 Angew. Chem. Int. Ed. 58 3829Google Scholar

    [31]

    Ozawa H, Baghernejad M, Al-Owaedi O A, Kaliginedi V, Nagashima T, Ferrer J, Wandlowski T, García-Suárez V M, Broekmann P, Lambert C J, Haga M A 2016 Chem. Eur. J. 22 12732Google Scholar

    [32]

    Greenwald J E, Cameron J, Findlay N J, Fu T, Gunasekaran S, Skabara P J, Venkataraman L 2021 Nat. Nanotechnol. 16 313Google Scholar

    [33]

    Trasobares J, Vuillaume D, Théron D, Clément N 2016 Nat. Commun. 7 12850Google Scholar

    [34]

    Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Phys. E 128 114542Google Scholar

    [35]

    Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503Google Scholar

    [36]

    Fan Z Q, Xie F, Jiang X W, Wei Z, Li S S 2016 Carbon 110 200Google Scholar

    [37]

    Kushmerick J 2009 Nature 462 994Google Scholar

    [38]

    Richter S, Mentovich E, Elnathan R 2018 Adv. Mater. 30 1706941Google Scholar

    [39]

    Liu R, Han Y, Sun F, Khatri G, Kwon J, Nickle C, Wang L, Wang C K, Thompson D, Li Z L, Nijhuis C A, del Barco E 2022 Adv. Mater. 34 2202135Google Scholar

    [40]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [41]

    Zhou Q, Yang Y, Ni J, Li Z, Zhang Z 2010 Nano Res. 3 423Google Scholar

    [42]

    Baghernejad M, Van Dyck C, Bergfield J, Levine D R, Gubicza A, Tovar J D, Calame M, Broekmann P, Hong W 2019 Chem. Eur. J. 25 15141Google Scholar

    [43]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [44]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019 J. Phys. Condens. Matter 32 015901Google Scholar

    [45]

    Pan H, Tang L M, Chen K Q 2022 Phys. Rev. B 105 064401Google Scholar

  • 图 1  氨基或硝基钝化前后DTB-A和DTB-B分子结示意图

    Fig. 1.  Schematic diagrams of DTB-A and DTB-B molecular junctions before and after amino or nitro passivation.

    图 2  零偏压下(a) A1和(b) B1的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 费米能级在能量尺度上被设定为零

    Fig. 2.  Spin-transmission spectra of (a) A1 and (b) B1 at zero bias, the blue line and the red line represent up-spin and down-spin, respectively. The Fermi level is set at zero in the energy scale.

    图 3  A1的(a) HOMO↑对应的透射本征态和(b) LUMO↓对应的透射本征态; B1的(c) HOMO↑对应的透射本征态和(d) LUMO↓对应的透射本征态

    Fig. 3.  The transmission eigenstates of (a) HOMO↑ and (b) LUMO↓of A1; the transmission eigenstates of (c) HOMO↑and (d) LUMO↓ of B1.

    图 4  零偏压下(a) A2和(b) B2的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 费米能级在能量尺度上被设定为零

    Fig. 4.  Spin-transport spectra of (a) A2 and (b) B2 at zero bias, the blue line and the red line represent up-spin and down-spin, respectively. The Fermi level is set at zero in the energy scale.

    图 5  A2的(a) HOMO↑对应的透射本征态和(b) LUMO↓对应的透射本征态; B2的(c) HOMO↑对应的透射本征态和(d) LUMO↓对应的透射本征态

    Fig. 5.  The transmission eigenstates of (a) up-spin HOMO and (b) down-spin LUMO of A2; the transmission eigenstates of (c) up-spin HOMO and (d) down-spin LUMO of B2.

    图 6  零偏压下(a) A3和(b) B3的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 费米能级在能量尺度被设定为零

    Fig. 6.  Spin-transport spectra of (a) A3 and (b) B3 at zero bias, the blue line and the red line represent up-spin and down-spin, respectively. The Fermi level is set at zero in the energy scale.

