搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

傅里叶鬼成像与正弦鬼成像的等价性分析

陈星宇 周昕 白星 余展 王玉杰 李欣家 刘洋 孙铭泽

引用本文:
Citation:

傅里叶鬼成像与正弦鬼成像的等价性分析

陈星宇, 周昕, 白星, 余展, 王玉杰, 李欣家, 刘洋, 孙铭泽

Equivalence analysis of Fourier ghost imaging and sinusoidal ghost imaging

Chen Xing-Yu, Zhou Xin, Bai Xing, Yu Zhan, Wang Yu-Jie, Li Xin-Jia, Liu Yang, Sun Ming-Ze
PDF
HTML
导出引用
  • 鬼成像技术已有几十年的发展历史, 目前正逐渐呈现多元化的趋势, 但相互之间的相关性较弱, 研究进展较以往缓慢. 研究鬼成像理论的本质, 是探索鬼成像未知领域的可行方向. 本文证明了傅里叶鬼成像和正弦鬼成像这两种鬼成像方法在原理上是等价的, 前者可以采用N步相移的方法来实现, 而后者则可等效为两步相移的方法. 同时结合正弦散斑成像的空间分解特性, 对结构散斑成像与传统鬼成像的关系进行分析, 并对以往在这两者基础上所构建的部分方法进行原理说明. 应用于边缘检测的仿真分析结果表明, 将两种方法结合起来可以同时具有傅里叶鬼成像的较好抗噪性能以及正弦鬼成像的较高成像效率.
    Ghost imaging, also known as correlation imaging, is one of the research hotspots in the imaging field. Various ghost imaging systems with different basic principles and implementation architectures have emerged, but the correlation between them is weak, showing a diversified trend and recent research progress is slower than before. Studying the essence of ghost imaging theory is a feasible direction to explore the unknown field of ghost imaging. Through research, we find that Fourier ghost imaging and sinusoidal ghost imaging are based on the same type of orthogonal sine speckle and cosine speckle, which have a very high similarity. At the same time, sinusoidal ghost imaging method can give a complete spatial description and spatial imaging process, so we guess that these two imaging methods can reveal the relationship between spatial imaging and Fourier domain imaging. On this basis, it is proved that Fourier ghost imaging and sinusoidal ghost imaging are equivalent in principle. The former can be realized by n-step phase shift, while the latter can be equivalent to two-step phase shift. Considering that both of these methods use sine and cosine fringes as structural speckles. By combining the spatial decomposition characteristics of sine speckle imaging, the relationship between structural speckle imaging and traditional ghost imaging is analyzed, and the principles of some methods constructed on the basis of these two methods are explained. The simulation results applied to edge detection show that the combination of the two methods can simultaneously obtain the better anti-noise performance of Fourier ghost imaging and the higher imaging efficiency of sinusoidal ghost imaging. Since sinusoidal ghost imaging relates the characteristics of image spatial decomposition to traditional ghost imaging, and their expression is equivalent to the expression of orthogonal Fourier transform domain of Fourier ghost imaging, the association of ghost imaging methods in Fourier domain and even in the whole orthogonal transform domain and spatial domain can be generalized. This conclusion may provide a way for associating different kinds of ghost imaging, and it can be hoped that more and more new types of ghost imaging systems will be developed.
      通信作者: 周昕, zhoxn@21cn.com
    • 基金项目: 国家自然科学基金(批准号: 62275080, 61475104)和四川省自然科学基金(批准号: 2022NSFSC0565)资助的课题.
      Corresponding author: Zhou Xin, zhoxn@21cn.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62275080, 61475104) and the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC0565).
    [1]

    Welsh S S, Edgar M P, Jonathan P, Sun B Q, Padgett M J 2013 Conference on Emerging Digital Micromirror Device Based Systems and Applications V San Francisco, CA, Feb. 05–06, 2013 p1

    [2]

    Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar

    [3]

    Erkmen B I, Shapiro J H 2010 Adv. Opt. Photonics 2 405Google Scholar

    [4]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [5]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [6]

    Cao D Z, Xiong J, Wang K 2005 Phys. Rev. A 71 013801Google Scholar

    [7]

    Edgar M P, Gibson G M, Bowman R W, Sun B, Radwell N, Mitchell K J, Welsh S S, Padgett M J 2015 Sci. Rep. 5 10669Google Scholar

