搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可调反射器辅助的可重构微环光滤波器

刘宇航 林曈 李少波 于文琦 马向 梁晓东 恽斌峰

引用本文:
Citation:

可调反射器辅助的可重构微环光滤波器

刘宇航, 林曈, 李少波, 于文琦, 马向, 梁晓东, 恽斌峰

Reconfigurable optical filter based on microring resonator assisted by tunable Sagnac reflector

Liu Yu-Hang, Lin Tong, Li Shao-Bo, Yu Wen-Qi, Ma Xiang, Liang Xiao-Dong, Yun Bin-Feng
PDF
HTML
导出引用
  • 为了适应光学滤波、微波信号处理等各种应用场景的需求, 集成硅基光子滤波器需要具备多功能可重构和灵活可调谐特性. 本文提出了一种可调反射器辅助的微环光滤波器芯片设计. 通过传输矩阵模型, 仿真结果表明, 该器件可实现4种自由光谱范围的切换、100 dB消光比滤波、带通与带阻切换、Fano共振、类似电磁感应透明和类似电磁感应吸收等谱型的重构, 且每种谱型均可以实现滤波中心频率的大范围调谐. 本技术在集成光子模拟信号处理和微波光子学等领域具有广阔的应用前景.
    To meet the demands for various applications in optical filtering and microwave signal processing, integrated silicon photonic filters are required to be multifunctional, reconfigurable and tunable. In this work, an integrated multi-functional optical filter is proposed, which is designed based on a tunable Sagnac loop reflector and a microring resonator. The through port and drop port of an add-drop microring resonator are connected with the two ports of a tunable reflector. By controlling the thermal phase shifters in different scenarios, the device can be reconfigured into a reflective-type asymmetric Mach-Zehnder interferometer filter, a reflective-type all-pass microring resonator filter and self-interference microring resonator filters. An analytical model is established based on the transfer matrix. The simulation results show that the device can achieve the following functions: sinusoidal spectral filtering with four different free spectral ranges, Lorentzian spectral filtering toggling between band pass and band stop, and spectral reconfigurations of Fano resonance, electromagnetically induced transparency, and electromagnetically induced absorption. Each spectrum mentioned above can be tuned fast and widely. Reflection provides a new degree of freedom in design, breaks through the inherent footprint limit, and achieves a wide range of free spectral ranges. Our proposed tunable Sagnac loop reflector assisted microring resonator provides a new scheme for realizing flexible, tunable and multi-functional reconfigurable integrated photonic filters, and has broad applications in the integrated photonic analog signal processing and microwave photonics.
      通信作者: 林曈, lintong@seu.edu.cn ; 恽斌峰, ybf@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62105061, 62171118, 62075038)和江苏省“双创计划”资助的课题.
      Corresponding author: Lin Tong, lintong@seu.edu.cn ; Yun Bin-Feng, ybf@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62105061, 62171118, 62075038) and the High Level Personnel Project of Jiangsu Province, China.
    [1]

    Won R 2010 Nat. Photonics 4 498Google Scholar

    [2]

    Marpaung D, Yao J P, Capmany J 2019 Nat. Photonics 13 80Google Scholar

    [3]

    Xiang C, Jin W, Bowers J E 2022 Photonics Res. 10 A82Google Scholar

    [4]

    Bogaerts W, de Heyn P, Van Vaerenbergh T, de Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, van Thourhout D, Baets R 2012 Laser Photonics Rev. 6 47Google Scholar

    [5]

    Ong J R, Kumar R, Mookherjea S 2013 IEEE Photonics Technol. Lett. 25 1543Google Scholar

    [6]

    Kumar R R, Tsang H K 2021 Opt. Lett. 46 134Google Scholar

    [7]

    任光辉, 陈少武, 曹彤彤 2012 物理学报 61 034215Google Scholar

    Ren G H, Chen S W, Cao T T 2012 Acta Phys. Sin. 61 034215Google Scholar

    [8]

    Cohen R A, Amrani O, Ruschin S 2018 Nat. Photonics 12 706Google Scholar

    [9]

    Sun Q K, Zhou L J, Lu L J, Zhou G Q, Chen J P 2018 IEEE Photonics J. 10 1Google Scholar

    [10]