    图 7  A3的(a) HOMO↑和(b) LUMO↓对应的透射本征态; B3的(c)HOMO↑和(d)LUMO↓对应的透射本征态

    Fig. 7.  The transmission eigenstates of (a) up-spin HOMO and (b) down-spin LUMO of A3; the transmission eigenstates of (c) up-spin HOMO and (d) down-spin LUMO of B3.

    图 8  零偏压下A2, B2, A3和B3在费米能级上的传输路径

    Fig. 8.  The transmission pathways of A2, B2, A3 and B3 at Fermi level under zero bias.

    图 9  (a)—(c) A1, B1, A2, B2, A3和B3分别在±1.8 V范围内的自旋电流-电压特性; (d)在同一自旋状态下, A2与B2和A3与B3随电压的变化的自旋电流之比

    Fig. 9.  (a)–(c) Spin-resolved current-voltage characteristics of A1, B1, A2, B2, A3, and B3 in the range of ±1.8 V, respectively; (d) the variation of spin-current ratios with voltages in the same spin state of A2 to B2 and A3 to B3.

    图 10  (a) A1和(b) B1在0 V, ±0.8 V 和 ±1.6 V偏压下的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 黑色实线之间的区域为偏压窗口, 费米能级在能量尺度上被设定为零

    Fig. 10.  Spin-transmission spectra of (a) A1 and (b) B1 at 0 V, ±0.8 V 和 ±1.6 V. The blue line and the red line represent up-spin and down-spin, respectively. The region between the black solid lines is the bias window. The Fermi level is set at zero in the energy scale.

    图 11  (a) A2和(b) B2在0 V, ±0.8 V 和 ±1.6 V偏压下的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 黑色实线之间的区域为偏压窗口, 费米能级在能量尺度上被设定为零

    Fig. 11.  Spin-transmission spectra of (a) A2 and (b) B2 at 0 V, ±0.8 V 和 ±1.6 V. The blue line and the red line represent up-spin and down-spin, respectively. The region between the black solid lines is the bias window. The Fermi level is set at zero in the energy scale.

    图 12  (a) A3和(b) B3在0 V, ±0.4 V 和 ±1.2 V偏压下的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 黑色实线之间的区域为偏压窗口, 费米能级在能量尺度上被设定为零

    Fig. 12.  Spin-transmission spectra of (a) A3 and (b) B3 at 0 V, ±0.4 V 和 ±1.2 V. The blue line and the red line represent up-spin and down-spin, respectively. The region between the black solid lines is the bias window. The Fermi level is set at zero in the energy scale.

  • [1]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [2]

    Perrin M L, Frisenda R, Koole M, Seldenthuis J S, Gil J A C, Valkenier H, Hummelen J C, Renaud N, Grozema F C, Thijssen J M, Dulić D, van der Zant H S J 2014 Nat. Nanotechnol. 9 830Google Scholar

    [3]

    Koley S, Chakrabarti S 2018 Chem. Eur. J. 24 5876Google Scholar

    [4]

    Sharma P, Bernard L S, Bazigos A, Magrez A, Ionescu A M 2015 ACS Nano 9 620Google Scholar

    [5]

    Kumar S, Wang Z, Davila N, Kumari N, Norris K J, Huang X, Strachan J P, Vine D, Kilcoyne A L D, Nishi Y, Williams R S 2017 Nat. Commun. 8 658Google Scholar

    [6]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D, Wang C K 2019 Physica E 106 270Google Scholar

    [7]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [8]

    Komeda J, Takada K, Maeda H, Fukui N, Tsuji T, Nishihara H 2022 Chem. Eur. J. 28 e202201316Google Scholar

    [9]

    Zhao J, Zeng H, Wang D, Yao G 2020 Appl. Surf. Sci. 519 146203Google Scholar

    [10]