    [8]

    Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105Google Scholar

    [9]

    Tajahuerce E, Duran V, Clemente P, Irles E, Soldevila F, Andres P, Lancis J 2014 Opt. Express 22 16945Google Scholar

    [10]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar

    [11]

    Wu L A, Luo K H 2011 S. N. Bose National Centre for Basic Sciences Silver Jubilee Symposium on 75 Years of Quantum Entanglement-Foundations and Information Theoretic Applications Kolkata, INDIA, Jan 06–10, 2011 p223

    [12]

    Sun B Q, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892Google Scholar

    [13]

    Zhang Z B, Ma X, Zhong J G 2015 Nat. Commun. 6 6225Google Scholar

    [14]

    Khamoushi S M M, Nosrati Y, Tavassoli S H 2015 Opt. Lett. 40 3452Google Scholar

    [15]

    Radwell N, Mitchell K J, Gibson G M, Edgar M P, Bowman R, Padgett M J 2014 Optica 1 285Google Scholar

    [16]

    Ortega A, Frossard P, Kovacevic J, Moura J M F, Vandergheynst P 2018 P. Ieee. 106 808Google Scholar

    [17]

    Bromberg Y, Katz O, Silberberg Y 2009 Phys. Rev. A 79 053840Google Scholar

    [18]

    Bian L H, Suo J L, Hu X M, Chen F, Dai Q H 2016 J. Optics-UK. 18 085704Google Scholar

    [19]

    郑一瑶 2021 硕士学位论文 (西安: 西安理工大学)

    Zheng Y Y 2021 M. S. Thesis (Xian: Xi’an University of Technology) (in Chinese)

    [20]

    Khamoushi S M M, Tavassoli S H 2019 J. Optics-UK. 21 025702Google Scholar

    [21]

    Zhang Z B, Wang X Y, Zheng G A, Zhong J G 2017 Sci. Rep. 7 12029Google Scholar

    [22]

    Meng W W, Shi D F, Huang J, Yuan K E, Wang Y J, Fan C Y 2019 Opt. Express. 27 31490Google Scholar

    [23]

    Rousset F, Ducros N, Farina A, Valentini G, D'Andrea C, Peyrin F 2017 IEEE T. Comput. Imag. 3 36

    [24]

    Liu B L, Yang Z H, Liu X, Wu L A 2017 J. Mod. Optic. 64 259Google Scholar

    [25]

    Wang L, Zhao S M 2016 Photonics Res. 4 240Google Scholar

  • 图 1  鬼成像系统原理图

    Fig. 1.  Schematic diagram of ghost imaging system.

    图 2  傅里叶正逆变换可实现图像分解与合成

    Fig. 2.  Fourier forward inverse transform can realize image decomposition and synthesis.

    图 3  四步相移法获取傅里叶系数

    Fig. 3.  Fourier coefficients obtained by the four-step phase shift method.

    图 4  不同测量次数下的灰度FSI和SGI重建图像

    Fig. 4.  Reconstructed images of grayscale FSI and SGI under different measurement times.

    图 5  灰度FSI和SGI在不同测量次数下的PSNR值

    Fig. 5.  PSNR value of grayscale FSI and SGI under different measurement times.

    图 6  灰度FSI和SGI在叠加不同强度随机噪声下的重建结果, 随机噪声幅值的浮动范围分别为图像低频部分模拟测量值最大浮动范围的0, 0.0075, 0.015, 0.03, 0.075, 0.12倍 (a) 两种方法在不同噪声水平下的最终重建图像; (b) 最终重建图像的PSNR值; (c) 最终图像与无噪声图像的PSNR差值

    Fig. 6.  The reconstruction results of grayscale FSI and SGI under the superposition of random noise with different intensities, the floating range of random noise amplitude is 0, 0.0075, 0.015, 0.03, 0.075, 0.12 times of the maximum floating range of the simulated measurement value for the low frequency part of the image, respectively: (a) The final reconstructed image of the two methods under different noise levels; (b) PSNR value of the final reconstructed image; (c) PSNR difference between the final image and the noiseless image.

    图 7  不同采样数下二值图SCU对应3种不同方法的边缘检测结果

    Fig. 7.  Edge detection results of binary graph SCU under different sampling numbers correspond to three different methods.