    Zheng P F, Xu X M, Hu G H, Zhang R H, Yun B F, Cui Y P 2021 J. Light. Technol. 39 1429Google Scholar

    [11]

    Geng Z H, Xie Y W, Zhuang L M, Burla M, Hoekman M, Roeloffzen C G H, Lowery A J 2017 Opt. Express 25 27635Google Scholar

    [12]

    Li A, Bogaerts W 2019 Laser Photonics Rev. 13 1800244Google Scholar

    [13]

    Li A, Bogaerts W 2017 Opt. Express 25 31688Google Scholar

    [14]

    Pan S L, Tang Z Z, Huang M H, Li S M 2020 IEEE J. Sel. Top. Quantum Electron. 26 1Google Scholar

    [15]

    Shu H W, Chang L, Tao Y S, Shen B T, Xie W Q, Jin M, Netherton A, Tao Z H, Zhang X G, Chen R X, Bai B W, Qin J, Yu S H, Wang X J, Bowers J E 2022 Nature 605 457Google Scholar

    [16]

    Jiang X H, Wu J Y, Yang Y X, Pan T, Mao J M, Liu B Y, Liu R L, Zhang Y, Qiu C Y, Tremblay C, Su Y K 2016 Opt. Express. 24 2183Google Scholar

    [17]

    El Shamy R S, Afifi A E, Badr M M, Swillam M A 2022 Sci. Rep. 12 3598Google Scholar

    [18]

    田赫, 掌蕴东, 白岩 2017 光学精密工程 25 59Google Scholar

    Tian H, Zhang Y D, Bai Y 2017 Opt. Precis. Eng. 25 59Google Scholar

    [19]

    Smith D D, Chang H, Fuller K A, Rosenberger A T, Boyd R W 2004 Phys. Rev. A 69 063804Google Scholar

    [20]

    Naweed A 2015 Opt. Express 23 12573Google Scholar

    [21]

    焦新泉, 陈家斌, 王晓丽, 薛晨阳, 任勇峰 2015 物理学报 64 144202Google Scholar

    Jiao X Q, Chen J B, Wang X L, Xue C Y, Ren Y F 2015 Acta Phys. Sin. 64 144202Google Scholar

    [22]

    Feng J B, Li Q Q, Zhou Z P 2011 IEEE Photonics Technol. Lett. 23 79Google Scholar

    [23]

    鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配 2021 物理学报 70 034204Google Scholar

    Lu L D, Zhu L Q, Zeng Z M, Cui Y P, Zhang D L, Yuan P 2021 Acta Phys. Sin. 70 034204Google Scholar

    [24]

    Ma K, Zhang Y D, Wu Y F, Su H Y, Zhang X N, Yuan P 2017 J. Opt. Soc. Am. B 34 2400Google Scholar

    [25]

    Tian H, Zhang Y D 2018 J. Light. Technol. 36 1792Google Scholar

    [26]

    Wang C, Zhang M, Yu M J, Zhu R R, Hu H, Loncar M 2019 Nat. Commun. 10 978Google Scholar

  • 图 1  可调反射器辅助的MRR滤波器结构 (SLR, Sagnac环路反射器; PS, 热光移相器; MMI, 多模干涉)

    Fig. 1.  Diagram of the tunable reflector assisted MRR filter (SLR, Sagnac loop reflector; PS, phase shifter; MMI, multi-mode interference).

    图 2  (a) 可调反射器辅助的MRR简化结构; (b) MZI型可调耦合器结构; (c) 光在图(a)中传输的等效路径

    Fig. 2.  (a) Simplified diagram of a tunable reflector assisted MRR filter; (b) diagram of an optical tunable coupler based on the MZI structure; (c) equivalent paths of optical transmission in panel (a).

    图 3  反射式非对称MZI滤波器结构 (a) MZI1处于可调状态且MZI2处于交叉状态; (b) MZI1处于交叉状态且MZI2处于可调状态; (c) 等效反射式非对称MZI结构

    Fig. 3.  Diagram of reflective-type asymmetric MZI filters: (a) MZI1 is in tunable state and MZI2 is in cross state; (b) MZI1 is in cross state and MZI2 is in tunable state; (c) schematic of the equivalent reflective-type asymmetric MZI.

