-
引力波探测打开了探索宇宙的新窗口, 开启了多信使天文学时代. 大型激光干涉仪作为空间及地基引力波探测装置, 需要使用低噪声激光光源, 通过光电负反馈降噪技术可以抑制激光噪声, 提高大型激光干涉仪的灵敏度. 光电负反馈控制需要将光电探测器信号与电压基准源信号相减, 之后经过比例积分微分器得到误差信号, 来控制泵浦电流驱动器的输出功率, 从而实现激光噪声抑制. 由于光电探测器信号受激光强度影响, 其输出电压在一定范围内变化, 这就需要电压基准源信号的输出电压可变; 另外, 电压基准源的性能直接影响反馈控制环路的整体性能, 是激光噪声抑制的下限. 本文通过选定低噪声基准芯片及数模转换芯片, 设计外控电路、采用低温漂系数元件、通过精密布板及电磁屏蔽等方案, 研发高精度低噪声程控电压基准源; 并通过可编程逻辑门阵列模块编程控制数模转换, 实现程控电压基准源输出电压精密变化. 结果表明: 所研发的电压基准源输出电压范围为–10 V—+10 V, 输出电压分辨率达20 bit, 在空间引力波频段输出电压的相对噪声谱密度低于9.6 ×10–6 Hz–1/2, 基准源噪声性能均优于相应引力波探测中对激光强度噪声要求, 为引力波探测中激光强度噪声抑制等方面提供关键器件支撑.Gravitational wave detection plays an important role in exploring the universe and opening up a new chapter for multi-messenger astronomy. As the most common device used for space and ground-based gravitational wave detection, large-scale laser interferometer requires a low-noise laser as a beam source. The noise of the laser can be suppressed by utilizing the optoelectronic negative-feedback noise reduction technology to improve the sensitivity of large-scale laser interferometer. The optoelectronic negative-feedback control system can suppress laser noise by subtracting the photodetector signal from the voltage reference signal, and then calculating the modulated signal by a proportional integral differentiator to control the output power of the pump current driver. Since the photodetector signal is affected by the laser intensity, its output voltage varies within a certain range, which requires that the output voltage of the voltage reference source signal is variable. In addition, the performance of the voltage reference directly affects the overall performance of the feedback control loop, therefore it is the lower limit of laser noise suppression. We develop a high-precision low-noise program-controlled voltage reference by selecting low-noise reference chip and digital-to-analog conversion chip, designing external control circuit, using low-temperature drift coefficient components and using temperature control and electromagnetic shielding. The digital-to-analog conversion is controlled through the FPGA module programming to accurately realize the reference voltage change. The output voltage range of the developed voltage reference source is from negative 10 V to positive 10 V and the minimal precision of the voltage variation is 20 bit. The voltage noise spectral density of the developed voltage reference is below
$9.6 \times 1{0^{ - 6}}/\sqrt {\rm Hz}$ and the noise performance of the reference source is less than the laser intensity noise in the space-based gravitational wave frequency band. The developed voltage reference source provides an important technical support for laser intensity noise suppression in gravitational wave detection.-
Keywords:
- space-based gravitational wave detection /
- voltage reference source /
- voltage noise characterization /
- logarithmic frequency axis power spectral density
[1] Abadie J, Abbott B P, Abbott R 2011 Nat. Phys. 7 962Google Scholar
[2] Aasi J, Abadie J, Abbott B P 2013 Nat. Photonics 7 613Google Scholar
[3] Jennrich O 2009 IOP Classical Quant. Grav. 26 153001Google Scholar
[4] 罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar
Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Zhao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech 43 415Google Scholar
[5] Peterseim M, Brozek O S, Danzmann K, Freitag I, Rottengatter P, Tünnermann A, Welling H 1998 AIP Conf. Proc. 456 148Google Scholar
[6] Willke B, Uehara N, Gustafson E K, Byer R L, King P J, Seel S U, Savage R L 1998 Opt. Lett. 23 1704Google Scholar
[7] 陈艳丽, 张靖, 李永民, 张宽收, 谢常德, 彭堃墀 2001 中国激光 28 197Google Scholar
Chen Y L, Zhang J, Li Y M, Zhang K S, Xie C D, Peng K C 2001 Chin. J. Lasers 28 197Google Scholar
[8] Tse M, Yu H, Kijbunchoo N 2019 Phys. Rev. Lett. 123 231107Google Scholar
[9] Acernese F, Agathos M, Aiello L 2019 Phys. Rev. Lett. 123 231108Google Scholar
[10] Tröbs M 2005 Ph. D. Dissertation (Hannover: Leibniz University Hannover)
[11] 张骥 2020 博士学位论文 (合肥: 中国科学技术大学)
Zhang J 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[12] Hilbiber D 1964 IEEE International Solid State Circuits Conference Ottawa, Canada, February 19, 1964 p32
[13] Widlar R J 1971 IEEE J. Solid-State Circuits 6 2Google Scholar
[14] 安景慧 2020 硕士学位论文 (苏州: 苏州大学)
An J H 2020 M. S. Dissertation (Suzhou: Suzhou University) (in Chinese)
[15] 杜凯旋 2020 硕士学位论文 (合肥: 安徽大学)
Du K X 2020 M.S. Thesis (Hefei: Anhui University) (in Chinese)
[16] Linearhttps://www.analog.com/media/en/technical-documentation/data-sheets/LTZ1000.pdf [2022-9-28]
[17] Analog Deviceshttps://www.analog.com/media/en/technical-documentation/data-sheets/AD587.pdf [2022-9-29]
[18] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 71 209501Google Scholar
Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y H 2022 Acta Phys. Sin. 71 209501Google Scholar
[19] 赵子琳, 李番, 李瑞鑫, 武志学, 尹王保, 杨荣草, 田龙 2022 量子光学学报 28 1Google Scholar
Zhao Z L, Li F, Li R X, Wu Z X, Yin W B, Yang R C, Tian L 2022 J. Quantum Opt. 28 1Google Scholar
[20] Analog Deviceshttps://www.analog.com/media/cn/technical-documentation/data-sheets/AD5791_cn.pdf [2022-10-3]
[21] Analog Deviceshttps://www.analog.com/media/en/technical-documentation/data-sheets/AD8675.pdf [2022-9-28]
[22] Analog Deviceshttps://www.analog.com/media/en/technical-documentation/data-sheets/AD8676.pdf [2022-9-28]
[23] Analog Deviceshttps://www.analog.com/media/en/technical-documentation/data-sheets/ADA4077-2-EP.pdf [2022-9-28]
[24] 刘宝洲 2020 电子测量技术 43 76Google Scholar
Liu B Z 2020 Electronic Measurement Technology 43 76Google Scholar
[25] Welch P D 1967 IEEE Trans. Audio Electroacoust 15 70Google Scholar
[26] Tröbs M, Heinzel G 2006 Measurement 39 120Google Scholar
[27] 刘奎, 杨荣国, 张海龙, 白云飞, 张俊香, 郜江瑞 2009 中国激光 36 1852Google Scholar
Liu K, Yang R G, Zhang H L 2009 Chin. J. Lasers 36 1852Google Scholar
[28] 王雅君, 高丽, 张晓莉 2020 红外与激光工程 49 20201073Google Scholar
Wang Y J, Gao L, Zhang X L 2020 Infrared Laser Eng. 49 20201073Google Scholar
-
图 3 低噪声程控基准源测试实验系统示意图(λ/2: 半波片; PBS: 偏振分束器; PD: 光电探测器; PID: 比例积分微分运算器; DAC: 数模转换器)
Fig. 3. Schematic diagram of the low-noise numerical control reference source test experimental system (λ/2: half-wave-plate; PBS: polarization beam splitter; PD: photodetector; PID: proportional- integral-derivative arithmetic unit; DAC: digital-analog-converter).
