-
特定脉冲放电参数条件下, 原来沿直线传播的低温等离子体射流放电通道会在脉冲电磁驱动下发生放电模式转换, 形成螺旋形态的流注通道. 与传统的螺旋波放电不同, 实验中并没有外加恒定磁场等破坏介质管极向对称性的因素, 而且螺旋的手性方向会随放电参数变化. 为深入了解等离子体射流中螺旋结构的电磁作用机理, 探索其导致螺旋形态和决定手征性的极向电场来源及影响因素, 本文通过建立完备自洽的等离子体理论模型, 对螺旋流注的手性方向、螺距变化、分叉等复杂放电特性和电磁机理进行分析. 研究发现击穿时极向电场波模的初始相位对螺旋流注的手性选择存在影响, 电子密度对螺旋流注的螺距参数存在影响, 放电的脉冲重复频率对螺旋流注分叉的分叉点位置存在影响. 以上放电特性及其影响因素对探明电磁波与等离子体的相互作用机制具有重要科学意义, 同时也为低温等离子体的手性应用提供实验和理论支撑.Under the condition of specific pulsed discharge parameters, the discharge mode conversion of the low-temperature plasma jet discharge channel that originally propagates along a straight line will occur, forming a three-dimensional helical plasma channel. Unlike the traditional helical wave discharge, there are no factors such as an external constant magnetic field that destroys the poloidal symmetry of the dielectric tube, and the chiral direction of the helical streamer will change with the discharge parameters. In order to understand in depth the electromagnetic mechanism of the helical structure in the plasma jet, and the source and influencing factors of the poloidal electric field that leads to the helical shape and determines the chirality in this new type of discharge, we analyze the complex characteristics and electromagnetic mechanism of the helical streamer, such as the chiral direction, pitch, branching, by establishing a self-consistent plasma theoretical model. It is found that the phase of the poloidal wave mode has an effect on the chiral selection of the helical streamer, that the electron density has an influence on the pitch of the streamer, and that the repetition frequency has an effect on the bifurcation point. The above discharge characteristics and their influencing factors are of scientific significance in exploring the interaction mechanism of electromagnetic wave and plasma, and also in providing experimental and theoretical support for the chiral application of low-temperature plasma.
-
Keywords:
- plasma /
- helical streamer /
- chirality /
- pulsed discharge
[1] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧 2022 物理学报 71 187802Google Scholar
Chen L D, Fan R H, Liu Y, Tang G H, Ma Z L, Peng R W, Wang M 2022 Acta Phys. Sin. 71 187802Google Scholar
[2] 谢建华, 周其林 2015 科学通报 60 2679
Xie J H, Zhou Q L 2015 Sci. Bull. 60 2679
[3] 李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697
Li H P, Yu D R, Sun W Y, Liu X D, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Eng. 42 3697
[4] 卢新培, 严萍, 任春生, 邵涛 2011 中国科学: 物理学 力学 天文学 41 801Google Scholar
Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China:Phys. , Mech. Astron. 41 801Google Scholar
[5] Lu X P, Naidis G V, Laroussi M, Ostrikov K 2014 Phy. Rep. 540 123Google Scholar
[6] 张一川, 杨宽, 李唤, 朱晓东 2016 物理学报 65 145201Google Scholar
Zhang Y C, Yang K, Li H, Zhu X D 2016 Acta Phys. Sin. 65 145201Google Scholar
[7] Shi X M, Cai J F, Xu G M, Ren H B, Chen S L, Chang Z S, Liu J R, Huang C Y, Zhang G J, Wu X L 2016 Plasma Sci. Technol. 18 353Google Scholar