    Petersen M Å, Rasmussen B, Andersen N N, Sauer S P A, Nielsen M B, Beeren S R, Pittelkow M 2017 Chem. Eur. J. 23 17010Google Scholar

    [11]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [12]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [13]

    Lambert C J 2015 Chem. Soc. Rev. 44 875Google Scholar

    [14]

    Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar

    [15]

    Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H, Kaliginedi V, Hong W, Gulcur M, Wandlowski T, Bryce M R, Lambert C J 2015 Nat. Commun. 6 6389Google Scholar

    [16]

    Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P, Xie H Q 2017 Carbon 122 687Google Scholar

    [17]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [18]

    Yang Y, Gantenbein M, Alqorashi A, Wei J, Sangtarash S, Hu D, Sadeghi H, Zhang R, Pi J, Chen L, Huang X, Li R, Liu J, Shi J, Hong W, Lambert C J, Bryce M R 2018 J. Phys. Chem. C 122 14965Google Scholar

    [19]

    Liu X, Sangtarash S, Reber D, Zhang D, Sadeghi H, Shi J, Xiao Z Y, Hong W, Lambert C J, Liu S X 2017 Angew. Chem. 129 179Google Scholar

    [20]

    Borges A, Fung E D, Ng F, Venkataraman L, Solomon G C 2016 J. Phys. Chem. Lett. 7 4825Google Scholar

    [21]

    Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J, Renaud N 2016 Nat. Chem. 8 1099Google Scholar

    [22]

    Liu R, Bi J J, Xie Z, Yin K, Wang D, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [23]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J, Duan L L, Huo Y, Shao X, Hong W, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [24]

    Yang G, Sangtarash S, Liu Z, Li X, Sadeghi H, Tan Z, Li R, Zheng J, Dong X, Liu J, Yang Y, Shi J, Xiao Z, Zhang G, Lambert C, Hong W, Zhang D 2017 Chem. Sci. 8 7505Google Scholar

    [25]

    Li Y, Buerkle M, Li G, Rostamian A, Wang H, Wang Z, Bowler D R, Miyazaki T, Xiang L, Asai Y, Zhou G, Tao N 2019 Nat. Mater. 18 357Google Scholar

    [26]

    Huang B, Liu X, Yuan Y, Hong Z W, Zheng J F, Pei L Q, Shao Y, Li J F, Zhou X S, Chen J Z, Jin S, Mao B W 2018 J. Am. Chem. Soc. 140 17685Google Scholar

    [27]

    Bai J, Daaoub A, Sangtarash S, Li X, Tang Y, Zou Q, Sadeghi H, Liu S, Huang X, Tan Z, Liu J, Yang Y, Shi J, Mészáros G, Chen W, Lambert C, Hong W 2019 Nat. Mater. 18 364Google Scholar

    [28]

    Zheng J, Liu J, Zhuo Y, Li R, Jin X, Yang Y, Chen Z B, Shi J, Xiao Z, Hong W, Tian Z Q 2018 Chem. Sci. 9 5033Google Scholar

    [29]

    Liu J, Zhao X, Al-Galiby Q, Huang X, Zheng J, Li R, Huang C, Yang Y, Shi J, Manrique D Z, Lambert C J, Bryce M R, Hong W 2017 Angew. Chem. 129 13241Google Scholar

    [30]

    Cai S, Deng W, Huang F, Chen L, Tang C, He W, Long S, Li R, Tan Z, Liu J, Shi J, Liu Z, Xiao Z, Zhang D, Hong W 2019 Angew. Chem. Int. Ed. 58 3829Google Scholar

    [31]

    Ozawa H, Baghernejad M, Al-Owaedi O A, Kaliginedi V, Nagashima T, Ferrer J, Wandlowski T, García-Suárez V M, Broekmann P, Lambert C J, Haga M A 2016 Chem. Eur. J. 22 12732Google Scholar

    [32]