    图 4  四种FSR的反射式非对称MZI滤波器频谱 (a) FSR = ∆λ, Φ = [0.50, 0, 0.50, 0, 0]×π; (b) FSR = 2∆λ, Φ = [0.25, 0, 0.25, 0, 0]×π;(c) FSR = ∆λ/3, Φ = [0, 0.50, 0.50, 0, 0]×π; (d) FSR = 2∆λ/3, Φ = [0, 0.25, 0.25, 0, 0]×π; (e) 频谱调谐及对应的相位变化量

    Fig. 4.  Reflective-type asymmetric MZI filters spectra with four different FSRs: (a) FSR = ∆λ, Φ = [0.50, 0, 0.50, 0, 0]×π; (b) FSR = 2∆λ, Φ = [0.25, 0, 0.25, 0, 0]×π; (c) FSR = ∆λ/3, Φ = [0, 0.50, 0.50, 0, 0]×π; (d) FSR = 2∆λ/3, Φ = [0, 0.25, 0.25, 0, 0]×π; (e) the spectrum tuning and corresponding phase change.

    图 5  (a) 反射式全通型微环滤波器及等效结构示意图; (b) 反射器处于透射状态时(Φ = [0.64, 1.00, 0, 0, 0]×π), Out1的陷波响应;(c) 反射器处于反射状态时(Φ = [0.64, 1.00, 0.50, 0, 0]×π), Out2的陷波响应; (d) 频谱调谐及对应的相位变化量

    Fig. 5.  (a) Diagram of a reflective-type all-pass MMR filter and equivalent structure; (b) notch response of the Out1 port when the reflector is in transmission state (Φ = [0.64, 1.00, 0, 0, 0]×π); (c) notch response of the Out2 port when the reflector is in reflection state (Φ = [0.64, 1.00, 0.50, 0, 0]×π); (d) spectrum tuning and corresponding phase change.

    图 6  (a) 直通型自干涉微环滤波器及等效结构示意图; (b) Out1带阻与Out2带通响应(Φ = [0.78, 0.45, 0, 0, 0]×π); (c) Out1带通与Out2带阻响应(Φ = [0.27, 0.27, 0, 0, 0]×π); (d) EIT与EIA频谱(Φ = [0.55, 0.55, 0, 0, 0]×π); (e) EIT与EIA频谱调谐(带宽与ER); (f) 频谱调谐及对应的相位变化量

    Fig. 6.  (a) Diagram of a self-interference MMR filter and equivalent structure; (b) band-stop response of the Out1 port and band-pass response of the Out2 port (Φ = [0.78, 0.45, 0, 0, 0]×π); (c) band-pass response of the Out1 port and band-stop response of the Out2 port (Φ = [0.27, 0.27, 0, 0, 0]×π); (d) spectrum of EIT and EIA (Φ = [0.55, 0.55, 0, 0, 0]×π); (e) spectrum tuning of EIT and EIA (bandwidth and ER); (f) spectrum tuning and corresponding phase change.

    图 7  (a) 半透半反型自干涉微环滤波器结构; (b) 两倍FSR的带阻响应(Φ = [0.83, 0.38, 0.25, 0, 0]×π); (c) Fano共振频谱(Φ = [0.65, 0.92, 0.25, 0, 0]×π); (d) 频谱调谐以及对应的相位变化量

    Fig. 7.  (a) Structure of a semi-transparent and semi-reflective self-interference MMR filter; (b) band-stop response with doubled FSR (Φ = [0.83, 0.38, 0.25, 0, 0]×π); (c) spectrum of Fano resonance (Φ = [0.65, 0.92, 0.25, 0, 0]×π); (d) spectrum tuning and corresponding phase change.