[8] Wu K Y, Ren C H, Jia B Y, Lin X T, Zhao N, Jia P Y, Li X C 2019 Plasma Processes Polym. 16 e1900073.1
[9] 陈柬, 杨静, 阮陈, 方志 2016 绝缘材料 49 45
Chen J, Yang J, Ruan C, Fang Z 2016 Insul. Mater. 49 45
[10] 金英, 钱沐扬, 任春生, 王德真 2012 高电压技术 38 1682
Jin Y, Qin M Y, Ren C S, Wang D Z 2012 High Voltage Eng. 38 1682
[11] 徐尧, 汪建华, 高建保, 薛垂庆 2013 强激光与粒子束 25 2909Google Scholar
Xu Y, Wang J H, Gao J B, Xie C Q 2013 High Power Laser Part. Beams 25 2909Google Scholar
[12] 李文浩, 田朝, 冯绅绅, 宁付鹏, 白超, 尤江, 侯吉磊, 孟月东, 万树德, 方应翠 2018 真空科学与技术学报 38 695
Li W H, Tian C, Feng S S, Ning F P, Bai C, You J, Hou J L, Meng Y D, Wan A D, Fang Y C 2018 Chin. J. Vac. Sci. Technol. 38 695
[13] 刘富成, 王德真 2012 高电压技术 7 1749
Liu F C, Wang D Z 2012 Chin. J. Vac. Sci. Technol. 7 1749
[14] Teschke M, Kedziersk J, Finantu-Dinu E G, Korzec D, Engemann J 2005 IEEE Trans. Plasma Sci. 33 310Google Scholar
[15] Darny T, Robert E, Dozias S, Pouvesle J M 2014 IEEE Trans. Plasma Sci. 42 2506Google Scholar
[16] Xia G, Chen Z, Yin Z, Hao J, Xu Z, Xue C, Hu D, Zhou M, Hu Y, Kudryavtsev A 2015 IEEE Trans. Plasma Sci. 43 1825Google Scholar
[17] Zou D D, Cao X, Lu X P, Ostrikov K 2015 Phys. Plasmas 22 103517Google Scholar
[18] 邹丹旦, 蔡智超, 吴鹏, 李春华, 曾晗, 张红丽, 崔春梅 2017 物理学报 66 155202Google Scholar
Zou D D, Cai Z C, Wu P, Li C H, Zeng H, Zhang H L, Cui C M 2017 Acta Phys. Sin. 66 155202Google Scholar
[19] Nie L L, Liu F W, Zhou X C, Lu X P, Xian Y B 2018 Phys. Plasmas 25 053507Google Scholar
[20] Liu F, Li J, Wu F, Nie L, Lu X 2018 J. Phys. D Appl. Phys. 51 294003Google Scholar
[21] Wu S Q, Wu F, Liu C, Liu X Y, Chen Y X, Shao T, Zhang C H 2019 Plasma Pro. Polym. 16 e1800176.1
[22] Liu L J, Zhang Y, Tian W J, Meng Y, Ouyang J T 2014 Appl. Phys. Lett. 104 244108Google Scholar
[23] Li X C, Li Y R, Zhang P P, Jia P Y, Dong L F 2016 Sci. Rep. 6 35653Google Scholar
[24] Mericam-Bourdet N, Laroussi M, Begum A, Karakas E 2009 J. Phys. D Appl. Phys. 42 055207Google Scholar
[25] Liu W Z, Li Z Y, Zhao L X, Zheng Q T, Ma C L 2018 Phy. Plasmas 25 083505Google Scholar
[26] Xiong Q, Nikiforov A Y, Lu X P, Ley C 2011 IEEE Trans. Plasma Sci. 39 2094Google Scholar
[27] Hofmann S, Sobota A, Bruggeman P 2012 IEEE Trans. Plasma Sci. 40 2888Google Scholar
[28] Wu S, Wang Z, Huang Q, Tan X, Lu X, Ostrikov K 2013 Phys. Plasmas 20 0235032
[29] Wu S, Xu H, Xian Y, Lu Y, Lu X 2015 AIP Adv. 5 0271102
[30] Zhang R B, Han Q T, Li S, Liu H 2017 Transactions of China Electrotechnical Society 32 282
[31] 白占国, 李新政, 李燕, 赵昆 2014 物理学报 63 228201Google Scholar
Bai Z G, Li X Z, Li Y, Zhao K 2014 Acta Phys. Sin. 63 228201Google Scholar
[32] 汪肇坤, 杨振宇, 陶欢, 赵茗 2016 物理学报 65 217802Google Scholar
Wang Z K, Yang Z Y, Tao H, Zhao M 2016 Acta Phys. Sin. 65 217802Google Scholar
[33] 潘飞, 王小艳, 汪芃, 黎维新, 唐国宁 2016 物理学报 65 198201Google Scholar
Pan F, Wang X Y, Wang P, Li W X, Tang G N 2016 Acta Phys. Sin. 65 198201Google Scholar
[34] 曾永辉, 江五贵, Qin Qing-Hua 2016 物理学报 65 148802Google Scholar
Zeng Y H, Jiang W G, Qin Q H 2016 Acta Phys. Sin. 65 148802Google Scholar
[35] 王红芳, 董丽芳, 刘富成, 刘书华, 刘微粒 2007 河北大学学报 27 475