-
[1] Abadie J, Abbott B P, Abbott R 2011 Nat. Phys. 7 962Google Scholar
[2] Aasi J, Abadie J, Abbott B P 2013 Nat. Photonics 7 613Google Scholar
[3] Jennrich O 2009 IOP Classical Quant. Grav. 26 153001Google Scholar
[4] 罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar
Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Zhao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech 43 415Google Scholar
[5] Peterseim M, Brozek O S, Danzmann K, Freitag I, Rottengatter P, Tünnermann A, Welling H 1998 AIP Conf. Proc. 456 148Google Scholar
[6] Willke B, Uehara N, Gustafson E K, Byer R L, King P J, Seel S U, Savage R L 1998 Opt. Lett. 23 1704Google Scholar
[7] 陈艳丽, 张靖, 李永民, 张宽收, 谢常德, 彭堃墀 2001 中国激光 28 197Google Scholar
Chen Y L, Zhang J, Li Y M, Zhang K S, Xie C D, Peng K C 2001 Chin. J. Lasers 28 197Google Scholar
[8] Tse M, Yu H, Kijbunchoo N 2019 Phys. Rev. Lett. 123 231107Google Scholar
[9] Acernese F, Agathos M, Aiello L 2019 Phys. Rev. Lett. 123 231108Google Scholar
[10] Tröbs M 2005 Ph. D. Dissertation (Hannover: Leibniz University Hannover)
[11] 张骥 2020 博士学位论文 (合肥: 中国科学技术大学)
Zhang J 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[12] Hilbiber D 1964 IEEE International Solid State Circuits Conference Ottawa, Canada, February 19, 1964 p32
[13] Widlar R J 1971 IEEE J. Solid-State Circuits 6 2Google Scholar
[14] 安景慧 2020 硕士学位论文 (苏州: 苏州大学)
An J H 2020 M. S. Dissertation (Suzhou: Suzhou University) (in Chinese)
[15] 杜凯旋 2020 硕士学位论文 (合肥: 安徽大学)
Du K X 2020 M.S. Thesis (Hefei: Anhui University) (in Chinese)
[16] Linearhttps://www.analog.com/media/en/technical-documentation/data-sheets/LTZ1000.pdf [2022-9-28]
[17] Analog Deviceshttps://www.analog.com/media/en/technical-documentation/data-sheets/AD587.pdf [2022-9-29]
[18] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 71 209501Google Scholar
Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y H 2022 Acta Phys. Sin. 71 209501Google Scholar
[19] 赵子琳, 李番, 李瑞鑫, 武志学, 尹王保, 杨荣草, 田龙 2022 量子光学学报 28 1Google Scholar
Zhao Z L, Li F, Li R X, Wu Z X, Yin W B, Yang R C, Tian L 2022 J. Quantum Opt. 28 1Google Scholar
[20] Analog Deviceshttps://www.analog.com/media/cn/technical-documentation/data-sheets/AD5791_cn.pdf [2022-10-3]
[21] Analog Deviceshttps://www.analog.com/media/en/technical-documentation/data-sheets/AD8675.pdf [2022-9-28]
[22] Analog Deviceshttps://www.analog.com/media/en/technical-documentation/data-sheets/AD8676.pdf [2022-9-28]
[23] Analog Deviceshttps://www.analog.com/media/en/technical-documentation/data-sheets/ADA4077-2-EP.pdf [2022-9-28]
[24] 刘宝洲 2020 电子测量技术 43 76Google Scholar
Liu B Z 2020 Electronic Measurement Technology 43 76Google Scholar
[25] Welch P D 1967 IEEE Trans. Audio Electroacoust 15 70Google Scholar
[26] Tröbs M, Heinzel G 2006 Measurement 39 120Google Scholar
[27] 刘奎, 杨荣国, 张海龙, 白云飞, 张俊香, 郜江瑞 2009 中国激光 36 1852Google Scholar
Liu K, Yang R G, Zhang H L 2009 Chin. J. Lasers 36 1852Google Scholar
[28] 王雅君, 高丽, 张晓莉 2020 红外与激光工程 49 20201073Google Scholar
Wang Y J, Gao L, Zhang X L 2020 Infrared Laser Eng. 49 20201073Google Scholar
计量
- 文章访问数: 4468
- PDF下载量: 101
- 被引次数: 0