  • [1]

    Won R 2010 Nat. Photonics 4 498Google Scholar

    [2]

    Marpaung D, Yao J P, Capmany J 2019 Nat. Photonics 13 80Google Scholar

    [3]

    Xiang C, Jin W, Bowers J E 2022 Photonics Res. 10 A82Google Scholar

    [4]

    Bogaerts W, de Heyn P, Van Vaerenbergh T, de Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, van Thourhout D, Baets R 2012 Laser Photonics Rev. 6 47Google Scholar

    [5]

    Ong J R, Kumar R, Mookherjea S 2013 IEEE Photonics Technol. Lett. 25 1543Google Scholar

    [6]

    Kumar R R, Tsang H K 2021 Opt. Lett. 46 134Google Scholar

    [7]

    任光辉, 陈少武, 曹彤彤 2012 物理学报 61 034215Google Scholar

    Ren G H, Chen S W, Cao T T 2012 Acta Phys. Sin. 61 034215Google Scholar

    [8]

    Cohen R A, Amrani O, Ruschin S 2018 Nat. Photonics 12 706Google Scholar

    [9]

    Sun Q K, Zhou L J, Lu L J, Zhou G Q, Chen J P 2018 IEEE Photonics J. 10 1Google Scholar

    [10]

    Zheng P F, Xu X M, Hu G H, Zhang R H, Yun B F, Cui Y P 2021 J. Light. Technol. 39 1429Google Scholar

    [11]

    Geng Z H, Xie Y W, Zhuang L M, Burla M, Hoekman M, Roeloffzen C G H, Lowery A J 2017 Opt. Express 25 27635Google Scholar

    [12]

    Li A, Bogaerts W 2019 Laser Photonics Rev. 13 1800244Google Scholar

    [13]

    Li A, Bogaerts W 2017 Opt. Express 25 31688Google Scholar

    [14]

    Pan S L, Tang Z Z, Huang M H, Li S M 2020 IEEE J. Sel. Top. Quantum Electron. 26 1Google Scholar

    [15]

    Shu H W, Chang L, Tao Y S, Shen B T, Xie W Q, Jin M, Netherton A, Tao Z H, Zhang X G, Chen R X, Bai B W, Qin J, Yu S H, Wang X J, Bowers J E 2022 Nature 605 457Google Scholar

    [16]

    Jiang X H, Wu J Y, Yang Y X, Pan T, Mao J M, Liu B Y, Liu R L, Zhang Y, Qiu C Y, Tremblay C, Su Y K 2016 Opt. Express. 24 2183Google Scholar

    [17]

    El Shamy R S, Afifi A E, Badr M M, Swillam M A 2022 Sci. Rep. 12 3598Google Scholar

    [18]

    田赫, 掌蕴东, 白岩 2017 光学精密工程 25 59Google Scholar

    Tian H, Zhang Y D, Bai Y 2017 Opt. Precis. Eng. 25 59Google Scholar

    [19]

    Smith D D, Chang H, Fuller K A, Rosenberger A T, Boyd R W 2004 Phys. Rev. A 69 063804Google Scholar

    [20]

    Naweed A 2015 Opt. Express 23 12573Google Scholar

    [21]

    焦新泉, 陈家斌, 王晓丽, 薛晨阳, 任勇峰 2015 物理学报 64 144202Google Scholar

    Jiao X Q, Chen J B, Wang X L, Xue C Y, Ren Y F 2015 Acta Phys. Sin. 64 144202Google Scholar

    [22]

    Feng J B, Li Q Q, Zhou Z P 2011 IEEE Photonics Technol. Lett. 23 79Google Scholar

    [23]

    鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配 2021 物理学报 70 034204Google Scholar

    Lu L D, Zhu L Q, Zeng Z M, Cui Y P, Zhang D L, Yuan P 2021 Acta Phys. Sin. 70 034204Google Scholar

    [24]

    Ma K, Zhang Y D, Wu Y F, Su H Y, Zhang X N, Yuan P 2017 J. Opt. Soc. Am. B 34 2400Google Scholar

    [25]

    Tian H, Zhang Y D 2018 J. Light. Technol. 36 1792Google Scholar

    [26]

    Wang C, Zhang M, Yu M J, Zhu R R, Hu H, Loncar M 2019 Nat. Commun. 10 978Google Scholar