    图 8  三种方法在不同采样数下的边缘检测PSNR值

    Fig. 8.  PSNR values of the edge detection for the three methods under different sampling numbers.

    图 9  三种方法在叠加不同强度随机噪声下的重建结果, 随机噪声幅值的浮动范围分别为图像低频部分模拟测量值最大浮动范围的0, 0.0075, 0.015, 0.03, 0.075, 0.12倍 (a) 3种方法在不同噪声水平下的最终重建图像; (b) 最终重建图像的PSNR值; (c) 最终图像与无噪声图像的PSNR差值

    Fig. 9.  Reconstruction results of the three methods under different intensities of random noise. The floating range of random noise amplitude is 0, 0.0075, 0.015, 0.03, 0.075, 0.12 times of the maximum floating range of the simulated measurement value for the low frequency part of the image: (a) Final reconstructed images of the three methods under different noise levels; (b) PSNR value of the final reconstructed image; (c) PSNR difference between the final image and the noiseless image.

  • [1]

    Welsh S S, Edgar M P, Jonathan P, Sun B Q, Padgett M J 2013 Conference on Emerging Digital Micromirror Device Based Systems and Applications V San Francisco, CA, Feb. 05–06, 2013 p1

    [2]

    Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar

    [3]

    Erkmen B I, Shapiro J H 2010 Adv. Opt. Photonics 2 405Google Scholar

    [4]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [5]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [6]

    Cao D Z, Xiong J, Wang K 2005 Phys. Rev. A 71 013801Google Scholar

    [7]

    Edgar M P, Gibson G M, Bowman R W, Sun B, Radwell N, Mitchell K J, Welsh S S, Padgett M J 2015 Sci. Rep. 5 10669Google Scholar

    [8]

    Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105Google Scholar

    [9]

    Tajahuerce E, Duran V, Clemente P, Irles E, Soldevila F, Andres P, Lancis J 2014 Opt. Express 22 16945Google Scholar

    [10]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar

    [11]

    Wu L A, Luo K H 2011 S. N. Bose National Centre for Basic Sciences Silver Jubilee Symposium on 75 Years of Quantum Entanglement-Foundations and Information Theoretic Applications Kolkata, INDIA, Jan 06–10, 2011 p223

    [12]

    Sun B Q, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892Google Scholar

    [13]

    Zhang Z B, Ma X, Zhong J G 2015 Nat. Commun. 6 6225Google Scholar

    [14]

    Khamoushi S M M, Nosrati Y, Tavassoli S H 2015 Opt. Lett. 40 3452Google Scholar

    [15]

    Radwell N, Mitchell K J, Gibson G M, Edgar M P, Bowman R, Padgett M J 2014 Optica 1 285Google Scholar

    [16]

    Ortega A, Frossard P, Kovacevic J, Moura J M F, Vandergheynst P 2018 P. Ieee. 106 808Google Scholar

    [17]

    Bromberg Y, Katz O, Silberberg Y 2009 Phys. Rev. A 79 053840Google Scholar

    [18]

    Bian L H, Suo J L, Hu X M, Chen F, Dai Q H 2016 J. Optics-UK. 18 085704Google Scholar

    [19]

    郑一瑶 2021 硕士学位论文 (西安: 西安理工大学)

    Zheng Y Y 2021 M. S. Thesis (Xian: Xi’an University of Technology) (in Chinese)

    [20]

    Khamoushi S M M, Tavassoli S H 2019 J. Optics-UK. 21 025702Google Scholar

    [21]

    Zhang Z B, Wang X Y, Zheng G A, Zhong J G 2017 Sci. Rep. 7 12029Google Scholar

    [22]

    Meng W W, Shi D F, Huang J, Yuan K E, Wang Y J, Fan C Y 2019 Opt. Express. 27 31490Google Scholar

    [23]

    Rousset F, Ducros N, Farina A, Valentini G, D'Andrea C, Peyrin F 2017 IEEE T. Comput. Imag. 3 36

    [24]

    Liu B L, Yang Z H, Liu X, Wu L A 2017 J. Mod. Optic. 64 259Google Scholar

    [25]