    Greenwald J E, Cameron J, Findlay N J, Fu T, Gunasekaran S, Skabara P J, Venkataraman L 2021 Nat. Nanotechnol. 16 313Google Scholar

    [33]

    Trasobares J, Vuillaume D, Théron D, Clément N 2016 Nat. Commun. 7 12850Google Scholar

    [34]

    Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Phys. E 128 114542Google Scholar

    [35]

    Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503Google Scholar

    [36]

    Fan Z Q, Xie F, Jiang X W, Wei Z, Li S S 2016 Carbon 110 200Google Scholar

    [37]

    Kushmerick J 2009 Nature 462 994Google Scholar

    [38]

    Richter S, Mentovich E, Elnathan R 2018 Adv. Mater. 30 1706941Google Scholar

    [39]

    Liu R, Han Y, Sun F, Khatri G, Kwon J, Nickle C, Wang L, Wang C K, Thompson D, Li Z L, Nijhuis C A, del Barco E 2022 Adv. Mater. 34 2202135Google Scholar

    [40]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [41]

    Zhou Q, Yang Y, Ni J, Li Z, Zhang Z 2010 Nano Res. 3 423Google Scholar

    [42]

    Baghernejad M, Van Dyck C, Bergfield J, Levine D R, Gubicza A, Tovar J D, Calame M, Broekmann P, Hong W 2019 Chem. Eur. J. 25 15141Google Scholar

    [43]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [44]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019 J. Phys. Condens. Matter 32 015901Google Scholar

    [45]

    Pan H, Tang L M, Chen K Q 2022 Phys. Rev. B 105 064401Google Scholar

  • [1] 严岩, 孙峰, 羊志, 孔程昱, 葛云龙, 陈登辉, 邱帅, 李宗良. 金电极对偶氮苯分子结的结构及其电输运性质的力学调控作用. 物理学报, 2024, 73(8): 088502. doi: 10.7498/aps.73.20231999
    [2] 彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强. N, B原子取代调控M-OPE分子器件的量子干涉与自旋输运. 物理学报, 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [3] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻. 物理学报, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [4] 秦志杰, 张惠晴, 张广平, 任俊峰, 王传奎, 胡贵超, 邱帅. 通过边缘修饰在非磁性石墨烯基单分子结中引入自旋的理论研究. 物理学报, 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [5] 李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强. 蒽二噻吩分子连接铁磁锯齿边碳化硅纳米带的巨幅度自旋整流. 物理学报, 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [6] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控. 物理学报, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [7] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音. 导线非共线的分子器件输运性质的第一性原理研究. 物理学报, 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [8] 赵文静, 文灵华. 半无限深势阱中自旋相关玻色-爱因斯坦凝聚体的量子反射与干涉. 物理学报, 2017, 66(23): 230301. doi: 10.7498/aps.66.230301
    [9] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运. 物理学报, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [10] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [11] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [12] 贺泽龙, 白继元, 李鹏, 吕天全. T型双量子点分子Aharonov-Bohm干涉仪的电输运. 物理学报, 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [13] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运. 物理学报, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [14] 窦俊青, 康雪雅, 吐尔迪·吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究. 物理学报, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [15] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [16] 高巍, 巩水利, 朱嘉琦, 马国佳. 掺氮四面体非晶碳的第一性原理研究. 物理学报, 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [17] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [18] 安义鹏, 杨传路, 王美山, 马晓光, 王德华. C20F20分子电子输运性质的第一性原理研究. 物理学报, 2010, 59(3): 2010-2015. doi: 10.7498/aps.59.2010
    [19] 周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛. 新型轻质储氢材料的第一性原理原子尺度设计. 物理学报, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [20] 祝国梁, 疏达, 戴永兵, 王俊, 孙宝德. Si在TiAl3中取代行为的第一性原理研究. 物理学报, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
计量
  • 文章访问数:  3362
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-15
  • 修回日期:  2022-12-20
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-03-05

/

返回文章
返回