  • [1] 胡飞飞, 李思莹, 朱顺, 黄昱, 林旭斌, 张思拓, 范云茹, 周强, 刘云. 用于量子纠缠密钥的多波长对量子关联光子对产生. 物理学报, 2024, 73(23): 230304. doi: 10.7498/aps.73.20241274
    [2] 熊霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇. 物理学报, 2023, 72(23): 234201. doi: 10.7498/aps.72.20231295
    [3] 张伊祎, 韦雪玲, 农洁, 马汉斯, 叶子阳, 徐文杰, 张振荣, 杨俊波. 基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器. 物理学报, 2023, 72(15): 154207. doi: 10.7498/aps.72.20230459
    [4] 陈舒越, 蒋闯, 柯少林, 王兵, 陆培祥. 基于Aharonov-Bohm笼的非厄米趋肤效应抑制现象. 物理学报, 2022, 71(17): 174201. doi: 10.7498/aps.71.20220978
    [5] 肖金标, 罗辉, 徐银, 孙小菡. 硅基槽式微环谐振腔型偏振解复用器全矢量分析. 物理学报, 2015, 64(19): 194207. doi: 10.7498/aps.64.194207
    [6] 王霆, 张建军, Huiyun Liu. 硅基III-V族量子点激光器的发展现状和前景. 物理学报, 2015, 64(20): 204209. doi: 10.7498/aps.64.204209
    [7] 吉喆, 贾大功, 张红霞, 张德龙, 刘铁根, 张以谟. 结构参数对串联微环谐振腔编解码器性能的影响. 物理学报, 2015, 64(3): 034218. doi: 10.7498/aps.64.034218
    [8] 孙运利, 王昌辉, 乐孜纯. 基于微流控光学可调谐的渐变折射率特性研究. 物理学报, 2014, 63(15): 154701. doi: 10.7498/aps.63.154701
    [9] 唐雄贵, 廖进昆, 李和平, 刘永, 刘永智. 基于热膨胀效应的可调光功率分束器设计. 物理学报, 2013, 62(2): 024218. doi: 10.7498/aps.62.024218
    [10] 曹彤彤, 张利斌, 费永浩, 曹严梅, 雷勋, 陈少武. 基于Add-drop型微环谐振腔的硅基高速电光调制器设计. 物理学报, 2013, 62(19): 194210. doi: 10.7498/aps.62.194210
    [11] 李杰, 朱京平. 光波导短程透镜加工容限误差研究. 物理学报, 2012, 61(24): 244208. doi: 10.7498/aps.61.244208
    [12] 陈兆震, 徐则达. 在一种新的聚合物材料上刻写正弦相位波导光栅及其特性研究. 物理学报, 2010, 59(5): 3264-3272. doi: 10.7498/aps.59.3264
    [13] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器. 物理学报, 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [14] 郭亚楠, 薛文瑞, 张文梅. 双椭圆纳米金属棒构成的表面等离子体波导的传输特性分析. 物理学报, 2009, 58(6): 4168-4174. doi: 10.7498/aps.58.4168
    [15] 邵公望, 戴亚军, 金国良. 抽运光与信号光的光强重叠因子和掺铒玻璃波导放大器的增益特性. 物理学报, 2009, 58(4): 2488-2494. doi: 10.7498/aps.58.2488
    [16] 杨薇, 刘迎, 肖立峰, 高树理. 两级串联声光可调谐滤波器旁瓣抑制的研究. 物理学报, 2009, 58(1): 328-332. doi: 10.7498/aps.58.328
    [17] 曾维友, 谢 康, 姜海明, 陈 凯. 基于TE-TM模变换的新型相位自补偿磁光隔离器. 物理学报, 2008, 57(6): 3607-3612. doi: 10.7498/aps.57.3607
    [18] 蔡鑫伦, 黄德修, 张新亮. 基于全矢量模式匹配法的三维弯曲波导本征模式计算. 物理学报, 2007, 56(4): 2268-2274. doi: 10.7498/aps.56.2268
    [19] 孙一翎, 潘剑侠. 多模干涉耦合器中重叠像相干相消现象分析. 物理学报, 2007, 56(6): 3300-3305. doi: 10.7498/aps.56.3300
    [20] 夏金松, 余金中. 一种新的基于最小平方逼近的广角光束传播方法. 物理学报, 2003, 52(3): 515-521. doi: 10.7498/aps.52.515
计量
  • 文章访问数:  5097
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-14
  • 修回日期:  2023-01-17
  • 上网日期:  2023-02-14
  • 刊出日期:  2023-04-20

/

返回文章
返回