Wang H F, Dong L F, Liu F C, Liu S H, Liu W L 2007 J. Heibei Univ. (Nat. Sci. Ed.) 27 475 (in Chinese)
[36] Lieberman M A, Booth J P, Chabert P, Rax J M, Turner M M 2002 Plasma Sources Sci. Technol. 11 283Google Scholar
[37] Zhao K, Wen D Q, Liu Y X, Lieberman M A, Economou D, Wang Y N 2019 Phys. Rev. Lett. 122 185002Google Scholar
[38] 曹星 2015 硕士学位论文 (武汉: 华中科技大学)
Cao X 2015 M. S. Dessertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[39] 杨 敏, 王佳明, 齐凯旋, 李小平, 谢楷, 张琼杰, 刘浩岩, 董鹏 2022 物理学报 71 235201
Yang M, Wang J M, Qi K X, Li X P, Xie K, Zhang Q J, Liu H Y, Dong P 2022 Acta Phys. Sin. 71 235201
[40] Zou D D, Ji Q Z, Zhang Y, Kravchenko O V, Atul J K, Ostrikov K K 2022 IEEE Trans. Plasma Sci. 50 4805Google Scholar
[41] Arrayás M, Ebert U, Hundsdorfer W 2002 Phys. Rev. Lett. 88 174502Google Scholar
[42] Brau F, Luque A, Davidovitch B, Ebert U 2009 Phys. Rev. E 79 066211Google Scholar
[43] Wu S Q, Lu X P, Zou D D, Pan Y 2013 J. Appl. Phys. 114 263001
-
-
[1] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧 2022 物理学报 71 187802Google Scholar
Chen L D, Fan R H, Liu Y, Tang G H, Ma Z L, Peng R W, Wang M 2022 Acta Phys. Sin. 71 187802Google Scholar
[2] 谢建华, 周其林 2015 科学通报 60 2679
Xie J H, Zhou Q L 2015 Sci. Bull. 60 2679
[3] 李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697
Li H P, Yu D R, Sun W Y, Liu X D, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Eng. 42 3697
[4] 卢新培, 严萍, 任春生, 邵涛 2011 中国科学: 物理学 力学 天文学 41 801Google Scholar
Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China:Phys. , Mech. Astron. 41 801Google Scholar
[5] Lu X P, Naidis G V, Laroussi M, Ostrikov K 2014 Phy. Rep. 540 123Google Scholar
[6] 张一川, 杨宽, 李唤, 朱晓东 2016 物理学报 65 145201Google Scholar
Zhang Y C, Yang K, Li H, Zhu X D 2016 Acta Phys. Sin. 65 145201Google Scholar
[7] Shi X M, Cai J F, Xu G M, Ren H B, Chen S L, Chang Z S, Liu J R, Huang C Y, Zhang G J, Wu X L 2016 Plasma Sci. Technol. 18 353Google Scholar
[8] Wu K Y, Ren C H, Jia B Y, Lin X T, Zhao N, Jia P Y, Li X C 2019 Plasma Processes Polym. 16 e1900073.1
[9] 陈柬, 杨静, 阮陈, 方志 2016 绝缘材料 49 45
Chen J, Yang J, Ruan C, Fang Z 2016 Insul. Mater. 49 45
[10] 金英, 钱沐扬, 任春生, 王德真 2012 高电压技术 38 1682
Jin Y, Qin M Y, Ren C S, Wang D Z 2012 High Voltage Eng. 38 1682
[11] 徐尧, 汪建华, 高建保, 薛垂庆 2013 强激光与粒子束 25 2909Google Scholar
Xu Y, Wang J H, Gao J B, Xie C Q 2013 High Power Laser Part. Beams 25 2909Google Scholar
[12] 李文浩, 田朝, 冯绅绅, 宁付鹏, 白超, 尤江, 侯吉磊, 孟月东, 万树德, 方应翠 2018 真空科学与技术学报 38 695
Li W H, Tian C, Feng S S, Ning F P, Bai C, You J, Hou J L, Meng Y D, Wan A D, Fang Y C 2018 Chin. J. Vac. Sci. Technol. 38 695
[13] 刘富成, 王德真 2012 高电压技术 7 1749
Liu F C, Wang D Z 2012 Chin. J. Vac. Sci. Technol. 7 1749
[14] Teschke M, Kedziersk J, Finantu-Dinu E G, Korzec D, Engemann J 2005 IEEE Trans. Plasma Sci. 33 310Google Scholar
[15] Darny T, Robert E, Dozias S, Pouvesle J M 2014 IEEE Trans. Plasma Sci. 42 2506Google Scholar
[16] Xia G, Chen Z, Yin Z, Hao J, Xu Z, Xue C, Hu D, Zhou M, Hu Y, Kudryavtsev A 2015 IEEE Trans. Plasma Sci. 43 1825Google Scholar