    Wang L, Zhao S M 2016 Photonics Res. 4 240Google Scholar

  • [1] 李文文, 惠宁菊, 李存霞, 刘洋河, 方妍, 李凌青, 王彦龙, 唐远河. 多普勒非对称空间外差仪探测高层大气风速的三种方法比较研究. 物理学报, 2023, 72(24): 240601. doi: 10.7498/aps.72.20231292
    [2] 王子硕, 刘磊, 刘晨博, 刘珂, 钟志, 单明广. 数字差分-积分快速相位解包裹算法研究. 物理学报, 2023, 72(18): 184201. doi: 10.7498/aps.72.20230473
    [3] 杨君, 吴浩, 罗琨皓, 郭金川, 宗方轲. 抑制傅里叶变换法恢复的X射线相衬像中的伪影. 物理学报, 2021, 70(10): 104101. doi: 10.7498/aps.70.20201781
    [4] 张瑞雪, 李洪国, 李宗国. 基于光场一阶关联的时域成像. 物理学报, 2019, 68(10): 104202. doi: 10.7498/aps.68.20190184
    [5] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [6] 周阳, 张红伟, 钟菲, 郭树旭. 基于自适应阈值方法实现迭代降噪鬼成像. 物理学报, 2018, 67(24): 244201. doi: 10.7498/aps.67.20181240
    [7] 于慧, 张瑞, 李克武, 薛锐, 王志斌. 双强度调制静态傅里叶变换偏振成像光谱系统测量原理及仿真. 物理学报, 2017, 66(5): 054201. doi: 10.7498/aps.66.054201
    [8] 仲亚军, 刘娇, 梁文强, 赵生妹. 针对多散斑图的差分压缩鬼成像方案研究. 物理学报, 2015, 64(1): 014202. doi: 10.7498/aps.64.014202
    [9] 陈勇, 赵惠昌, 陈思, 张淑宁. 基于分数阶傅里叶变换的弹载SAR成像算法. 物理学报, 2014, 63(11): 118403. doi: 10.7498/aps.63.118403
    [10] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [11] 尹增谦, 武臣, 宫琬钰, 龚之珂, 王永杰. Voigt线型函数及其最大值的研究. 物理学报, 2013, 62(12): 123301. doi: 10.7498/aps.62.123301
    [12] 王华英, 于梦杰, 刘飞飞, 江亚男, 宋修法, 高亚飞. 基于同态信号处理的数字全息广义线性重建算法研究. 物理学报, 2013, 62(23): 234207. doi: 10.7498/aps.62.234207
    [13] 刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴令安, 翟光杰. 强度涨落在热光鬼成像中的作用. 物理学报, 2013, 62(18): 184205. doi: 10.7498/aps.62.184205
    [14] 张淑娜, 罗震岳, 沈伟东, 刘旭, 章岳光. 利用白光干涉技术测量块状材料的群折射率. 物理学报, 2011, 60(1): 014221. doi: 10.7498/aps.60.014221
    [15] 张记全, 张延惠, 周慧, 贾正茂, 林圣路. 圆环弹子球量子谱的衍射效应. 物理学报, 2009, 58(9): 5965-5969. doi: 10.7498/aps.58.5965
    [16] 相里斌, 袁艳, 吕群波. 傅里叶变换光谱成像仪光谱传递函数研究. 物理学报, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [17] 赵保银, 吕百达. 使用离焦望远镜系统合成轴上平顶光束的一种新方法. 物理学报, 2008, 57(5): 2919-2924. doi: 10.7498/aps.57.2919
    [18] 刘 斌, 金伟其, 董立泉. 热成像系统前置栅网结构的衍射效应分析. 物理学报, 2008, 57(9): 5578-5583. doi: 10.7498/aps.57.5578
    [19] 罗志勇, 杨丽峰, 陈允昌. 基于多光束干涉原理的相移算法研究. 物理学报, 2005, 54(7): 3051-3057. doi: 10.7498/aps.54.3051
    [20] 金 鹏, 潘士宏, 梁基本. SIN+ GaAs结构中的Franz-Keldysh振荡的傅里叶变换研究. 物理学报, 2000, 49(9): 1821-1828. doi: 10.7498/aps.49.1821
计量
  • 文章访问数:  2988
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-05-06
  • 上网日期:  2023-05-25
  • 刊出日期:  2023-07-20

/

返回文章
返回