[17] Zou D D, Cao X, Lu X P, Ostrikov K 2015 Phys. Plasmas 22 103517Google Scholar
[18] 邹丹旦, 蔡智超, 吴鹏, 李春华, 曾晗, 张红丽, 崔春梅 2017 物理学报 66 155202Google Scholar
Zou D D, Cai Z C, Wu P, Li C H, Zeng H, Zhang H L, Cui C M 2017 Acta Phys. Sin. 66 155202Google Scholar
[19] Nie L L, Liu F W, Zhou X C, Lu X P, Xian Y B 2018 Phys. Plasmas 25 053507Google Scholar
[20] Liu F, Li J, Wu F, Nie L, Lu X 2018 J. Phys. D Appl. Phys. 51 294003Google Scholar
[21] Wu S Q, Wu F, Liu C, Liu X Y, Chen Y X, Shao T, Zhang C H 2019 Plasma Pro. Polym. 16 e1800176.1
[22] Liu L J, Zhang Y, Tian W J, Meng Y, Ouyang J T 2014 Appl. Phys. Lett. 104 244108Google Scholar
[23] Li X C, Li Y R, Zhang P P, Jia P Y, Dong L F 2016 Sci. Rep. 6 35653Google Scholar
[24] Mericam-Bourdet N, Laroussi M, Begum A, Karakas E 2009 J. Phys. D Appl. Phys. 42 055207Google Scholar
[25] Liu W Z, Li Z Y, Zhao L X, Zheng Q T, Ma C L 2018 Phy. Plasmas 25 083505Google Scholar
[26] Xiong Q, Nikiforov A Y, Lu X P, Ley C 2011 IEEE Trans. Plasma Sci. 39 2094Google Scholar
[27] Hofmann S, Sobota A, Bruggeman P 2012 IEEE Trans. Plasma Sci. 40 2888Google Scholar
[28] Wu S, Wang Z, Huang Q, Tan X, Lu X, Ostrikov K 2013 Phys. Plasmas 20 0235032
[29] Wu S, Xu H, Xian Y, Lu Y, Lu X 2015 AIP Adv. 5 0271102
[30] Zhang R B, Han Q T, Li S, Liu H 2017 Transactions of China Electrotechnical Society 32 282
[31] 白占国, 李新政, 李燕, 赵昆 2014 物理学报 63 228201Google Scholar
Bai Z G, Li X Z, Li Y, Zhao K 2014 Acta Phys. Sin. 63 228201Google Scholar
[32] 汪肇坤, 杨振宇, 陶欢, 赵茗 2016 物理学报 65 217802Google Scholar
Wang Z K, Yang Z Y, Tao H, Zhao M 2016 Acta Phys. Sin. 65 217802Google Scholar
[33] 潘飞, 王小艳, 汪芃, 黎维新, 唐国宁 2016 物理学报 65 198201Google Scholar
Pan F, Wang X Y, Wang P, Li W X, Tang G N 2016 Acta Phys. Sin. 65 198201Google Scholar
[34] 曾永辉, 江五贵, Qin Qing-Hua 2016 物理学报 65 148802Google Scholar
Zeng Y H, Jiang W G, Qin Q H 2016 Acta Phys. Sin. 65 148802Google Scholar
[35] 王红芳, 董丽芳, 刘富成, 刘书华, 刘微粒 2007 河北大学学报 27 475
Wang H F, Dong L F, Liu F C, Liu S H, Liu W L 2007 J. Heibei Univ. (Nat. Sci. Ed.) 27 475 (in Chinese)
[36] Lieberman M A, Booth J P, Chabert P, Rax J M, Turner M M 2002 Plasma Sources Sci. Technol. 11 283Google Scholar
[37] Zhao K, Wen D Q, Liu Y X, Lieberman M A, Economou D, Wang Y N 2019 Phys. Rev. Lett. 122 185002Google Scholar
[38] 曹星 2015 硕士学位论文 (武汉: 华中科技大学)
Cao X 2015 M. S. Dessertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[39] 杨 敏, 王佳明, 齐凯旋, 李小平, 谢楷, 张琼杰, 刘浩岩, 董鹏 2022 物理学报 71 235201
Yang M, Wang J M, Qi K X, Li X P, Xie K, Zhang Q J, Liu H Y, Dong P 2022 Acta Phys. Sin. 71 235201
[40] Zou D D, Ji Q Z, Zhang Y, Kravchenko O V, Atul J K, Ostrikov K K 2022 IEEE Trans. Plasma Sci. 50 4805Google Scholar
[41] Arrayás M, Ebert U, Hundsdorfer W 2002 Phys. Rev. Lett. 88 174502Google Scholar
[42] Brau F, Luque A, Davidovitch B, Ebert U 2009 Phys. Rev. E 79 066211Google Scholar
[43] Wu S Q, Lu X P, Zou D D, Pan Y 2013 J. Appl. Phys. 114 263001
计量
- 文章访问数: 2891
- PDF下载量: 42
- 被引次数: 0